

Semi-Annual Monitoring Report July- December 2019

Delaware Sand & Gravel Superfund Site New Castle County, Delaware

Submitted to:

US Environmental Protection Agency

1650 Arch Street Philadelphia, PA

Distribution List

- 1 Paper copy/1 CD USEPA
- 1 Paper copy and electronic submittal DNREC
- 1 Paper copy/1 CD DS&G Trust
- 1 Paper copy Golder Associates Inc.

ED_004821A_00009452-00002

Table of Contents

1.0	INTRO	ODUCTION	1
	1.1	Groundwater Monitoring	1
	1.2	LFExS and Well PW-1(U) Operation, Maintenance and Monitoring	2
2.0	SITE	SETTING AND PREVIOUS ACTIVITIES	2
	2.1	Brief Site History and Description	3
	2.2	Previous and Ongoing Remedial Activities	3
	2.3	Chemicals of Concern	6
3.0	GRO	JNDWATER SAMPLING AND ANALYSES	7
	3.1	Groundwater Elevations	8
	3.2	Sampling and Analysis	8
	3.2.1	Well Purging	8
	3.2.2	Sample Collection	10
	3.2.3	Analyses	11
	3.3	Data Quality Assessment	11
	3.4	Analytical Results	11
	3.4.1	DDA Extraction Wells	12
	3.4.2	DDA Monitoring Wells	12
	3.4.3	PW-1(U) Monitoring Wells	12
	3.4.3.1	PW-1(U) UPCUTZ Wells	12
	3.4.3.2	PW-1(U) Upper Sand Wells	13
	3.4.4	Downgradient UPA Wells – DS&G Site & AWC wells	13
	3.4.5	NCC UPA Monitoring Wells and P-6 Vicinity	13
	3.4.6	PFAS	13
4.0	LFEX	S AND PW-1(U) EXTRACTION SYSTEMS	14
	4.1	LFExS	14
	4.1.1	Operation and Maintenance	14
	4.1.2	Discharge Monitoring	15

	4.1.3	Performance Evaluations	15
	4.1.3.1	Groundwater Contours	16
	4.1.3.2	Groundwater Gradient Evaluation	16
	4.1.3.2	.1 Vertical Gradients	16
	4.1.3.2	.2 Horizontal Gradients	17
	4.1.3.2	.3 Conclusion	17
	4.1.4	Contaminant Concentration Trends	18
	4.1.4.1	DDA Extraction Wells	18
	4.1.4.2	LFExS and DDA Monitoring Wells	19
	4.2	PW-1(U) Extraction System	20
	4.2.1	Operation and Maintenance	20
	4.2.2	Performance Evaluation	20
	4.2.3	Contaminant Concentration Trends	21
	4.2.3.1	PW-1(U) Performance Monitoring Wells	21
	4.2.3.2	Downgradient UPA Monitoring Wells	22
	4.3	LFExS Mass Removal Estimate	24
	4.4	PW-1(U) Mass Removal Estimate	25
	4.5	POTW Mass Loading Rate	25
	4.6	Recommendations	26
	4.6.1	LFExS	26
	4.6.2	PW-1(U) System	27
5.0	DATA	EVALUATION AND INTERPRETATION	27
	5.1	Changes in Site Conditions	27
	5.2	Remedy Optimization	27
	5.3	Attainment of RAOs	28
	5.4	Data Collection Objectives	28
	5.5	Evaluation of Tentatively Identified Compounds	29
	5.6	Reporting	29
6.0	REFE	RENCES	29

TABLES

Table 1	Semi-Annual and Annual 2019 Monitoring Program
Table 2A	Groundwater Elevations – November 2019
Table 2B	Groundwater Elevations – January 2020
Table 3	Groundwater Field Parameter Summary – October 2019
Table 4	DDA Combined LFExS Mass Removal Estimate
Table 5	Individual LFExS Well Mass Removal Estimate
Table 6	Well PW-1(U) Mass Removal Estimate
Table 7	Summary of Mass Removal Estimates
EIGHDES	

FIGURES

Figure 1	Site Location Map
Figure 2	General Site Layout
Figure 3	Downgradient UPA Monitoring Locations
Figure 4	LFExS Wells and DDA Vicinity Monitoring Locations
Figure 5	LFExS Groundwater Elevation Contour Map, DDA, Columbia – November 2019
Figure 6	DDA to Well PW-1(U) - UPCU Transition Zone Groundwater Elevation Contours - January 2020
Figure 7	DDA to Well PW-1(U) – UPA Upper Sand Groundwater Elevation Contours – January 2020
Figure 8	UPA Upper Sand Groundwater Elevation Contours – January 2020
Figure 9	UPA Lower Sand Groundwater Elevation Contours – January 2020
Figure 10	LFExS Monthly and Semi-Annual Extraction Rates
Figure 11	Well PW-1(U) Operation and Maintenance Summary
Figure 12	DDA Combined LFExS Mass Removal Rates
Figure 13	Individual LFExS Well Mass Removal Rates
Figure 14	Well PW-1(U) Mass Removal Rates

APPENDICES

APPENDIX A

Data Quality Assessments - October/November 2019 (includes Form 1s)

APPENDIX B

Summary of Detected Compounds

APPENDIX C

Isoconcentration Maps

APPENDIX D

System Performance Data

APPENDIX E

Groundwater Gradient Trend Plots

APPENDIX F

Analytical Chemistry Trend Plots

APPENDIX G

Effluent Analytical Reports and Mass Loading Estimates

APPENDIX H

PFAS Analytical Results

İV

ACRONYMS AND ABBREVIATIONS

ACL Army Creek Landfill
AWC Artesian Water Company
BCEE bis (2-chloroethyl) ether
bgs below ground surface
BRA Bioremediation Area

BTEX Benzene, Toluene, Ethylbenzene, and Xylenes

cis-1,2,-DCE cis-1,2-dichloroethene
COCs Chemicals of Concerns
CSM Conceptual Site Model
1,2-DCA 1,2-Dichloroethane
DDA Drum Disposal Area

DNREC State of Delaware Department of Natural Resources and Environmental Control

DO Dissolved Oxygen
DS&G Delaware Sand & Gravel
DQA Data Quality Assessment

FS Feasibility Study

FS Rev 1 Feasibility Study - Revision 1

FSWP Rev 2 Feasibility Study Work Plan - Revision 2

gpm gallons per minute

GWTT Groundwater Treatment and Technology

HDPE High-Density Polyethylene

HI Hazard Index lbs pounds

LCS Laboratory Control Sample Low-Flow Extraction System

LIMS Laboratory Information Management System

MCLs Maximum Contaminant Levels

mg/L milligrams per liter

MS/MSD Matrix Spike/Matrix Spike Duplicate

mV millivolts

NAPs Natural Attenuation Parameters

NCC New Castle County

NTUs Nephelometric Turbidity Units

OM&M Operation, Maintenance and Monitoring

ORP Oxidation/Reduction Potential PCB Polychlorinated biphenyls

PFAS Per- and polyfluoroalkyl substances

PFCs Perfluorinated compounds PFOA Perfluorooctanoic acid

PFOS Perfluorooctane sulfonatePOTWPublicly Owned Treatment Works

PRG Preliminary Remediation Goal QA/QC Quality Assurance/Quality Control

RAO Remedial Action Objective

ROD Record of Decision

RSL Regional Screening Levels

SAP Rev 2 Sampling and Analysis Plan – Revision 2 ss-PRG Site-specific Preliminary Remediation Goals

SSC Rev 2 Supplemental Site Characterization Report – Revision 2

SVOCs Semi-Volatile Organic Compounds

TAL Target Analyte List 1,2,4-TMB 1,2,4-Trimethylbenzene 1,3,5-TMB 1,3,5-Trimethylbenzene

TTO Total Toxic Organics

TVOC Total Volatile Organic Compound

μg/L micrograms per liter
UPA Upper Potomac Aquifer

UPCU Upper Potomac Confining Unit

UPCUTZ UPCU Transition Zone

USEPA United States Environmental Protection Agency

VBVS Vertical Bioventing System VOCs Volatile Organic Compounds

vi

1.0 INTRODUCTION

On behalf of the Delaware Sand & Gravel (DS&G) Remedial Trust (the Trust), Golder Associates Inc. (Golder) is providing this Semi-Annual Monitoring Report for the Delaware Sand & Gravel Superfund Site (the Site) located in New Castle County, Delaware (see Figures 1 and 2). This report covers the monitoring activities conducted at the Site from July to December 2019 including the following:

- Groundwater monitoring in accordance with the Sampling and Analysis Plan Revision 2 (SAP Rev 2) dated March 28, 2019 (Golder, 2019c)
- Sampling of additional monitoring wells in support of the ongoing pre-design investigation activities
- Low-flow extraction system (LFExS) operation, maintenance and monitoring (OM&M)
- Pumping well PW-1(U) OM&M

In addition to Site-wide groundwater quality data, this report also presents the following for the period covered by this report:

- evaluation of groundwater characteristics associated with the Drum Disposal Area (DDA), including hydraulic containment/hydraulic gradient evaluations in support of the LFExS performance evaluation
- estimates of mass removed by the LFExS
- estimate of mass removed by pumping at well PW-1(U)
- estimate of mass loading to the New Castle County (NCC) sewer system (publicly-owned treatment works [POTW]) during the period covered by this report

1.1 Groundwater Monitoring

The October 2019 monitoring event was conducted in general accordance with the SAP Rev 2 (Golder, 2019c), with addition of select monitoring wells as approved by the United States Environmental Protection Agency (USEPA) and State of Delaware Department of Natural Resources and Environmental Control (DNREC) to monitor groundwater conditions at and downgradient of the Site. The monitoring wells and/or piezometers sampled during the period covered by this report are listed on Table 1 and are shown on Figures 3 and 4. As included in the approved SAP-Rev 2, one-time monitoring events for cations, anions and Per- and polyfluoroalkyl substances (PFAS) analyses were included in the October 2019 monitoring event as well as re-sampling of wells MW-26N and BW-2 for the three-volume purge evaluation.

A synoptic round of water levels was collected after completion of the monitoring event. Due to dynamic aquifer conditions at the time of the synoptic water level event caused by changes in AWC's operating conditions and development of recently installed monitoring and extraction wells at the Site, the measurements obtained were determined to not be representative of 'typical' aquifer conditions; therefore, a synoptic round of water levels was collected from UPA and UPCUTZ wells on January 28, 2020. Tables 2A and 2B provide the gauged water levels and calculated groundwater elevations for the November 2019 and January 2020 synoptic water level events, respectively.

In addition to the October 2019 routine monitoring event, bimonthly monitoring was performed in August and October 2019 for four wells (MW-26N, UPA-03D, AWC-E1, and AWC-E2) located upgradient of well AWC-G3R. The sampling frequency for these wells was increased to evaluate the migration of manganese and the leachate

plume from the area of combined mass between the DS&G and Army Creek Landfill (ACL) Sites toward Artesian Water Company's (AWC's) Llangollen Wellfield.

1.2 LFExS and Well PW-1(U) Operation, Maintenance and Monitoring

The LFExS extracts groundwater from the DDA at a target extraction rate of 8 to 10 gallons per minute (gpm) and discharges the extracted water directly to the NCC sewer system. The LFExS provides hydraulic containment and removal of volatile organic compounds (VOCs) and bis(2-chloroethyl) ether (BCEE) contaminant mass from the groundwater within the DDA through operation of eight extraction wells (see Appendix B of Golder, 2016b). Additional discussion is included in Section 2.2.

In June 2004, NCC and the DS&G Trust worked together to install pumping well PW-1¹ in the vicinity of monitoring well DGC-7S to complete the groundwater divide between the DDA and AWC's Llangollen wellfield and to provide capture of Upper Potomac Aquifer (UPA) groundwater in the vicinity of the DDA. On October 15, 2012, the Trust assumed hands-on responsibility for the operation and maintenance of pumping well PW-1(U) from NCC. The well PW-1(U) system discharges directly to the NCC sanitary sewer system (POTW). The NCC sewer discharge permit was modified to include the discharge from both the LFExS and pumping well PW-1(U) with the total combined flow now permitted at 51 gpm.

Since the Trust assumed hands-on responsibility for operation and maintenance, well PW-1(U) has extracted groundwater at a rate between approximately 30 and 40 gpm (instantaneous extraction rate). A summary of the LFExS and well PW-1(U) system operation and monitoring results since installation of the systems is presented in the Supplemental Site Characterization Report – Revision 2 (SSC Rev 2) dated January 29, 2016 (Golder, 2016a). As presented in the SSC Rev 2 Report, the groundwater data indicate that operation of pumping well PW-1(U) captures some contaminant mass within the UPA upper sand groundwater to the north and northwest of well PW-1(U). Operation of well PW-1(U) is also providing some capture of the impacts observed in the Upper Potomac Confining Unit Transition Zone (UPCUTZ) between the DDA and well PW-1(U).

During the October 2019 monitoring event, the extraction wells for both systems were sampled and analyzed in accordance with the SAP Rev 2 (Golder, 2019c), and samples were also collected and analyzed for parameters required by the NCC sewer discharge permit. A summary of the LFExS monitoring activities conducted during the period covered by this report are presented in Sections 3.4.1, 3.4.2, and 4.1. Well PW-1(U) monitoring activities conducted during the period covered by this report are presented in Sections 3.4.3 and 4.2.

2.0 SITE SETTING AND PREVIOUS ACTIVITIES

The detailed Conceptual Site Model (CSM) originally presented in the FSWP Rev 2 (Golder, 2011b) was most recently updated in the Final FS Report - Revision 1 (Final FS Rev 1; Golder, 2016b). The sections below briefly present the Site history and description, remedial activities to date, and an overview of the chemicals of concern (COCs).

¹ Wells PW-1(L) (screened in the lower sand of the UPA) and PW-1(U) (screened in the upper sand of the UPA) began operation in October 2004. Well PW-1(L) was operated until January 25, 2005, when the USEPA "approved termination of pumping from the lower zone [well PW-1(L)] because multiple rounds of chemical-quality data and hydraulic data demonstrated that the lower zone is generally free of contaminants and is hydraulically separated from the upper zone [well PW-1(U)]" (Ruth, 2007). On May 23, 2011, the portion of well PW-1 containing well PW-1(L) was grouted up to just below the base of well PW-1(U) (Ruth, 2013).

2.1 Brief Site History and Description

The DS&G Site is approximately 27 acres in area and is located in an area of residential and light-industrial use with many residential developments within one mile. The Site is bound to the north and northeast by the Norfolk Southern Railroad tracks and to the west by Army Creek, which eventually discharges into the Delaware River.

Prior to 1968, the DS&G Site operated as a sand and gravel quarry, following which filling operations began. Between 1968 and 1976, the DS&G Landfill collected approximately 550,000 cubic yards of waste including about 13,000 drums² containing liquids and sludges from chemical production, manufacturing, and petroleum-refining processes (USEPA, 2005). The following presents a summary of the disposal area activities from the 1993 Record of Decision (ROD) Amendment for the DS&G Site:

- The Drum Disposal Area (DDA): "This area was originally a pit where drums containing liquids and sludges, including perfume, plastics, paint, and petroleum, from various industrial processes were disposed. The majority of drum contents were organics and inorganic solids." (USEPA, 1993).
- The Ridge Area: "...was used primarily for surface storage of drums and large storage tanks containing inorganic and organic sludges and solids. The drums and tanks have been removed, or emptied, and steam cleaned; however, contaminated surface soils remain." (USEPA, 1993).
- The Inert Disposal Area: "Field investigations suggest that nearly one half million cubic yards of construction rubble and scattered chemical wastes were deposited in this disposal area. The refuse was covered with a thin layer of soil. Abandoned cars, trucks, storage tanks, and other solid wastes currently occupy the surface of the Inert Disposal Area." (USEPA, 1993).
- The Grantham South Area: "An estimated 73,400 cubic yards of construction rubble and scattered chemical wastes were deposited in a layer nearly 35 feet thick. Pre-construction field investigations identified elevated levels of organic and inorganic contaminants within the refuse layer" (USEPA, 1993). Between 1988 and 1991, the US Army Corps of Engineers installed a cap on the Grantham South Area.

The ACL Superfund Site is located immediately west of the DS&G Site across Army Creek/Army Pond. The ACL Site is a 60-acre abandoned sand and gravel quarry that was operated by NCC as an unlined landfill between 1960 and 1968 and received 1.9 million cubic yards of municipal and industrial wastes (USEPA, 1998).

2.2 Previous and Ongoing Remedial Activities

In 1984, the USEPA and DNREC conducted an immediate removal action, removing more than 1,600 drums from the surface of the DDA and Ridge Areas (USEPA, 1984). Between 1989 and 1991, a multi-layer landfill cap, gas venting system, and perimeter fence were installed in the Grantham South Area. Between 1996 and 1997, the Trust constructed an 11-acre, multi-layer, landfill cap over the Inert Area.

In 1994, the Trust constructed a slurry-wall system to enclose an area of about three acres, including the DDA and the surrounding soils affected by historical releases from the DDA. The slurry-wall system consists of a three-foot thick, soil-bentonite slurry wall keyed into the underlying Upper Potomac Confining Unit (UPCU; clay unit), where present, and ranges in depth from 17 to 57 feet below ground surface (bgs) (USEPA, 1997). Between 1995

² The 1993 Amended ROD indicates "approximately 550,000 cubic yards of industrial wastes and construction debris, including at least 7,000 drums, were disposed of within four distinct disposal areas on the DS&G property" (USEPA, 1993).

and 1997, the Trust completed remedial activities for the DDA (including drum and soil removal, and construction of a bio-venting system within the slurry-wall system) and Ridge Area (implemented under OU4 and OU5, which superseded OU2). (USEPA, 1997)

The area within the slurry-wall system is divided by a partition wall, which isolates the portion of the DDA with contaminated soils (containment area) from the area where the clay is thin, discontinuous, or not present (partition area). Around the partition area, the slurry wall is classified as a "hanging wall" because the UPCU is absent beneath this section of wall.

An overview of the OU4 (Ridge Area/DDA excavation of drums and highly contaminated wastes) and OU5 (Ridge Area/DDA bio-cell construction and operation) activities is provided in the USEPA's 1999 Five-Year Review (FYR; USEPA, 1999), where the USEPA states the following:

"Excavation of buried drums within the DDA began in August 1995 and was completed in August 1996. An estimated 13,000 drums were removed and transported off-site for treatment and/or disposal. In addition, approximately 2,300 cubic yards of PCB [polychlorinated biphenyl] contaminated soil was transported off-site for incineration between February and May 1996. Construction of the DDA slurry wall was completed during summer 1996³. Construction of the bioremediation (bioventing) system designed to treat 80,000 cubic yards of contaminated soils within the DDA slurry wall began in September 1996 and was completed in July 1997. The bioremediation process for contaminated soils began in July 1997 and will operate for a projected period of approximately eight years under the O&M Phase."

Between 1997 and 2009, the Trust operated an active remediation (bio-venting) system within a portion of the DDA referred to as the Bioremediation Area (BRA). Between 1996 and 1997 the Trust installed the BRA which included two components: a bio-cell and a vertical bioventing system (VBVS), which treated the interval below the bio-cell. The bio-cell included the original 0.8-acre area where drums were disposed within the DDA, and the soils that were excavated and consolidated from the DDA and the Ridge Area. The Trust mixed the excavated soils with wood chips, sand, and di-ammonium phosphate to enhance the biodegradation of the soil contaminants prior to placement within the bio-cell (additional discussion is provided in Appendix C of the Final FS Rev1). As described in more detail in Appendix B of the Final FS Rev1, the Trust constructed and operated the bio-cell above the surface of the Columbia Aquifer water table (as influenced by operation of an extraction well to lower and maintain the water table beneath the bio-cell).

In 2005, with concurrence of the USEPA, the Trust suspended operation of the VBVS portion of the system, due to high water levels⁴ in the VBVS extraction wells. The bio-cell is located at a higher elevation than the VBVS; therefore, operation of the bio-cell was not affected by the high water levels. The bio-cell continued to operate until 2009 when the Trust suspended active operation of the bio-cell because the technical limits of the system (asymptotic performance) had been achieved. Portions of the bio-cell's aboveground piping and appurtenances were subsequently removed to enable construction of the LFExS.

⁴ Shutdown of the NCC system in 2004 resulted in a rise in the Columbia Aquifer and UPA potentiometric surfaces.

³ The 1999 FYR indicates slurry-wall construction was completed in 1996; however, the construction was essentially completed in 1994. The Preliminary Close Out Report (USEPA, 1997) states that the USEPA accepted the certification of completion for the slurry wall on February 23,

As indicated in Section 3.1.2 of the SSC Rev 2, a groundwater recovery system was operated by NCC between 1973 and October 2004 to extract contaminated groundwater from the UPA and in an attempt to create a groundwater divide between the Sites (ACL and DS&G) and AWC's Llangollen wellfield.

In October 2004, NCC began pumping from well PW-1 (as discussed in Section 1.2) and initiated a pilot study to shut down the NCC recovery well system. The NCC groundwater recovery system has been shut down since that time.

In May 2009, the Trust began operation of the LFExS, which initially extracted water from six extraction wells within the DDA (wells C-2D, C-19D, C-18D, BG-1, C-4D, and B-4D). The LFExS started temporary operation on May 4, 2009 and operated at a monthly average flow rate of approximately 2 to 5 gallons per minute (gpm) until the system was shut down for construction of the permanent system in December 2009. Operation of the permanent system started on February 23, 2010. In September 2010, the Trust completed construction of an additional extraction well within the DDA (C-30) and in December 2012, existing well C-20D began operation as part of the LFExS. As indicated in Section 1.2, the system discharges directly to the NCC sewer system under a permit with NCC.

The LFExS currently has eight operational extraction wells (wells C-2D, C-19D, C-18D, BG-1, C-4D, B-4DR, C-30 and C-20D as shown on Figure 4) that provide hydraulic containment within the DDA by inducing inward (horizontal) gradients in the Columbia Aquifer across the slurry walls, and upward (vertical) gradients between the UPA upper sand and the Columbia Aquifer (i.e., maintaining a lower potentiometric head within the DDA). Operation of the LFExS also removes VOC and semi-VOC (SVOC, primarily BCEE and 1,4-dioxane⁵) dissolved-phase contaminant mass from within the DDA containment area.

Completed actions have achieved important remedial objectives at the Site. The USEPA has indicated that the remedial activities at the Grantham South, Inert Area, and Ridge Area are currently protective of human health and the environment; however, the USEPA has indicated that "in order for the remedy to be protective in the long term, additional response actions are needed at the DDA" (USEPA, 2015a). Ongoing activities, including maintenance of caps over the DDA and Grantham South and Inert Areas and operation of well PW-1(U) and the LFExS, address sources and potential exposure pathways on the DS&G property.

On December 12, 2017, the USEPA issued the Record of Decision-Amendment 2 (ROD-A2; USEPA 2017) for the DS&G Site adopting the Alternative C identified in the Final Feasibility Study Revision 1 (Final FS Rev 1; Golder, 2016b) as the Selected Remedy for the Site. On May 22, 2018, the Trust and the USEPA signed an "Administrative Settlement Agreement and Order on Consent for Remedial Design" (RD AOC; effective date May 29, 2018). The Statement of Work (SOW) associated with the RD AOC "sets forth the procedures and requirements for implementing the Work, which consists of: (1) a Preliminary Design Investigation (PDI), and (2) a Remedial Design (RD) for the components of the Remedial Action (RA)". (USEPA, 2018a)

The USEPA provided partial approval of the PDI WP with comments on November 30, 2018. (USEPA, 2018b) PDI WP-Rev 2 and SAP Rev 2 were submitted to the USEPA on March 28, 2019 for review and approval. The USEPA-approved PDI WP-Rev 2 and SAP Rev 2 via email dated April 10, 2019. (USEPA, 2019a) Between December 4, 2018 and November 15, 2019, 55 borings were advanced, groundwater chemistry (volatile organic

⁵ 1,4-dioxane is considered an SVOC due to its fate and transport properties and is handled as such within the context of the CSM. However, since it is analyzed via a VOC analytical method, the 1,4-dioxane results are presented in Sections 3.4 and 4, and Appendix B grouped with the other VOC analytes.

compounds [VOCs] and semi-VOCs [SVOCs]) was evaluated in 20 vertical aquifer profiling (VAP) locations, and 47 monitoring and 5 extraction wells were installed and developed as outlined in the Pre-Design Investigation-Revision 2 (PDI WP-Rev 2; March 28, 2019; Golder, 2019b) and the SAP Rev 2 (March 28, 2019; Golder, 2019c) and documented in correspondence between Golder and the USEPA regarding well screen interval recommendations and approvals. Table 1 includes screen intervals for all site wells, including the newly installed wells, Figure 3 includes the locations of the newly installed wells downgradient of well PW-1(U), and Figure 4 includes the locations of the newly installed wells in the DDA Vicinity.

During 2019, additional investigation activities were also performed downgradient of the Western Lobe of the ACL. These activities were performed as part of the USEPA-approved Additional Investigation Work Plan-Revision 2 (AIWP-Rev 2; Ruth and Golder, 2019) dated March 27, 2019 for the ACL Site. These activities included installation of six monitoring wells (MW-22NU, P-4L, WL-1U, WL-1L, W2-2U and WL-2L).

2.3 Chemicals of Concern

Table 7 of the ROD-A2 issued by the USEPA for the DS&G Site (USEPA 2017) includes the list of COCs for the Site. As discussed in the document and presented below, the COCs in groundwater at the Site include VOCs (benzene, and four alkylbenzenes [ethylbenzene; xylenes; 1,2,4-trimethylbenzene; and 1,3,5-trimethylbenzene]), SVOCs (BCEE; 1,4-dioxane⁶; naphthalene; and N,N-dimethylaniline), and metals (arsenic, cobalt, iron and manganese).

hemical of Concern	ss-PRG (micrograms per liter [µg/L])	Notes
1,2,4-Trimethylbenzene	5.7	COC-specific Non-Carcinogenic PRG
1,3,5-Trimethylbenzene	6.1	COC-specific Non-Carcinogenic PRG
1,4-Dioxane	4.6	Carcinogenic PRG with a Target Risk of 1.0E-05
Arsenic	0.52	Carcinogenic PRG with a Target Risk of 1.0E-05
Benzene	4.6	Carcinogenic PRG with a Target Risk of 1.0E-05
Bis(2-chloroethyl) Ether	0.14	Carcinogenic PRG with a Target Risk of 1.0E-05
Cobalt	6.0	COC-specific Non-Carcinogenic PRG
Ethylbenzene	15	Carcinogenic PRG with a Target Risk of 1.0E-05
Iron	13,939	COC-specific Non-Carcinogenic PRG
Manganese	260	COC-specific Non-Carcinogenic PRG
N,N-dimethylaniline	25	Carcinogenic PRG with a Target Risk of 1.0E-05
Naphthalene	0.63	COC-specific Non-Carcinogenic PRG
Xylenes, Total	21	COC-specific Non-Carcinogenic PRG

^{6 1,4-}dioxane is detected using a VOC analytical method and is presented as a VOC in Appendix B.

Based on review of the available analytical data, it is apparent that the ACL Site represents an on-going source of contaminant mass (primarily iron and manganese, which are also COCs at the DS&G Site) to the UPA. As stated by the USEPA in their comments dated December 19, 2014, "the Army Creek Landfill may be characterized as an indirect source of dissolved iron and manganese and a source of 1,2-dichloroethane [1,2-DCA] in the UPA. Elevated total arsenic and cobalt are also found in groundwater downgradient of the Army Creek Landfill and appear to be site-related." (USEPA, 2014)

3.0 GROUNDWATER SAMPLING AND ANALYSES

Consistent with the SAP Rev 2 (Golder, 2019c), Golder measured water levels, sampled wells and submitted the samples for analysis to monitor performance of the LFExS and the PW-1(U) system. Also consistent with the SAP, Golder performed routine groundwater monitoring in the UPA at and downgradient of the Site (see well list in Table 1). The monitoring locations are shown on Figures 3 and 4.

The semi-annual groundwater monitoring events are typically conducted in April and October each year and the results are summarized in semi-annual monitoring reports. This July to December 2019 semi-annual report provides the groundwater monitoring results from the October 2019 routine semi-annual monitoring event, as summarized on Table 1.

Due to ongoing drilling activities in October and November 2019 and aquifer testing activities in November 2019 through January 2020, the wells installed between September and November 2019 were sampled in January 2020. As such, these data will be included in the January to June 2020 semi-annual groundwater monitoring report.

As outlined in the SAP, this semi-annual report includes the following information:

- Purpose and scope of monitoring
- Brief description of field procedures
- Summary of collected field data, including a table of field sampling parameters
- Groundwater elevation contour maps
- Laboratory analytical data tables (new data only)
- Trend plots of constituent concentrations over time
- Mass removal estimates based on a comparison of previous to current remaining mass estimates, and calculation of mass extracted by the LFExS
- Mass remaining estimates based on contouring the semi-annual groundwater data and calculating the residual mass in the saturated zone⁷
- Recommendations for additional monitoring or system enhancements

⁷ Mass remaining estimates were updated as part of the SSC Rev 2 (Golder, 2016a).

3.1 Groundwater Elevations

As stated in Section 1.1, water levels were gauged on two separate dates - November 6, 2019 (see Table 2A) and January 28, 2020 (see Table 2B). We note that the January 28, 2020 data set is limited to the UPCUTZ and UPA wells due to time constraints. Depth to water was measured using a decontaminated electronic water level indicator from the top of casing reference points, and water elevations were subsequently calculated using surveyed elevation information. The November 2019 groundwater elevations were used to prepare the groundwater elevation contours presented in Figure 5, and January 2020 groundwater elevations were used to prepare the groundwater elevation contours presented on Figures 6 through 9. The presented groundwater elevation contours include the water elevations from the new monitoring wells. These updated groundwater elevation contours are consistent with historically developed groundwater elevation contours.

The groundwater elevations and flow directions from Figures 6 through 9 indicate the following:

- Within the DDA, the elevations and flow directions reflect consistent, ongoing LFExS operation (see Figure 5). As expected, groundwater flow within the DDA converges toward the operating LFExS wells.
- In the UPCUTZ between the DDA and pumping well PW-1(U) (see Figure 6), groundwater flow is from north-northwest to south-southeast toward well PW-1(U).
- In the upper sand of the UPA between the DDA and pumping well PW-1(U) (see Figure 7), groundwater flow is from north-northwest to south-southeast toward pumping well PW-1(U).
- In the upper and lower sand of the UPA downgradient of well PW-1(U) (see Figures 8 and 9, respectively), groundwater flow is generally from north to south consistent with operation of the downgradient AWC wellfield. However, AWC wellfield operations impact gradients as you approach well AWC-ASR at the southern extent of the monitoring area.

3.2 Sampling and Analysis

3.2.1 Well Purging

All wells that required use of a submersible pump were purged using the low-flow purging and sampling procedure⁸. The monitoring wells were purged using a decontaminated 2-inch diameter submersible pump (Grundfos® Rediflo2) and high-density polyethylene (HDPE) tubing that was dedicated to each well. Wells were purged at a rate of approximately 200 to 500 milliliters per minute. Frequent monitoring of the water level and adjustments to the flow (when necessary) minimized the drawdown during purging. A minimum of three feet of water was maintained over the pump intake to avoid entrainment of air in the pump. Pumping rate adjustments, if any, and depth(s) to water measurements were recorded on sample collection forms. Water removed during purging was collected in five-gallon buckets and disposed in the on-Site wastewater holding tank at the existing treatment building.

During purging, field parameters were monitored in-line with a Horiba U-52® water quality instrument. A flow-through cell device was used to minimize sample exposure to the atmosphere. Measurements were collected approximately every five minutes until the parameters stabilized based on three consecutive readings within the following ranges:

⁸ The procedure is based upon the USEPA Region II document entitled "Groundwater Sampling Procedure, Low Stress (Low Flow) Purging and Sampling" dated March 20, 1998.

- Temperature: +/- 10%
- pH: +/- 0.1 Standard Units
- Conductivity: +/- 3%
- Oxidation/Reduction Potential (ORP): +/- 10 millivolts (mV)
- Dissolved Oxygen (DO): +/- 10% (or +/- 0.1 milligrams per liter (mg/L) if less than 1.0 mg/L)
- Turbidity: +/- 10% (or three consecutive readings below 10 nephelometric turbidity units (NTUs))

Table 3 summarizes the stabilized field parameter measurements (temperature, pH, specific conductance, turbidity, DO, and ORP) for the monitoring wells.

Minor deviations from the planned sampling and analysis procedures are described below. These deviations do not affect the quality of data collected and are consistent with conventional practices:

- Monitoring well DGC-7C was purged and sampled using a certified-clean disposable HDPE bailer because this location goes dry during purging.
- Monitoring well location MW-18 was purged and sampled using a peristaltic pump because well MW-18 is a 1-inch diameter well.
- Extraction wells BG-1, B-4DR, C-2D, C-4D, C-18D, C-19D, C-20D, C-30, and PW-1(U) pump almost continuously. Prior to field parameter measurement and sample collection, the port at each well was purged of approximately 8 liters of water.
- AWC extraction wells are potable water supply wells. AWC allowed Golder to resume sampling these wells for a limited list of VOCs, SVOCs, and manganese during the October 2018 monitoring event. Between 2014 and October 2018, AWC monitored the wells and provided the data to the Trust. AWC provides its routine monitoring data to the Trust as well.
 - Prior to Golder's field parameter measurement and sample collection, the port at each well was purged of approximately 8 liters of water. Two AWC wells (AWC-2 and AWC-6R) were sampled in early November 2019. Due to the limited operation of the well field (during 5-year maintenance activities) during the fall of 2019, Golder collected samples from the active production wells (AWC-2, AWC-7, and AWC-G3R) again in January 2020. The January 2020 data will be included in the January to June 2020 semi-annual groundwater monitoring report.
- After sampling was completed using the low-flow purging and sampling procedure, an additional 3 well volumes were purged from wells BW-2 and MW-26N and an additional sample was collected from each well. This alternate method of purging was performed to collect additional data in response to a request outlined in USEPA's letter regarding Partial Approval of PDI WP, dated November 30, 2018 (USEPA, 2018b) and as outlined in Golder's response dated December 7, 2018 (Golder, 2018) and the SAP Rev 2. The results of this sampling will be summarized in a separate data submittal along with the 3 well volume data collected during the April 2019 monitoring event.

3.2.2 Sample Collection

TestAmerica of Edison, New Jersey supplied certified-clean sample bottles, blank bottle labels, custody seals, analyte-free water, coolers, and chain-of-custody documents for the monitoring event. The bottles were labeled prior to sample collection using a permanent-marking pen. Once purging was completed, the discharge tubing was disconnected from the flow-through cell and samples were collected directly from the end of the discharge tubing. Bottles were filled by allowing the pump discharge to flow gently down the inside of the bottle with minimal agitation. Extraction wells BG-1, C-2D, C-19D, C-20D, C-30, and PW-1(U) were sampled by filling bottles directly from the sampling ports. Monitoring location DGC-7Cwas sampled using a certified-clean disposable bailer. Well MW-18 was sampled using a peristaltic pump. AWC production wells AWC-2 and AWC-6R were sampled by filling bottles directly from the sampling port.

Each bottle was capped after it was filled. Samples for VOCs were collected first, taking steps to eliminate headspace in the vials. All samples were preserved according to method-specific requirements and were carefully packed into standard sample coolers with ice at approximately four degrees Celsius. All samples were shipped under chain-of-custody procedures via an overnight courier to TestAmerica for analysis.

In addition to the primary samples, the following quality assurance/quality control (QA/QC) samples were collected during the October 2019 monitoring event:

For PFAS samples:

- Fifteen trip blanks were sent along with the PFAS samples collected
- Two equipment rinsate blanks from decontaminated submersible pumps
- Three field blanks were collected
- Triple volumes from three wells (UPA-105A-US, B-4DR, DDA-10-US) for the analysis of matrix spike/matrix spike duplicates (MS/MSD)
- Field duplicate parameter sets from three wells (UPA-105A-LS, C-18D, DDA-10-US)

For all other samples:

- Twenty-four trip blanks were sent along with the VOC samples collected
- Three field equipment rinsate blanks from decontaminated submersible pumps
- Field duplicate parameter sets from four wells (UPA-107-US, MW-34, DDA-18-TZ, and DDA-20-TZ)
- Triple volumes from four wells (UPA-104-US, MW-18, DDA-18-US, and DDA-20-US) for the analysis of matrix spike/matrix spike duplicates (MS/MSD)

Data quality assessments for VOC, SVOC, and metals samples are included in Appendix A and data quality assessments for PFAS are included in Appendix H. Tables 1 and 2 in Appendix A and Appendix H list the types and number of samples collected for analysis and the parameters analyzed for the October 2019 monitoring event. The laboratory result forms for the validated sample data are included in Appendix A and Appendix H.

3.2.3 Analyses

Table 3 lists the wells sampled during the October 2019 monitoring event and provides a summary of field parameters measured. Samples collected from these wells were analyzed for the parameters indicated on Table 1, which include VOCs with low-level 1,4-dioxane as needed, SVOCs with low-level BCEE as needed, total and dissolved iron, total and dissolved manganese, total dissolved cobalt, cations and anions (calcium, magnesium, potassium, sodium, alkalinity, ammonia, chloride, nitrate and sulfate for select wells) and PFAS (select wells). Well PW-1(U) and the LFExS effluent (NCC sewer discharge monitoring points) were also analyzed for discharge permit parameters (total metals including arsenic, cadmium, chromium, copper, lead, molybdenum, nickel, selenium, zinc, and mercury, and general chemistry parameters including ammonia, total cyanide, biochemical oxygen demand, and total suspended solids).

The wells sampled during the bimonthly monitoring events (August and October 2019) were analyzed for total and dissolved cobalt, total and dissolved iron, and total and dissolved manganese.

3.3 Data Quality Assessment

TestAmerica logged the samples into their laboratory information management systems (LIMS) upon receipt and scheduled the samples for preparation and analysis. Golder performed validation on all the data following guidelines provided by USEPA Contract Laboratory Program (CLP) National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017) and NFG for Inorganic Superfund Data Review (January 2017), as applicable to the above listed analytical methods as listed in Appendix A. Additional information regarding sample analysis and validation, including the Data Quality Assessment (DQA), can be found in Appendix A.

Based on the data validations and DQA, the analytical data (including estimated data) for samples collected at the Site were determined to be acceptable for their intended use. Acceptable levels of accuracy and precision, based on laboratory control samples (LCS), MS/MSD, field duplicate and surrogate recoveries, were achieved for the data. In addition, the data completeness (i.e., the ratios of the amount of valid data obtained to the amount expected, including estimated data) was 99.9 percent for the October 2019 monitoring event. Data quality summaries are presented in Appendix A Table 2 (VOCs, SVOCs, metals), and Appendix H-3 (PFAS).

3.4 Analytical Results

The detected compounds and their respective concentrations for the groundwater samples collected during the October 2019 monitoring event are summarized and compared to groundwater standards and screening levels including maximum contaminant levels (MCLs), ss-PRGs and the June 2017⁹ regional screening levels (RSLs) for tapwater in Appendix B-1. The bimonthly results are summarized and compared to the same standards in Appendix B-3. PFAS results are summarized and compared to the May 19, 2016 USEPA health advisory (HA) of 70 nanograms per liter in Appendix H-1.

A summary of the analytical results relative to ss-PRGs and MCLs is provided below, and a discussion of the trends is provided in Sections 4.1.4 and 4.2.3. Appendix B provides details of the analytical results and comparison of detections to ss-PRGs, MCLs, and RSLs.

⁹ In October 2017, revised ss-PRGs were developed for the Site (2017 ss-PRGs). For the next monitoring period (January to June 2018) and subsequent monitoring reports, the June 2017 RSLs are used for comparison.

3.4.1 DDA Extraction Wells

Golder collected groundwater samples from eight DDA extraction wells during the October 2019 monitoring event. Although the 2017 ss-PRGs and/or MCLs are not applicable for the groundwater within the DDA, the 2017 ss-PRGs and/or MCLs are used as a basis for comparison and to provide context in the absence of applicable standards/goals. The following compounds were detected in DDA extraction wells above the 2017 ss-PRGs and/or MCLs (see Appendix B for details):

- WOCs 1,2,4-trimethylbenzene (1,2,4-TMB); 1,3,5-trimethylbenzene (1,3,5-TMB); 1,4-dioxane¹⁰; benzene; chlorobenzene; ethylbenzene; toluene; and xylenes, total
- SVOCs benzo[a]pyrene; BCEE; and naphthalene
- Dissolved Metals cobalt; iron; and manganese

Isoconcentration maps for BCEE and 1,4-dioxane (considered the primary COCs at the Site) in the DDA groundwater are included in Appendix C as Figures C-1 and C-2, respectively.

3.4.2 DDA Monitoring Wells

Golder collected groundwater samples from four DDA monitoring wells, including piezometers PZ-5-EXT and PZ-11-EXT during the October 2019 monitoring event. The following compounds were detected in DDA monitoring wells above the 2017 ss-PRGs and/or MCLs (see Appendix B for details):

- VOCs 1,2,4-TMB; 1,3,5-TMB; 1,4-dioxane; benzene; ethylbenzene; and xylenes, total
- SVOCs BCEE; and naphthalene
- Dissolved Metals cobalt; iron; and manganese

Isoconcentration maps for BCEE and 1,4-dioxane in the DDA groundwater are included in Appendix C as Figures C-1 and C-2, respectively.

3.4.3 PW-1(U) Monitoring Wells

Golder collected groundwater samples from monitoring wells (six wells screened in the UPCUTZ and twelve wells screened in the UPA) associated with monitoring the performance of pumping well PW-1(U) during the October 2019 monitoring event. The following sections summarize the PW-1(U) monitoring wells screened in these units.

3.4.3.1 PW-1(U) UPCUTZ Wells

The following compounds were detected in PW-1(U) UPCUTZ monitoring wells above the 2017 ss-PRGs and/or MCLs (see Appendix B for details):

- VOCs 1,2,4-TMB; 1,4-dioxane; benzene; ethylbenzene; and xylenes, total
- **SVOCs BCEE**
- Dissolved Metals cobalt; iron; and manganese

¹⁰ As noted in Section 2.2, 1,4-dioxane is considered an SVOC due to its fate and transport properties and is handled as such within the context of the CSM. However, since it is analyzed via a VOC analytical method, the 1,4-dioxane results are presented in Sections 3.4 and 4, and Appendix B grouped with the other VOC analytes.

3.4.3.2 PW-1(U) Upper Sand Wells

The following compounds were detected in PW-1(U) UPA monitoring wells above the 2017 ss-PRGs and/or MCLs (see Appendix B for details):

- VOCs 1,2,4-TMB; 1,3,5-TMB; 1,4-dioxane; benzene; ethylbenzene; and xylenes, total
- SVOCs benzo[a]pyrene; BCEE; and naphthalene
- Dissolved Metals cobalt; iron; and manganese

Isoconcentration maps for BCEE and 1,4-dioxane in the UPA groundwater are included in Appendix C as Figures C-3 and C-4, respectively.

3.4.4 Downgradient UPA Wells – DS&G Site & AWC wells

Golder collected groundwater samples from thirty DS&G UPA monitoring wells located downgradient of pumping well PW-1(U) and from two AWC wells in November 2019. The following compounds were detected in downgradient UPA monitoring wells above the 2017 ss-PRGs and/or MCLs (see Appendix B for details):

- VOCs 1,4-dioxane; benzene; and tetrachloroethene
- SVOCs BCEE; and bis(2-ethylhexyl) phthalate
- Dissolved Metals cobalt; iron; and manganese

Golder collected groundwater samples bimonthly from four DS&G UPA monitoring wells (MW-26N, UPA-03D, AWC-E1 and AWC-E2) located immediately upgradient of well AWC-G3R in August and October 2019 for analysis of total and dissolved iron, manganese, and cobalt. Total cobalt, iron and manganese and dissolved cobalt and manganese were detected in these UPA monitoring wells above the 2017 ss-PRGs and/or MCLs (see Appendix B-3 for details).

3.4.5 NCC UPA Monitoring Wells and P-6 Vicinity

Golder collected groundwater samples from seven UPA wells associated with the ACL monitoring program and located downgradient of pumping well PW-1(U) during the October 2019 monitoring event. The following compounds were detected in these monitoring wells above the 2017 ss-PRGs and/or MCLs (see Appendix B for details):

- VOCs 1,2,4-TMB; 1,3,5-Trimethylbenzene; 1,4-dioxane; benzene; ethylbenzene; xylenes, total
- SVOCs BCEE; and naphthalene
- Dissolved Metals cobalt; iron; and manganese
- Total Metals manganese

3.4.6 PFAS

Golder collected groundwater samples from six Columbia, seven UPCUTZ and twenty-nine UPA monitoring wells for analysis of perfluorinated compounds (PFCs) during the October 2019 monitoring event. The detected PFCs and their respective concentrations for the groundwater samples collected during the October 2019 monitoring event are summarized and compared to the May 19, 2016 USEPA health advisory (HA) of 70 nanograms per liter (ng/l; parts per trillion [ppt]) for perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and/or the

combined concentrations of PFOA and PFOS in Appendix H-1. PFOA and PFOS were detected in downgradient Columbia, UPCUTZ and UPA monitoring wells above the May 19, 2016 HA. PFOA concentrations in the UPA upper and lower sand are shown on Figures H-2A and H-2B of Appendix H. Figures were prepared for PFOA because PFOA is observed in many more wells in the vicinity of the Site than PFOS.

4.0 LFEXS AND PW-1(U) EXTRACTION SYSTEMS

The following section presents a summary of operation and maintenance activities, contaminant concentration trends, mass removal rates and other lines of evidence to support performance evaluations and recommended operational modifications for the LFExS and well PW-1(U) extraction system.

4.1 LFExS

The LFExS currently has eight operational extraction wells (wells C-2D, C-19D, C-18D, BG-1, C-4D, B-4DR, C-30 and C-20D) that provide hydraulic containment within the DDA by inducing inward and upward gradients between the UPA and the Columbia Aquifer and remove VOC and BCEE contaminant mass from the DDA groundwater. Between the months of July 2019 and December 2019, the system operated at a monthly average extraction rate between 8.91 and 12.38 gpm. Monthly and semi-annual average extraction rates for the LFExS from startup (2009) through December 2019 are presented on Appendix D and are graphically represented on Figure 10. As shown on Figure 10, the Trust's focus on routine preventative maintenance activities and startup of Redux addition (see discussion in Section 5.2.4 of the SSC Rev 2) have improved the LFExS performance and increased the monthly average extraction rate. The monthly average extraction rates are reviewed on a semi-annual basis to assess system operation, evaluate options for maintaining an average monthly extraction rate between 8 and 10 gpm, and optimize system operation.

4.1.1 Operation and Maintenance

Operation and maintenance activities for the LFExS were conducted between July 2019 and December 2019. The following presents these items, as stated in the Trust's Quarterly OM&M Reports:

- Third quarter 2019 activities:
 - August 19-20, 2019 Groundwater Treatment and Technology (GWTT) was on site to complete the third quarter maintenance. Third quarter maintenance consisted of:
 - Remove, clean, and reinstall LFExS well pumps based upon the performance and prior inspections. When the well pumps were removed, the drop tubing was inspected and cleaned as necessary.
 - Dismantle and clean piping from holding tank to the floor penetration including the gate valve, check pump for buildup, and check the influent and effluent flow meters.
 - Remove, inspect and clean as necessary all flowmeters located in the shed.
 - Remove, inspect and clean as necessary all check valves located in the shed.
 - Conditions of the individual pumps were as follows: B-4DR, C-2D, C-4D and C-19D were clean; C-18D had some black slime; C-30 had soft brown/orange sediment build-up.
 - July 1, August 5, and September 11, 2019 Started new drums of Redux addition on LFExS discharge.

September 30, 2019 – The C-20D level probe was repaired (pump had stopped running), and the pump was re-started.

Fourth Quarter 2019 activities:

- October 22, 2019 Replaced C-2D pump and motor. Flushed line and inspected valves for soil or stone from the repair of the pitless adapter in June 2019. Replaced B-4DR pump (motor was good, but pump had seized). Ordered two new spare pumps and motors for LFExS wells. GWTT replaced old level probes which controlled C-20D with a Coyote control box and reconfigured the well head to eliminate the old VBVS connection.
- December 2, 2019 Started new drum of Redux addition on LFExS discharge.
- December 10 and 11, 2019 GWTT was on site to complete the fourth quarter maintenance. Fourth quarter maintenance consisted of:
 - Remove, clean, and reinstall 3 LFExS well pumps based upon their performance and prior inspections. When the well pumps were removed, the drop tubing was inspected and cleaned as necessary. C-19D was clean, C-18D had some black slime, and C-30 had soft brown/orange sediment build-up.
 - Dismantle and clean piping from holding tank to the floor penetration including the gate valve, check pump for buildup, and check the influent and effluent flow meters. Also checked sump pump piping for build-up – none was found.
 - Remove, inspect and clean as necessary shed flowmeters cleaned C18D and C-30. C-30 meter internals were replaced.
 - Jet and vacuum the discharge line from the building towards the sewer including check valve before PW-1 connection.
 - Confirm heat trace and insulation of piping is functional for cold weather.

4.1.2 Discharge Monitoring

The effluent from the LFExS discharges directly to the NCC sewer system. In accordance with the NCC discharge permit, effluent samples are collected semi-annually and analyzed for VOCs, SVOCs, metals and total toxic organics (TTO). During the period covered by this report, one set of effluent samples was collected for VOCs, SVOCs, metals, TTO, and natural attenuation parameters (NAPs). The analytical results are submitted annually by the Trust to the NCC Department of Special Services – Engineering & Environmental Services Division in conformance with the discharge permit. An evaluation of mass loading to the NCC sewer system for the DS&G Site discharges is presented in Section 4.5.

4.1.3 Performance Evaluations

As documented in Golder's April 24, 2009 letter to the USEPA, the general strategy for achieving effective, consistent operation of the LFExS requires balancing the extraction rates from the extraction wells to comply with the current wastewater discharge permit, including flow and contaminant limits, as well as providing an additional degree of hydraulic control near the DDA slurry wall using well C-2D. The following sections present an evaluation of the LFExS system for the period between July 2019 and December 2019.

4.1.3.1 Groundwater Contours

Figure 5 presents the contours for the groundwater elevation measurements observed within the DDA during the November 2019 monitoring event. This figure includes a blue-hatched area to indicate the approximate extent of LFExS-induced upward (vertical) gradients, based on a comparison of groundwater elevations above the UPCU within the DDA containment area versus below the UPCU (i.e., within the UPA upper sand beneath the DDA). As demonstrated by Figure 5, the extent of LFExS-induced upward (vertical) gradients includes a significant portion of the containment area of the DDA, particularly the portions of the containment area with elevated BCEE detections (Figure C-1).

4.1.3.2 Groundwater Gradient Evaluation

Appendix E presents trend plots of hydraulic head differences for groundwater elevations observed at wells and piezometers in the vicinity of the DDA. Golder calculated head differences instead of gradients because the slurry wall and confining clay (UPCU) represent hydraulic barriers, and gradients will vary depending on the location of the observation point relative to the hydraulic barrier. For example, the horizontal head difference across the slurry wall at the PZ-5 and PZ-11 piezometer pairs is similar, but the distance between the interior and the exterior wells is approximately two times farther for piezometer pair PZ-11 compared to piezometer pair PZ-5, so a calculated gradient would be two times lower for piezometer pair PZ-11.

4.1.3.2.1 Vertical Gradients

Vertical head differences are illustrated on the trend plots included in Figures E-1 through E-10 in Appendix E. For semi-annual monitoring reports prior to 2015, Golder calculated vertical head differences for DDA extraction wells BG-1, C-18D and C-20D and DDA monitoring wells B-2D, C 1D, C-3D, and C-6. To support the performance evaluation presented in the Final FS Rev 1 (Golder, 2016b), Golder also calculated vertical head differences for three additional DDA monitoring wells: B-3D, MHW-1M, and C-16.

In the semi-annual monitoring report submittals prior to 2015, the vertical head differences were calculated relative to UPA monitoring well MHW-1D, since well MHW-1D was the only UPA well screened beneath the DDA prior to September 2012. These calculated head differences were biased low because well MHW-1D is located downgradient (in the UPA) of many of the Columbia monitoring wells used for the vertical head difference calculations. For example, well MHW-1D is located in the UPA upper sand approximately 97 feet downgradient of the location of Columbia well B-2D; therefore, the UPA groundwater elevation at well MHW-1D is approximately 0.5 feet lower than the UPA upper sand groundwater elevation beneath well B-2D. Therefore, using the lower groundwater elevation at well MHW-1D results in a calculated vertical head difference at well B-2D that is lower than the actual vertical head difference at well B-2D. To give a more accurate representation of actual head differences, Golder re-calculated head differences using more proximal UPCUTZ and UPA upper sand wells installed and screened beneath the DDA between September and December 2012. Continuing the example above, well B-2D vertical head differences were re-calculated relative to UPCUTZ well DDA-08-TZ and UPA well DDA-08-US. Trend plots using these re-calculated vertical head differences are presented in Appendix E along with the original head differences calculated relative to well MHW-1D¹¹.

The positive vertical head differences observed since initiation of LFExS extraction in May 2009 indicate that the LFExS generally induces an upward (vertical) gradient across the most impacted portions of the DDA containment area. These areas are coincident with the DDA extraction well locations. Lesser vertical head differences (near

¹¹ Head differences for wells C-20D and MHW-1M are presented relative to UPA well MHW-1D because it is the nearest UPA well.

zero) were observed during groundwater gauging events that occurred during or shortly after LFExS shutdown for maintenance, such as the March 5, 2012 shutdown for the well B-4DR connection (see Appendix E). The reduced vertical head differences on the figures included in Appendix E are generally associated with water level monitoring events conducted: (1) during brief well, pump or system performance declines between quarterly maintenance events due to iron fouling, and/or (2) before, during or soon after routine, quarterly maintenance of the LFExS; therefore, they are not fully representative of the long-term vertical head differences between the Columbia Aquifer within the DDA and the UPA upper sand associated with the LFExS operation.

An exception to these observations is the neutral or slightly negative vertical head differences that have been calculated for DDA monitoring wells C-6 (see Figure E-7) and C-16 (see Figure E-10). The fluctuating vertical head differences calculated for well C-6 since 2011 are related to performance/operational issues associated with extraction well B-4DR and indicate that well C-6 is at the eastern periphery of the extraction well B-4DR and LFExS influence. Well C-6 is located in a portion of the containment area where thick UPCU is present and VOC and SVOC concentrations are low (e.g., BCEE was detected at 0.021 micrograms per liter [ug/l] in 2008, prior to LFExS startup). While head differences in the area of monitoring well C-6 are evaluated, well C-6 is outside of the target capture zone defined by BCEE and VOC impacts; therefore, the neutral or slightly negative vertical head differences at well C-6 do not represent a gap in containment. In addition, the DDA-15-US/DDA-15-TZ well pair is located in the UPA slightly downgradient of the Columbia well C-6 location, which would bias-low the calculated head differences at this location. The negative head difference observed at well C-16 in September 2015 is considered anomalous, because nearby extraction well C-30 was operating during the period of water level monitoring, which would a promote a positive gradient at well C-16.

4.1.3.2.2 Horizontal Gradients

Horizontal head differences are illustrated on the trend plots included in Appendix E Figures E-11 through E-15. Golder calculates horizontal head differences for DDA piezometer pairs PZ-2, PZ-5, PZ-6, PZ-11 and PZ-12¹². For the purposes of this analysis, the groundwater elevation for the interior piezometer is subtracted from the exterior piezometer; therefore, a positive horizontal head difference represents an inward hydraulic gradient (i.e., the Columbia Aquifer groundwater elevation outside the slurry wall is higher than inside the slurry wall). The positive horizontal head differences observed since initiation of LFExS extraction in May 2009 suggest that the LFExS induces an inward (horizontal) gradient within the Columbia Aquifer in the vicinity of the wells located along the northeastern, southeastern and southwestern slurry walls of the DDA containment area, and across the slurry wall between the northwestern DDA partition and containment areas. The reduced horizontal head differences on the figures included in Appendix E are generally associated with water level monitoring events conducted: (1) during brief well, pump or system performance declines between quarterly maintenance events due to iron fouling, and/or (2) before, during or soon after routine, quarterly maintenance of the LFExS; therefore, they are not fully representative of the long-term horizontal head differences across the slurry walls associated with the LFExS operation.

4.1.3.2.3 Conclusion

An evaluation of the vertical and horizontal head differences presented in Appendix E demonstrates that since October 2012, the LFExS has induced:

¹² Golder calculated horizontal head differences for piezometer pair PZ-1 until April 2012 when it was determined that the exterior piezometer PZ-1-EXT is likely influenced by perched conditions.

Inward (horizontal) gradients (from the Columbia Aquifer outside the DDA slurry walls to the Columbia Aquifer inside the DDA slurry walls).

Upward (vertical) gradients (from the UPA upper sand into the DDA [Columbia Aquifer]) across the impacted portions of the DDA containment area.

The LFExS provides hydraulic control for the DDA by achieving inward (horizontal) head differences for the entire containment area and upward (vertical) head differences for the most impacted portions of the DDA containment area, except during brief periods of system maintenance. The Trust has implemented many measures to maintain consistent operation and improve the reliability of the system, as described in Section 2.1.4 of the Final FS Rev 1 (Golder, 2016b). The enhanced or modified LFExS, in combination with an impermeable cap over the DDA and groundwater extraction from the UPCUTZ and UPA as proposed in the Final FS Rev 1 (Golder, 2016b), will improve the overall reliability of the LFExS.

4.1.4 Contaminant Concentration Trends

To evaluate changes in groundwater quality within the DDA associated with operation of the LFExS, Golder prepared trend plots of groundwater analytical data for BCEE, 1,4-dioxane, benzene, iron, manganese, and cobalt. The trend plots prepared for DDA (LFExS) extraction wells and DDA (LFExS) monitoring wells are presented in Appendix F.

BCEE, 1,4-dioxane, benzene, iron, manganese, and cobalt were chosen for inclusion on the trend plots because they are considered as the primary risk drivers at the Site, and they are detected in the DDA groundwater as well as in groundwater within the proposed AoA. There may be additional contaminants that exceed applicable standards in various Site wells or located downgradient of the Site, but these contaminants were not included on the trend plots because they are not the primary COCs and/or they are not detected Site-wide. Trend observations for 1,4-dioxane are limited to the period from 2012 to present as 1,4-dioxane was added to the sampling program as an analytical parameter in 2012.

4.1.4.1 DDA Extraction Wells

Trend plots for BCEE, 1,4-dioxane, benzene, iron, manganese, and cobalt for the LFExS extraction wells are presented in Figures F-1A through F-1F of Appendix F. The LFExS extraction well trend plots for 1,4-dioxane, iron, and manganese show no discernible trends. The trend plots for cobalt indicates generally decreasing concentrations, with the exception of C-18D which has no discernible trend. The LFExS extraction well trend plots for BCEE and benzene indicate that concentrations generally decreased following initiation of LFExS extraction in 2009 and have been generally stable between LFExS startup and the October 2019 monitoring event, with the exception of the following:

- Well C-19D which shows an increasing trend in BCEE since October 2016
- Well C-20D which showed an increase in BCEE between October 2016 and October 2017, but returned to concentrations consistent with historical trends in October 2018
- Well B-4D and C-4D which show no discernable trend
- Well C-30 which showed an increase in BCEE in April 2018, but returned to a concentration similar to historic concentrations in October 2018

4.1.4.2 LFExS and DDA Monitoring Wells

Trend plots for BCEE, 1,4-dioxane, benzene, iron, manganese, and cobalt for the LFExS monitoring wells are presented in Figures F-2A through F-2F of Appendix F and for the DDA monitoring wells in Figures F-3A through F-3F of Appendix F. The LFExS and DDA monitoring well trend plots for BCEE, 1,4-dioxane, benzene, iron, manganese, and cobalt indicate generally decreasing and/or stable concentrations in many wells when compared to concentrations prior to LFExS startup in May 2009 although some wells appear to have no discernible trends, with the exception of the following:

- BCEE trend plot for well MHW-1S shows an overall increasing trend from October 2012 to October 2016, likely due to the initiation of extraction from well C-20D, but shows an overall decreasing trend since October 2016
- BCEE trend plot for well B-2D shows an increase between April 2016 and April 2018, but decreased in April 2019
- BCEE trend plot for well B-3D shows an increase in October 2017, but has since returned to concentrations consistent with the historical trend
- 1,4-dioxane trend plot for well C-1D shows an increase between April 2015 and October 2018 when viewed at a scale of <100 ug/L, but decreased in April 2019
- 1,4-dioxane trend plot for well PZ-11-EXT shows an increase since April 2014 when viewed at a scale of <100 ug/L
- Benzene trend plot for well PZ-6S shows a generally increasing trend since July 2009, likely due to the initiation of extraction from well C-18D
- Iron trend plots for wells B-2D and PZ-11-EXT show generally increasing trends since October 2012
- Manganese trend plot for well MHW-1S shows a generally increasing trend from October 2010 through October 2016; however, results from the past four semi-annual events show a consistent decrease in concentrations
- © Cobalt trend plot for well MHW-1S shows a generally increasing trend since April 2013 after the initiation of extraction from well C-20D began
- Cobalt trend plot for well DGC-7C showed a generally increasing trend from April 2015 to October 2018, but decreased in April 2019
- Historical low concentrations for 1,4-dioxane, manganese, and cobalt were observed in April 2018 in well PZ-6N located in the eastern area of the DDA, and have remained relatively low as compared to historical levels

The concentrations in these wells will continue to be monitored in subsequent events and the trends will continue to be evaluated semi-annually.

4.2 PW-1(U) Extraction System

4.2.1 Operation and Maintenance

On October 15, 2012, the Trust assumed hands-on responsibility for the operation and maintenance of extraction well PW-1(U) from NCC. The well PW-1(U) system discharges directly to the NCC sanitary sewer system (POTW). The NCC sewer discharge permit was modified to include the discharge from both the LFExS and pumping well PW-1(U) with the total combined flow now permitted at 51 gpm.

On October 3, 2013, the Trust began addition of Redux 620 to reduce iron fouling in the well. Since beginning Redux 620 addition to well PW-1(U), maintenance requirements for this well have decreased significantly due to the decreased iron fouling, and more consistent extraction rates (i.e., average monthly extraction rates generally between 30 and 37 gpm) have been maintained. Extraction rates for well PW-1(U) from December 2011 through December 2019 are presented in Appendix D, and graphically represented on Figure 11. As shown on Figures 11 and 14, the Trust's focus on routine preventative maintenance activities and startup of Redux addition have improved the well PW-1(U) performance and increased the monthly average extraction rate. However, due to the decline in the average extraction rate since summer 2017, the Trust performed a chemical swabbing of well PW-1(U) in March 2018 and again in July 2019. An increase of about 5 gpm in the flow rate was obtained. Samples of the water have been given to Gary Richards for evaluation of the Redux dosage. No changes have been recommended.

Maintenance activities that took place during the third quarter included:

- July 2019 A.C. Schultes redeveloped PW-1 by air-lifting and swabbing the well.
- July 16-17, 2019 PW-1 was cleaned and GWTT removed the pump and set it to soak in water and Simple Green due to the iron build-up on the pump.
- August 20, 2019 Annual O&M of PW-1 was completed. The pump was not pulled again during O&M. The piping and flowmeter in the vault was dismantled and cleaned while the discharge line was jetted by Rosey's.
- pH measurements were taken monthly in accordance with the NCC sewer discharge permit at the same time as the LFExS on July 23, August 22 and September 23, 2019.

Maintenance activities that took place during the fourth quarter included:

- November 5, 2019 GWTT removed and cleaned the pump to prepare for aquifer testing.
- December 26, 2019 A new drum of Redux 620 was started.
- pH measurements were taken monthly in accordance with the NCC sewer discharge permit at the same time as the LFExS on October 24, November 21 and December 19, 2019.

The annual maintenance on well PW-1(U) will be performed in the third guarter of 2020.

4.2.2 Performance Evaluation

The operational effectiveness of pumping well PW-1(U) was evaluated as part of the Performance Evaluation (Golder, 2012) and further evaluated in the SSC Rev 2 submitted in January 2016. As presented in the SSC Rev 2 Report, groundwater data (water quality and potentiometric data) indicate that pumping well PW-1(U) captures some contaminant mass within the UPA upper sand and contaminant mass migrating from the UPCUTZ groundwater to the UPA upper sand groundwater to the north and northwest of well PW-1(U). Based on the

potentiometric surface and results of the Spring 2013 aquifer testing, the areas to the east and northeast of well PW-1(U) (eastern edge of the groundwater emanating from beneath the DDA), and to the west in the area of well DDA-16-US, appear to be outside the capture zone for well PW-1(U). Results of the numerical groundwater flow modeling in the DDA area (see Appendix B of the DAA) generally support these observations. More specifically, the results of the groundwater flow model indicate the following:

- Particles released near the DDA since shutdown of the NCC system in 2004 have been generally captured by well PW-1(U) operation¹³ (see Appendix D of the Final FS Rev 1 which includes Slides 18 to 21 from Attachment 1 of Appendix B of the DAA)
- The capture zone for well PW-1(U) at a simulated extraction rate of 40 gpm encompasses more than the entire width of the DDA (see Appendix D of the Final FS Rev 1 which includes Slide 28 from Attachment 1 of Appendix B of the DAA)

4.2.3 Contaminant Concentration Trends

To evaluate changes in groundwater quality associated with the DDA and operation of the LFExS and well PW-1(U), Golder prepared trend plots of groundwater analytical data for BCEE, 1,4-dioxane, benzene, iron, manganese, and cobalt. The trend plots and discussion¹⁴ of the contaminant concentration trends focus on the groundwater between the DDA and pumping well PW-1(U), and the UPA groundwater downgradient of well PW-1(U) to the AWC wells (AWC-7 and AWC-K1). The trend plots were prepared for: UPCUTZ monitoring wells located between the DDA and well PW-1(U) (see Figures E-4A through E-4F); pumping well PW-1(U) with associated PW-1(U) monitoring wells in the UPCUTZ and UPA (see Figures E-5A through E-5F); and downgradient UPA wells (see Figures E-6A through E-6F, E-7A through E-7F, E-8A through E-8F, E-9A through E-9F, and E-10A through E-10F).

The rationale for the choice of these constituents is presented in Section 4.1.4. There may be additional contaminants that exceed applicable standards in various wells associated with the Site or located downgradient of the Site, but these contaminants were not included on the trend plots because they are not the primary COCs associated with the Site and/or they are not detected Site-wide.

The following sections discuss the concentration trends observed in the PW-1(U) performance monitoring wells and the downgradient UPA monitoring wells. Note that these trend plots have been reorganized due to the inclusion of the additional monitoring wells installed in 2018 and 2019.

4.2.3.1 PW-1(U) Performance Monitoring Wells

Trend plots for BCEE, 1,4-dioxane, benzene, iron, manganese, and cobalt for PW-1(U) performance monitoring wells are presented in Figures F-4.1A through F-4.1F and F-4.2A through F-4.2F of Appendix F for wells screened in the UPCUTZ and in Figures F-5.1A through F-5.1F and F-5.2A through F-5.2F of Appendix F for wells screened in the UPA. The concentrations shown in the PW-1(U) performance monitoring well trend plots for which long-term data exists (wells DGC-2S, DGC-7S, DGC-5, and MHW-1D) generally indicate an initial decreasing trend after the startup of pumping well PW-1(U) in October 2004, followed by a relatively stable trend. Monitoring wells located between the DDA and pumping well PW-1(U) installed after well PW-1(U) startup (i.e., DDA-01 and

¹⁴ Trend observations for 1,4-dioxane are limited to the period from 2012 to present as 1,4-dioxane was added to the sampling program as an analytical parameter in 2012.

¹³ The particle capture in the groundwater model was simulated with well PW-1(U) operating at 40 gpm to approximate current conditions. Based on the operational history of well PW-1(U), NCC generally operated the well at less than 30 gpm between 2005 and 2012. Figure 14 of the Semi-Annual Monitoring Report illustrates the well PW-1(U) extraction rates and changes over time.

DDA-03 installed in 2008 and the DAA-series wells installed in 2012) indicate relatively stable or decreasing trends. Exceptions to this include:

- WEDCUTZ wells DDA-07-TZ (manganese), DDA-12-TZ (BCEE) and DDA-16-TZ (iron) for which the data set begins in 2012 and concentration trends appear to be fluctuating or increasing
- Well DGC-5 (iron, manganese and cobalt) for which the data set begins in 2004 and concentration trends appear to be fluctuating
- UPCUTZ wells DDA-09-TZ and DDA-12-TZ concentration trends for cobalt appear to be fluctuating or increasing
- WPA wells DDA-08-US (manganese), DDA-10-US (BCEE, iron, manganese, and cobalt), DDA-12-US (BCEE and iron), and DDA-17 (iron) for which the data set begins in 2012 and recent concentration trends appear to be fluctuating or increasing
- Wells DDA-08-US and DDA-15-US concentration trends for cobalt appear to be fluctuating or increasing for which the data set begins in 2014 and recent concentration trends appear to be fluctuating or increasing
- W UPCUTZ well DDA-05 concentrations for BCEE, 1,4-dioxane and benzene increased in April 2019
- WELLOW UPCUTZ and UPA wells DDA-05, DDA-09-TZ, DDA-08-TZ, DDA-08-US, and DDA-10-US concentration trends for manganese appear to be increasing
- WPCUTZ wells DDA-05, DDA-13-TZ, DDA-09-TZ, DDA-08-TZ, and DDA-14-TZ concentration trends for iron appear to be increasing
- UPCUTZ wells DDA-13-TZ and DDA-08-TZ concentration trends for cobalt appear to be increasing

The concentrations in these wells will continue to be monitored and the trends will continue to be evaluated on a semi-annual basis.

4.2.3.2 Downgradient UPA Monitoring Wells

Trend plots for BCEE, 1,4-dioxane, benzene, iron, manganese, and cobalt for select UPA monitoring wells downgradient of well PW-1(U) are presented in Figures F-6A through F-6F, F-7A through F-7F, F-8A through F-8F, F-9A through F-9F, and F-10A through F-10F¹⁵ of Appendix F. These trend plots indicate that concentrations in these wells were relatively stable or decreasing with the exception of the following:

A maximum 1,4-dioxane concentration¹⁶ was observed in October 2017 in well MW-28¹⁷ located along the eastern lobe of the ACL¹⁸. The concentration has since decreased to levels more similar to those detected prior to the October 2017 monitoring event.

¹⁵ AWC production wells were not sampled by Golder between March 2014 and October 2018 as AWC denied access to these wells. AWC commenced sampling and analysis for a limited list of VOCs and SVOCs themselves during that time period, and AWC provided the data to DS&G. Data provided by AWC for BCEE and 1,4-dioxane have been incorporated into the trend plots.

¹⁶ The data for this monitoring event were validated and no issues with this new maximum concentration were identified. The field information forms for this event were reviewed and compared to historical forms, and no deviations from protocols used during previous monitoring events were identified.

¹⁷ Well MW-28 has a long screen interval and is screened across the upper and lower sand of the UPA. Golder purges and samples well MW-28 from the shallow portion of the screen interval consistent with the UPA upper sand.

¹⁸ The groundwater elevation measured in well MW-28 during this monitoring event was the lowest groundwater elevation recorded for this well by Golder since sampling and analysis for 1,4-dioxane was initiated at the Site in 2012. This new maximum concentration (120 ug/l) is consistent

Increasing trends in BCEE, 1,4-dioxane, benzene, iron, manganese, and cobalt have been observed in well UPA-01. Trends for BCEE have shown a decreasing trend since April 2017, iron and manganese have shown a decreasing trend since October 2016, and trends for benzene have shown a decreasing trend since October 2017.

- Well MW-26N has exhibited increasing trends in BCEE, 1,4-dioxane, manganese, and cobalt. Since the restart of AWC-G3R in 2014, 1,4-dioxane concentrations have decreased while manganese and cobalt concentration are stable or fluctuating. BCEE concentrations began to decrease in April 2016; however, increased concentrations of BCEE, 1,4-dioxane and benzene were observed in well MW-26N in October 2019.
- Well UPA-101-US exhibits increasing trends in 1,4-dioxane and benzene since October 2016. Well UPA-101-US also exhibits fluctuating trends in iron.
- Well P-6 exhibited increasing BCEE and benzene concentrations between October 2004 and October 2007 following shutdown of the NCC extraction system. Since April 2012, the COC concentrations in well P-6 have demonstrated a stable or decreasing trend, with the exception of an elevated concentration of benzene in October 2019.
- In April 2015, 1,4-dioxane, iron, and manganese increased in well MW-34 relative to concentrations observed since 2012. These trends for have remained relatively stable since the increase in April 2015. The manganese concentration in well BW-1 has been increasing since April 2015 as well.
- Decreasing trends in iron and increasing trends in manganese and cobalt have been observed at well UPA-02D since shutdown of wells AWC-G3 and AWC-K1 in early 2012. Trends in well UPA-02D have been generally increasing for iron but stable for manganese and cobalt since re-start of AWC-G3R in October 2014.
- Well P-4 has exhibited fluctuating trends for iron, manganese, and cobalt.
- Well AWC-G3 exhibited increasing BCEE and 1,4-dioxane concentrations until the restart of AWC-G3R in late 2014. Since late 2014, concentrations of BCEE and 1,4-dioxane have decreased in well AWC-G3R.
- Well AWC-E2 upper and lower screen samples exhibited increasing BCEE and 1,4-dioxane trends from the start of sampling in 2013 and 2014, respectively, through April 2018. Both wells showed decreased concentrations in April 2019.
- Upper and lower screen samples for wells AWC-E1 and AWC-E2 exhibit fluctuating iron, manganese, and cobalt trends since the start of sampling in 2012 and 2016, respectively.
- Well AWC-7 has exhibited increasing 1,4-dioxane, and manganese trends since shutdown of wells AWC-G3 and AWC-K1 in early 2012, although the April 2015 through April 2018 concentrations (based on data for wells AWC-7 and AWC-G3 provided by AWC) are below the values reported for February and March 2015.

with the concentration detected during this event and previous events in downgradient well BW-2 (the 1,4-dioxane concentration in well BW-2 was also 120 ug/l in October 2017). The previous 1,4-dioxane maximum concentration in well BW-2 was about 4 ug/l. While the monitoring network is relatively sparse in this area, the particle tracking analysis performed in 2015 by TetraTech indicates the migration pathway for 1,4-dioxane impacts to the well BW-2 area passes from beneath the eastern lobe of ACL to the east of the well MW-28 area and down to the area of well BW-2. The 1,4-dioxane concentration in this well will continue to be monitored.

Golder resumed sampling of AWC-7 in October 2018 and there was a slight increase in 1,4-dioxane from April 2018.

- Well UPA-03D exhibited increased Cobalt concentrations in May 2019.
- Concentration trends for benzene, iron or other parameters in AWC production wells between April 2014 and September 2018 have not been evaluated as AWC denied access to these wells, but AWC has commenced sampling and analysis for a limited list of VOCs and SVOCs and more recently manganese themselves, and has been providing the data to the Trust. AWC allowed Golder to sample extraction well AWC-7 in October 2018 (wells AWC-G3R and AWC-6R was not extracting at the time when Golder was on-site to monitor). The analytical results were consistent with historical data.

Updated plume maps that include results from the new monitoring wells were provided in a July 2019 letter report summarizing the results of this sampling event (Golder, 2019d). The concentrations in these wells will continue to be monitored and the trends will continue to be evaluated on a semi-annual basis.

4.3 LFExS Mass Removal Estimate

The SAP indicated that future reports would include estimates of the contaminant mass removed by the LFExS based on calculation of mass extracted by the LFExS and comparison of previous to current remaining mass estimates. In the June 2, 2010 DDA LFExS Memo (Golder, 2010), Golder estimated the mass of VOCs and BCEE removed for the period from system startup in May 2009 to April 2010. This mass estimate was calculated based on the volume of water discharged by the LFExS multiplied by the detected concentrations in the LFExS effluent samples. This method has been used to evaluate each six-month period since that time. As shown on Table 4, Golder estimated that the LFExS removed approximately 1.70¹⁹ pounds (lbs) of VOCs (does not include 1,4-dioxane) and 0.25 lbs of BCEE between May 1, 2019 and October 31, 2019. The effluent analytical results are provided in Appendix F. Since system startup, it is estimated that the LFExS has removed between approximately 2.6 and 13 lbs per year of VOCs (does not include 1,4-dioxane) and between approximately 0.2 and 1.8 lbs per year of BCEE.

Figure 12 shows the changes over time in the LFExS mass removal based on the effluent analytical results. This figure shows that mass removal rates for VOCs increased to 13 lbs per year at the end of 2011 and have since remained below 10 lbs per year. The figure also shows that mass removal rates for BCEE have generally increased since the middle of 2012 and have generally remained between 0.5 and 1 lb per year since that time.

To evaluate the relative contribution of the individual extraction wells to the overall system mass removal rate, Golder estimated the mass removal for individual extraction wells by multiplying the extraction rates for those wells by the concentrations detected in those wells for six-month periods since system start-up. Golder estimated this mass contribution for the period between May 15, 2019 and October 31, 2019 for inclusion in this report. Table 5 summarizes the mass removal estimates for the individual wells and Figure 13 shows the changes over time in the mass removal rates for the system. Golder estimates that the LFExS has removed between approximately 9.1 and 34.7²⁰ lbs/year of VOCs (including between 3.6 and 11.0 lbs/year of 1,4-dioxane since it was added to the target analyte list in 2012), and between approximately 0.2 and 3.3 lbs/year of BCEE since

¹⁹ The estimated VOC mass removal for the reporting period is lower than previous reporting periods. The decreased mass removal is assumed to be caused by limited and/or reduced operation of a few extraction wells just prior to and/or during the system sampling event.

²⁰ The 34.7 lbs/year total volatile organic compound (TVOC) mass removal based on the sum of individual extraction wells for the period between November 1, 2014 and April 30, 2015 is above recent values, largely due to an increase in the concentration of toluene in well C-18D.

startup (Table 5). During this most recent six-month period, the individual well mass removal estimates suggest the following:

- Extraction wells C-18D, C-19D, and C-20D accounted for 75% of the VOC mass removal
- Extraction wells C-4D, C-19D, C-20D, and BG-1 accounted for 85% of the BCEE mass removal
- Extraction wells C-19D and C-20D accounted for 82% of the 1,4-dioxane mass removal

Table 7 provides a summary of mass removal estimates for May 2019 to October 2019 based on the LFExS effluent samples and the LFExS individual wells.²¹ On a semi-annual basis, Golder reviews the mass removal rates and recommends adjustment of extraction rates as part of the semi-annual monitoring report to improve mass removal of the LFExS system. Recommendations for adjustments of extraction rates are included in Section 4.6.1 of this report.

4.4 PW-1(U) Mass Removal Estimate

As part of the LFExS Memo and the May through December 2010 Semi-Annual Monitoring Report, Golder estimated the mass of VOCs²² and BCEE removed by extraction well PW-1(U) on a quarterly basis for the period from system startup in November 2004 to December 2010 (see Appendix F of the LFExS Memo and Table 5 of the May-December 2010 Semi-Annual Monitoring Report (Golder, 2011a)). This mass estimate was calculated based on the extraction rate for pumping well PW-1(U) and the concentrations detected in the well PW-1(U) samples. This method has been used to evaluate each six-month period since that time. Using the October 2019 analytical data, Golder estimated the mass removal rate based on the same methodology. As shown on Tables 6 and 7, the current pumping well PW-1(U) mass removal rates are approximately 19 lbs per year for VOCs (including approximately 6.1 lbs per year of 1,4-dioxane) and 0.7 lbs per year for BCEE.

Figure 14 shows the changes over time in the well PW-1(U) mass removal rates in pounds removed per quarter and the average extraction rate of pumping well PW-1(U) since the last sample taken. As shown on the figure, the average extraction rate of pumping well PW-1(U) increased to almost 40 gpm between October 2013 and April 2014 and decreased from 31.1 to 29.4 gpm between October 2018 and October 2019, respectively.

4.5 POTW Mass Loading Rate

At the request of the USEPA (see recommendations of the Five-Year Review report for the DS&G Site dated August 28, 2015), an evaluation of the actual mass loading to the NCC sewer system versus the permitted ²³ maximum permissible loading ²⁴ to the NCC sewer system for the LFExS and the well PW-1 system were performed. Appendix Tables G-1 and G-2 summarize the following associated with the evaluation:

Maximum permissible mass loading limits in lbs per day

²¹ As noted above, these results should not be directly compared to one another because the effluent sample estimates are based on 6-month averages and the VOC total concentrations do not include 1,4 dioxane, while the individual well estimates are based on monthly snapshots and the VOC totals include 1,4 dioxane. However, the relative mass removal contributions for individual wells reflected as percentages of total system mass removal are instructive.

²² Historically, concentrations used in the VOCs calculation only included benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds. Since April 2012, data collected has been based on a revised target analyte list which includes 1,4-dioxane. Table 8 and Figure 12 present both historical BTEX and current TVOCs data.

²³ Wastewater Discharge Permit WDP 04-107, Permit Revision 5 dated July 1, 2014 between NCC and the Trust.

²⁴ Note that the permit limit for molybdenum is listed by NCC as 0.00000 lbs/day.

Concentration-based limits in ug/l calculated by dividing the permitted mass loading limits by the permitted flow rates for the systems

October 2016 through October 2019 system discharge sample analytical results²⁵

The 2019 system discharge data sets were compared to the calculated concentration-based limits. Copper was detected at 5.6 ug/L, well below the permit limit of 100 ug/l, in the same sample analyzed via Method ISMO2.4; however, the copper result via Method 200.8 was reported at 111 ug/l. Copper has not been previously detected above the permit limit. Copper results will be reviewed again as part of the spring 2020 semi-annual monitoring event. Molybdenum (8.7 ug/L) was detected in the LFExS discharge sample, however, the laboratory reported contamination in the corresponding blank sample. This parameter will be reviewed again as part of the spring 2020 semi-annual monitoring event.

4.6 Recommendations

4.6.1 LFExS

The individual well mass removal estimates suggest there is significant variability in mass removal rates among the wells. The mass removal of the LFExS can be maintained and/or increased by increasing the extraction rate at wells removing a greater percentage of the contaminant mass and decreasing the extraction rate at wells removing a lower percentage of the contaminant mass. Changes in extraction rates are recommended such that hydraulic containment (inward and upward gradients) is maintained within the DDA. Based on the conclusions of the Performance Evaluation (Golder, 2012) and Appendix B of the Final FS Rev 1 (Golder, 2016b), Golder recommends maintaining the 8 to 10 gpm extraction rate for the LFExS and continued optimization of the extraction regime to maximize mass extraction while maintaining 8 to 10 gpm.

Based on a review of the mass removal rate of individual wells between May 2019 and October 2019 and contaminant concentrations within the DDA in October 2019, Golder recommends the following extraction rates for the LFExS wells:

Well	Extraction Rate Minimum	Extraction Rate Maximum
BG-1	0.5	0.75
B-4DR	0.25	0.5
C-2D	0.75	1.0
C-4D	1.0	1.25
C-18D	0.75	1.0
C-19D	0.50	0.75
C-20D	3.25	3.5
C-30	1.0	1.25

²⁵ The detection limit for the molybdenum and mercury analysis is above the calculated concentration-based permit limit.

Well	Extraction Rate Minimum	Extraction Rate Maximum
Totals	8 gpm	10 gpm

These extraction rates are the same rates recommended in the previous semi-annual monitoring report.

4.6.2 PW-1(U) System

Well PW-1(U) has operated at or over 30 gpm since addition of Redux 620 started in October 3, 2013. Operation of well PW-1(U) will continue to be monitored and evaluated semi-annually. There are no recommendations for changes in well PW-1(U) OM&M at this time. However, due to the decline in the average extraction rate since summer 2017, the Trust performed a chemical swabbing of well PW-1(U) in March 2018 and in July 2019.

5.0 DATA EVALUATION AND INTERPRETATION

In their Fourth Five-Year Review Report for the Site, the USEPA provided the following recommendations/follow-up actions: "Progress toward the attainment of remedial action objectives, changes in Site conditions and opportunities for remedy optimization should be regularly evaluated using Site data and documented in regularly submitted reports. If necessary, data collection objectives should be reviewed." (USEPA, 2010) The Remedial Action Objectives (RAOs) were updated in December 2017 as part of the USEPA's Amendment No. 2 to the 1988 Record of Decision for the Site (ROD-A2; USEPA, 2017) and the data quality objectives were updated in August 2018 as part of the PDI Work Plan and SAP. The USEPA provided conditional approval of these documents, minor revisions were addressed, and the revised documents were submitted on March 28, 2019 (Golder, 2019b, Golder 2019c). The USEPA provided approval of the PDI Work Plan – Revision 2 and SAP Rev 2 via email dated April 10, 2019 (USEPA, 2019a).

The USEPA is currently performing the Fifth Five-Year Review for the Site.

5.1 Changes in Site Conditions

Golder evaluated changes in the groundwater conditions at the Site based on the October 2019 monitoring data. Sections 4.1.4 and 4.2.3 discuss COC concentration trends and Appendix F presents trend plots for the wells in the semi-annual monitoring program. Ongoing PDI activities will provide information about groundwater conditions through installation and monitoring of additional monitoring wells. Results of the monitoring indicate that the groundwater conditions are largely unchanged since the previous monitoring event. Additional discussion is provided in Section 4.1.4.2. Changes in groundwater conditions will continue to be evaluated on a semi-annual basis and reported via the semi-annual monitoring reports.

5.2 Remedy Optimization

Modifications to the LFExS have been made with the intent of optimizing the system's performance both in maintaining hydraulic containment as well as in increasing the extraction rates of the extraction wells with the highest mass removal rates. Additional modifications in the form of rebalancing individual well extraction rates are recommended, as needed, in Section 4.6.1. Hydraulic gradients and mass removal rates will continue to be evaluated on a semi-annual basis to further optimize the effectiveness of the LFExS.

Modifications to the well PW-1(U) system were previously made with the intent of optimizing the system's performance both in maintaining hydraulic control as well as capturing groundwater impacts migrating within the

UPA upper sand and migrating from the UPCUTZ into the UPA upper sand near the DDA. Additional modifications will be made in the future as part of the Selected Remedy. Hydraulic gradients and mass removal rates will continue to be evaluated on a semi-annual basis.

5.3 Attainment of RAOs

In December 2017, the USEPA updated the RAOs for the Site through issuance of the ROD-A2. Based on the information presented in the Final FS Rev 1, the SSC Rev 2, the landfill gas monitoring reports and the semi-annual groundwater monitoring reports, progress is being made toward the attainment of the RAOs. More specifically, there are institutional and/or engineering controls in place which achieve three of the five RAOs for the Site as presented in the ROD-A2. These RAOs are:

- Prevent direct contact with contaminated soil enclosed within the slurry wall at the DDA.
- Prevent direct contact with groundwater containing contaminants from the DS&G Site at levels that exceed MCLs, non-zero MCLGs or acceptable risk- and health-based concentrations.
- Prevent contaminant migration from subsurface vapor intrusion into indoor air that would result in unacceptable levels of risk.

The remaining two RAOs are as follows and progress toward these is summarized below:

- Prevent migration of contaminants from the DDA that would cause contaminant concentrations in the groundwater of the Columbia Aquifer outside the DDA or the Upper Potomac Aquifer within the Area of Attainment (as defined below) to exceed MCLs, nonzero maximum contaminant level goals (MCLGs) or acceptable risk- and health-based concentrations.
- Restore groundwater within the Area of Attainment (throughout the contaminant plume, at and beyond the boundary of the Waste Management Area) to its beneficial use in a reasonable time frame.

The LFExS reduces the migration of COCs to groundwater from contaminated soil remaining in the DDA by lowering the water level in select areas (areas with higher relative contaminant concentrations) within the DDA. The LFExS also reduces the contaminant mass remaining in the DDA and prevents migration of impacted groundwater from the DDA to the Columbia Aquifer, UPCUTZ and the UPA groundwater. Monitoring results indicate the LFExS is providing hydraulic containment and removing VOCs and BCEE contaminant mass from the DDA. Additional discussion about the hydraulic containment and mass removal by the LFExS is provided in Appendix B of the Final FS Report Rev 1 (Golder, 2016b).

As presented in the SSC Rev 2 Report, the groundwater data indicate that pumping well PW-1(U) captures some contaminant mass within the UPA upper sand and contaminant mass migrating from the UPCUTZ groundwater to the UPA upper sand groundwater to the north and northwest of well PW-1(U).

Progress toward attainment of the remaining two RAOs will continue to be assessed on a semi-annual basis.

5.4 Data Collection Objectives

The data collection objectives are outlined in the SAP. To assist with evaluation of the Site-wide contaminant concentration trends, there is some overlap in the DS&G and ACL groundwater monitoring programs. Data is exchanged between the Trust and NCC as necessary.

5.5 Evaluation of Tentatively Identified Compounds

On March 22, 2019, the Trust submitted to the USEPA a technical memorandum prepared by Golder regarding Review of Tentatively Identified Compounds in Groundwater (Golder, 2019a). This memorandum provided a summary of tentatively identified compounds (TICs) for the 2017 and 2018 groundwater monitoring events. Based on the review, Golder did not recommend any additions to the Site's target analyte list (TAL).

The USEPA provided concurrence with this recommendation via email dated April 12, 2019. (USEPA, 2019b) The next bi-annual review of groundwater TICs will be performed after validation of data from the October 2020 monitoring event.

5.6 Reporting

The Trust will continue to summarize the routine groundwater monitoring results and evaluate the performance of the LFExS and pumping well PW-1(U) in semi-annual monitoring reports. These reports will be prepared for monitoring periods as follows: January 1 through June 30, and July 1 through December 31. The reports will be submitted to the USEPA within 60 days of the completion of the monitoring period.

6.0 REFERENCES

- Golder, 2010. Technical Memorandum RE: Drum Disposal Area Low-Flow Extraction System Performance Evaluation. June 2, 2010.
- Golder, 2011a. Semi-Annual Monitoring Report May-December 2010. Delaware Sand & Gravel Superfund Site, New Castle, Delaware. February 2011.
- Golder, 2011b. Feasibility Study Work Plan, Revision 2, Delaware Sand & Gravel Superfund Site, New Castle, Delaware. October 21, 2011.
- Golder, 2012. Performance Evaluation for Low-Flow Extraction and Well PW-1(U) Systems for the Delaware Sand & Gravel Superfund Site, New Castle, Delaware. April 2012.
- Golder, 2016a. Supplemental Site Characterization Report Revision 2. Delaware Sand & Gravel Superfund Site, New Castle, Delaware. January 29, 2016.
- Golder, 2016b. Final Feasibility Study Revision 1. Delaware Sand & Gravel Superfund Site, New Castle, Delaware. May 23, 2016.
- Golder, 2017. Revised Addendum to Development of Site-Specific Preliminary Remediation Goals Revision 2. Delaware Sand & Gravel Superfund Site, New Castle, Delaware. October 16, 2017.
- Golder, 2018. Response to USEPA Request for Alternate Purging and Sampling Method for Long-Screen Wells. Delaware Sand & Gravel Superfund Site, New Castle, Delaware. December 7, 2018.
- Golder, 2019a. Review of Tentatively Identified Compounds in Groundwater (2017 and 2018), Delaware Sand & Gravel Superfund Site, New Castle, Delaware. March 22, 2019.
- Golder, 2019b. Pre-Design Investigation Work Plan-Revision 2. Delaware Sand & Gravel Superfund Site, New Castle, Delaware. March 28, 2019.
- Golder, 2019c. Sampling and Analysis Plan-Revision 2. Delaware Sand & Gravel Superfund Site, New Castle, Delaware. March 28, 2019.
- Golder, 2019d. Analytical Data Summary April-May 2019 Groundwater Monitoring Event. Delaware Sand & Gravel Superfund Site, New Castle County, Delaware. July 31, 2019.
- Ruth, 2007. Status Report, Second Quarter of 2007, Pilot Test Program for the Suspension of Army Creek Landfill Pump & Treat System. Ruth Associates, Inc. August 1, 2007.

February 2020 013-6052-014

Ruth, 2013. Spreadsheet titled "Historical PW Flows.xls" attached to Email to DS&G Trust Re: Information Request. Email dated January 9, 2013.

- Ruth and Golder, 2019. Additional Investigation Work Plan Revision 2. Army Creek Landfill Superfund Site, New Castle, Delaware. March 27, 2019.
- USEPA, 1984. Completion of the Immediate Removal Action at the Delaware Sand and Gravel Site, New Castle County, Delaware. April 19, 1984.
- USEPA, 1993. USEPA Superfund, Record of Decision Amendment: Delaware Sand & Gravel Landfill, USEPA ID: DED000605972, OU2, New Castle, DE. September 30, 1993.
- USEPA, 1997. Preliminary Close Out Report, Delaware Sand & Gravel Landfill Site, New Caste, Delaware. August 12, 1997.
- USEPA, 1998. Five-Year Review Report, Army Creek Landfill Superfund Site, New Castle, Delaware. November 25, 1998.
- USEPA, 1999. Five-Year Review Report, Delaware Sand & Gravel Landfill Superfund Site, New Castle, Delaware. September 30, 1999.
- USEPA, 2005. Five-Year Review Report, Delaware Sand & Gravel Landfill Superfund Site, New Castle, Delaware. September 21, 2005.
- USEPA, 2010. Fourth Five-Year Review Report, Delaware Sand & Gravel Landfill Superfund Site, New Castle, Delaware. September 16, 2010.
- USEPA, 2014. USEPA Comments on Golder Associates' July 2014 Responses to Comments and Revised Section 8 and 9 Supplemental Site Characterization Report-Revision 1, December 19, 2014.
- USEPA, 2015a. Five-Year Review Report for Delaware Sand & Gravel Landfill Superfund Site, New Castle, Delaware. August 28, 2015.
- USEPA, 2017. Amendment No. 2 to the 1988 Record of Decision for the Delaware Sand & Gravel Superfund Site, New Castle, Delaware. December 2017.
- USEPA, 2018a. Administrative Settlement Agreement and Order on Consent for Remedial Design. May 22, 2018.
- USEPA, 2018b. USEPA letter re: Partial Approval of the PDI WP with additional comments. November 30, 2018.
- USEPA, 2019a. USEPA email re: Approval of the PDI WP-Rev 2 and SAP-Rev 2 with addition of annual cations/anions analysis for monitoring well P-5U (Table A-6C). April 10, 2019.
- USEPA, 2019b. USEPA email re: Approval of the 2019 TIC Memo. April 12, 2019.

February 2020 013-6052-014

Golder appreciates the opportunity to prepare this report for submission to the USEPA on behalf of the Trust. Should you have any questions regarding this report, please contact Ms. Theresa Miller at (978) 376-8434.

Golder Associates Inc.

Brian P. Campelia, PE

Project Engineer

Bankalingela

Theresa A. Miller, PG Senior Consultant

Ihura a. Miller

TAM/BPC/drb

Golder and the G logo are trademarks of Golder Associates Corporation

p:\projects\2001\013-6052 ds&g\reports\semi-annual reports\2019\2019q3q4\final\semi-annual report.docx

Tables

February 2020 013-6052

TABLE 1 SEMI-ANNUAL AND ANNUAL 2019 MONITORING PROGRAM DELAWARE SAND & GRAVEL SUPERFUND SITE NEW CASTLE COUNTY, DELAWARE

Secret May Part Secret May Secret Ma			***************************************		жанан панан панан панан панан панан панан панан панан п		April 2019 Event	October 2019 Event	One-Time E	Event in 2019	October 2019 Event
Color	Sample ID	Well Type/Purpose	Screened Unit	,			Routine Groundw	ater Monitoring	Catiana and		0.34/411.3/41
## 14-08 Secretary FESS Columns 31-41 19.4 19.5 19.	-			bgs)	(II-bgs)	метоа	BCEE, d-Fe/Mn, TAL Metals,			PFAS Monitoring	
Big 1	DDA Low-Flow Extrac										
C-180 Selection - LFR-6								······································	-	x*	-
C-100 Existent FEG Columna 3-0-40 MA	L										
C-200										 	
C.20	1									 	
C-30 Executor LESES Columba 27.37 NA no.nuga. client deve x x x											
C-2 Exactor LFES									-	_	
8-30	C-4D	Extraction - LFExS	Columbia		NA				-	-	-
B-90	DDA Monitoring Wells	s within Containment Area	***************************************	***************************************	benennennennennennennennennennennennen	dennancennaniscennaniscennaniscennennancennancennancennancennanis			***************************************	***************************************	***************************************
C-10	B-2D	Monitoring near BG-1 and C-2D	Columbia	36-46	41	submersible - low flow	X	_	—	-	
C-228 Montoring allow Columbia Columbia 30-38 38 submervable to for x	L	Monitoring near BG-1 and C-4D	Columbia	38-45		submersible - low flow	×	-	-	x*	-
C. 50 Manistring along Northern Boundary Columba 40.45 43 supromible - live flow x		XXXXX					X	~		-	-
Method Monitoring peace C200										<u> </u>	
Membring near C-200	·								-		
P2-45 Monitoring Persition	1							-		 	
DA Monitoring Partition Columba 26.5.36.5 3.1 submerisiae - love frow x	ļ			<u> </u>					-	-	
P24-DT			Columbia	26-29	21	3x - baller	X		-		
PZ-4 NT-R Monitoring - Partition Columbia 29-34 32 submerable - our low x		***************************************	0-1	005005		I			***************************************		
P.2.6N	}								-		
DOA to PM-1(t) Monitoring - Downgradient of DDA UPA-Upper Sand \$4.94 \$9 submersible - low flow x x x x x x x x x								-	-	-	
DBA 01		<u> </u>	Columbia	30-33	31	3x - bailer	X	-	-	-	-
DDA-02	L		LUDA Umaz Cand	94.04	- 00					·	***************************************
DDA-03 Monitoring								-		-	
DDA-05	}							†		 	
DDA-06	<u> </u>	9 9	· · ·							 	
DDA-07-17								_			
DDA08-17								-			_
DDA 08-US	DDA-07-US	Monitoring - Beneath DDA	UPA-Upper Sand	63-73	68	submersible - low flow	×	-	-	X**	-
DDA-09-TZ							X		~	x*	-
DDA-10-US	1						X		~	-	
DDA-11-LS	4					·				 	-
DDA-11-US											
DDA-12-TZ											
DDA-12-US								<u> </u>			
DDA-13-TZ								 			
DDA-15-TZ Monitoring - Beneath DDA UPCUTZ 54-64 59 submersible - low flow x - x* -								***************************************			-
DDA-16-US Monitoring - Beneath DDA UPA-Upper Sand 85-95 90 submersible - low flow x -	DDA-14-TZ	Monitoring - Beneath DDA	UPCUTZ	49-59	54	submersible - low flow	×	-		-	-
DDA-16-TZ Monitoring - Downgradient of DDA UPCUTZ 51-59 56 submersible - low flow x - - x* -	·						X	-	-	x*	
DDA-16-US Monitoring - Downgradient of DDA UPA-Upper Sand 63.73 68 submersible - low flow x - -								-	-		-
DDA-17	}								-	 	-
DDA-18-TZ Monitoring - West of Well PW-1(U) UPCUTZ 47-54 50.5 submersible - low flow x x x x x x x x x								 		†	
DDA-18-US Monitoring - West of Well PW-1(U) UPA-Upper Sand 71-78 74.5 submersible - low flow x x x x x x x x x		0 0								 	
DDA-19-TZ Monitoring - East of Well PW-1(U) UPCUTZ 60-67 63.5 submersible - low flow x x x x x x x x DDA-19-US Monitoring - East of Well PW-1(U) UPA-Upper Sand 66-73 69.5 submersible - low flow x x x x x x x x x										 	
DDA-19-US Monitoring - East of Well PW-1(U) UPA-Upper Sand 66-73 69.5 submersible - low flow x x x x x x x x x				<u> </u>							
DDA-20-TZ Monitoring - Northeast of Well PW-1(U) UPCUTZ 48-55 51.5 submersible - low flow x x x x x x x x DDA-20-US Monitoring - Northeast of Well PW-1(U) UPA-Upper Sand 81-87 84 submersible - low flow x x x x x x x x x								*			
DDA-20-US Monitoring - Northeast of Well PW-1(U) UPA-Upper Sand 81-87 84 submersible - low flow x x x x x x x x x										-	
DGC-2S Monitoring - West of DDA UPA-Upper Sand 50-70 60 submersible - low flow x - x x* - DGC-5 Monitoring - Northern DDA Boundary UPCUTZ 35-55 45 submersible - low flow x x x x x x -			UPA-Upper Sand	81-87	84					-	-
DGC-5 Monitoring - Northern DDA Boundary UPCUTZ 35-55 45 submersible - low flow x x x x x x x - DGC-7C Monitoring - Near Inert Area Columbia 23-33 28 3x - bailer x x x -		Monitoring - West of DDA	UPA-Lower Sand	105-115	110	submersible - low flow	X	•		~	
DGC-7C Monitoring - Near Inert Area Columbia 23-33 28 3x - bailer x x x -		3				submersible - low flow	X	-	x	X*	-
DGC-7S Monitoring - Near Inert Area UPCUTZ 60-80 70 submersible - low flow x - x - </td <td>L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td>х</td> <td>X</td> <td>X</td> <td>-</td>	L						X	х	X	X	-
GA-101 Monitoring - Northern DDA Boundary Columbia 22-28 26 submersible - low flow x x - x* - MHW-1D Monitoring - Beneath DDA UPA-Upper Sand 65-75 70 submersible - low flow x x x x x - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>										-	
MHW-1D Monitoring - Beneath DDA UPA-Upper Sand 65-75 70 submersible - low flow x x x x x - - PW-1(U) Extraction - PW-1(U) UPA-Upper Sand 68-93 NA no purge - direct draw x x x x x x -										ļ <u>-</u>	
PW-1(U) Extraction - PW-1(U) UPA-Upper Sand 68-93 NA no purge - direct draw x x x x x - PZ-11-EXT Monitoring - Northern DDA Boundary Columbia 37-42 40 submersible - low flow x x x - x* -	<u> </u>									 	
PZ-11-EXT Monitoring - Northern DDA Boundary Columbia 37-42 40 submersible - low flow x x - x* - x* -	<u> </u>									 	
			· · · · · · · · · · · · · · · · · · ·								
	PZ-11-EX1	Monitoring - Northern DDA Boundary Monitoring - Northern DDA Boundary	Columbia	27-30	29	submersible - low flow	X X	X X	-	- x	

February 2020 013-6052

TABLE 1 SEMI-ANNUAL AND ANNUAL 2019 MONITORING PROGRAM DELAWARE SAND & GRAVEL SUPERFUND SITE NEW CASTLE COUNTY, DELAWARE

						April 2019 Event	October 2019 Event	One-Time I	Event in 2019	October 2019 Event
Sample ID	Well Type/Purpose	Screened Unit	Screen Interval (ft-	Sampling Depth	Purging and Sampling	Routine Groundy	vater Monitoring			
•	<i>;</i> .		bgs)	(ft-bgs)	Method	VOCs+II-1,4-dioxane, SVOCs+II- BCEE, d-Fe/Mn, TAL Metals, Ammonia	VOCs+II-1,4-dioxane, SVOCs+II- BCEE, d-Fe/Mn	Cations and Anions	PFAS Monitoring	3 Well Volume Sample
Downgradient DS&G	Monitoring Locations									
AWC-E1	Former Production - Upgradient of AWC	UPA-Upper Sand	122-162	132	submersible - low flow	_	x	Х	x	-
AWC-E1	Former Production - Upgradient of AWC	UPA-Lower Sand	122-162	156	submersible - low flow	-	x	Х	x	-
AWC-E2	Former Production - Upgradient of AWC	UPA-Upper Sand	131-173	140	submersible - low flow	-	x	х	x	-
AWC-E2	Former Production - Upgradient of AWC	UPA-Lower Sand	131-173	165	submersible - low flow	-	x	Х	X	-
CA-102	Monitoring - Inert Area	Columbia	39-46	42.5	submersible - low flow	x	x	X	-	-
CA-103	Monitoring - Inert Area	Columbia	26-33	29.5	submersible - low flow	x	x	х	-	_
CA-106	Monitoring - Grantham South	Columbia	13-20	16.5	submersible - low flow	×	×	x	-	-
DGC-10D	Monitoring - Eastern AoA Boundary	UPA-Lower Sand	128-138	133	submersible - low flow	×	×	X	x	-
DGC-10S	Monitoring - Eastern AoA Boundary	UPA-Upper Sand	93-113	103	submersible - low flow	×	x	х	x	-
DGC-11D	Monitoring - Eastern AoA Boundary	UPA-Upper Sand	105-115	110	submersible - low flow	x	x	Х	-	-
DGC-11S	Monitoring - Eastern AoA Boundary	UPA-Upper Sand	70-80	75	submersible - low flow	x	x	Х	-	-
DGC-8C	Monitoring - Inert Area	Columbia	19-29	30	submersible - low flow	x	-	-	-	-
DGC-8D	Monitoring - Inert Area	UPA-Lower Sand	108-118	117	submersible - low flow	х	-	Х	-	-
DGC-8S	Monitoring - Inert Area	UPA-Upper Sand	60-80	75	submersible - low flow	X	-	X	-	-
RT-1-UP	Monitoring	UPA-Upper Sand	91-101	100	submersible - low flow	X	x	Х	X	-
UPA-01	Monitoring	UPA-Upper Sand	90-100	95	submersible - low flow	X	х	X	X	-
UPA-02D	Monitoring	UPA-Lower Sand	151-161	156	submersible - low flow	X	х	X	X	=
UPA-02S	Monitoring	UPA-Upper Sand	97-107	102	submersible - low flow	X	_	X	X	-
UPA-03D	Monitoring - Eastern AoA Boundary	UPA-Lower Sand	155-165	160	submersible - low flow	X	x	X	X	
UPA-101-LSA	Monitoring - Well P-6 Area	UPA-Lower Sand	128-135	131.5	submersible - low flow	X	x	х	-	-
UPA-101-LSB	Monitoring - Well P-6 Area	UPA-Lower Sand	158-165	161.5	submersible - low flow	х	х	X	-	-
UPA-101-TZ	Monitoring - Well P-6 Area	UPCUTZ	73-78	75	submersible - low flow	X	-	_	-	
UPA-101-US	Monitoring - Well P-6 Area	UPA-Upper Sand	101-111	106	submersible - low flow	X	-	-	-	-
UPA-102-TZ	Monitoring - Well P-6 Area	UPCUTZ	90-97	93.5	submersible - low flow	X	X	X	-	-
UPA-102-US	Monitoring - Well P-6 Area	UPA-Upper Sand	100-107	103.5	submersible - low flow	x	x	X	-	
UPA-103-LS	Monitoring - Well P-6 Area	UPA-Lower Sand	116-123	119.5	submersible - low flow	x	x	X	-	-
UPA-103-TZ	Monitoring - Well P-6 Area	UPCUTZ	65-72	68.5	submersible - low flow	x	x	X	-	-
UPA-103-US	Monitoring - Well P-6 Area	UPA-Upper Sand	83-90	86.5	submersible - low flow	X	X	X	X	-
UPA-104-LS	Monitoring - Well P-6 Area	UPA-Lower Sand	124.5-131.5	128	submersible - low flow	×	~	X	-	-
UPA-104-TZ	Monitoring - Well P-6 Area	UPCUTZ	79-86	82.5	submersible - low flow	×	×	X	-	-
UPA-104-US	Monitoring - Well P-6 Area	UPA-Upper Sand	99-106	102.5	submersible - low flow	x	×	X	-	-
UPA-105A-LS	Monitoring - Well UPA-101 Area	UPA-Lower Sand	120.5-127.5	124	submersible - low flow	x	×	X	X	-
UPA-105A-TZ	Monitoring - Well UPA-101 Area	UPCUTZ	97-104	100.5	submersible - low flow	X	-	X	-	-
UPA-105A-US	Monitoring - Well UPA-101 Area	UPA-Upper Sand	104-111	107.5	submersible - low flow	X	X	X	X	-
UPA-105B-LS	Monitoring - Well UPA-101 Area	UPA-Lower Sand	120-127	123.5	submersible - low flow	X	-	X	-	
UPA-105B-TZ	Monitoring - Well UPA-101 Area	UPCUTZ	77-83	80	submersible - low flow	X	-	X	-	-
UPA-105B-US	Monitoring - Well UPA-101 Area	UPA-Upper Sand	108-115	111.5	submersible - low flow	X	X	X	-	-
UPA-106-TZ	Monitoring - Wells MW-18/MW-34 Area	UPCUTZ	45-50	47.5	submersible - low flow	X	-	-	-	-
UPA-106-USA	Monitoring - Wells MW-18/MW-34 Area	UPA-Upper Sand	60-67	63.5	submersible - low flow	X	X	X	-	
UPA-106-USB	Monitoring - Wells MW-18/MW-34 Area	UPA-Lower Sand	86-93 137-144	89.5 140.5	submersible - low flow	X	X	X	-	-
UPA-107-LS	Monitoring - Wells MW-18/MW-34 Area	UPA-Lower Sand UPCUTZ	137-144 87-94	90.5	submersible - low flow	X	X	X	-	-
UPA-107-TZ	Monitoring - Wells MW-18/MW-34 Area	UPA-Upper Sand	87-94 105-112	108.5	submersible - low flow	X	X	X	-	-
UPA-107-US	Monitoring - Wells MW-18/MW-34 Area	}i-i-i			submersible - low flow	X	X	X	-	-
UPA-108B-TZ	Monitoring - Well BW-2 Area	UPCUTZ	40-47	43.5	submersible - low flow	X	X	X	-	-
UPA-108B-US	Monitoring - Well BW-2 Area	UPA-Upper Sand	69-76	72.5	submersible - low flow	х	x	x	x	-
UPA-108B-LS	Monitoring - Well BW-2 Area	UPA-Lower Sand	90-97	93.5	submersible - low flow	Х	х	x	×	-
UPA-108C-US	Monitoring - Well BW-2 Area	UPA-Upper Sand	72-79	75.5	submersible - low flow	x	x	x	x	
01 / 1000-00	Monitoring 14 on D14-2 Aloa	Ji / Oppor Garid	1 ,2-,3	7 7.0	Sapinorable - low now	^		^	1 ^	

February 2020 013-6052

TABLE 1 SEMI-ANNUAL AND ANNUAL 2019 MONITORING PROGRAM DELAWARE SAND & GRAVEL SUPERFUND SITE NEW CASTLE COUNTY, DELAWARE

36000000000000000000000000000000000000						April 2019 Event	October 2019 Event	One-Time	Event in 2019	October 2019 Event
Sample ID	Well Type/Purpose	Screened Unit	Screen Interval (ft-		Purging and Sampling	Routine Groundy	vater Monitoring			
·	,		bgs)	(ft-bgs)	Method	VOCs+II-1,4-dioxane, SVOCs+II- BCEE, d-Fe/Mn, TAL Metals, Ammonia	VOCs+II-1,4-dioxane, SVOCs+II- BCEE, d-Fe/Mn	Cations and Anions	PFAS Monitoring	3 Well Volume Sample
Downgradient NCC I	Monitoring Locations									
BW-1	Monitoring	UPA-Lower Sand	106.5 - 126.5	126	submersible - low flow	x	-	-	-	-
BW-2	Monitoring	UPA-Lower Sand	105 - 125	133	submersible - low flow	x	x	Х	-	Х
MW-18	Monitoring	UPA-Upper Sand	80 - 90	85	peristaltic	x	x	Х	X	-
MW-26N	Monitoring	UPA-US and LS	108 - 168	138	submersible - low flow	х	х	Х	Х	Х
MW-28	Former Extraction - ACL Eastern Lobe UPA-US and LS 40 - 120 50 submersible - low flow x		-	-	-	-				
MW-29	Former Extraction - ACL Eastern Lobe	UPA-US and LS	34 - 113	39	submersible - low flow	х	-	-	-	-
MW-31	Former Extraction - ACL Eastern Lobe	UPA-US and LS	59 - 105	75	submersible - low flow	х	-	-	-	-
MW-34	Monitoring	UPA-US and LS	75-131.5	100	submersible - low flow	x	x	Х	х	-
P-5L	Monitoring	UPA-Lower Sand	70 - 80	131	submersible - low flow	x	х	Х	-	-
P-5U	Monitoring	UPA-Upper Sand	126 - 136	75	submersible - low flow	х	-	Х	-	-
P-6	Monitoring	UPA-Upper Sand	100 - 110	105	submersible - low flow	Х	х	Х	-	-
AWC Wells - only ex	traction wells which are pumping at the time	of the event can be s	ampled							
AWC-2	Production Well	UPA-Lower Sand	122-160	NA	no purge - direct draw	-	-	Х	by AWC grtrly	-
AWC-6R	Production Well	UPA-US and LS	100-140	NA	no purge - direct draw	-	-	х	by AWC grtrly	-
AWC-G3R	Production - Southern AoA Boundary	UPA-US and LS	102-157	NA	no purge - direct draw	x	-	-	by AWC grtrly	-
AWC-K1	Monitoring - Eastern AoA Boundary	UPA-Lower Sand	135-173	160	submersible - low flow	х	×	-	-	-

Notes:

1) "x" indicates location will be sampled for indicated parameter(s)

2) "-" indicates location will not be sampled for indicated parameters and/or location was not included as a FSWP Revision 2 sample location

3) List of cations and anions for analysis includes: calcium, magnesium, potassium, sodium, ammonia, nitrate, nitrite, sulfate, sulfide, chloride and bicarbonate.

4) * indicates EPA requested PFAS sampling location

5) ** indicates proposed additional PFAS sampling location based on EPA's April 26, 2018 email and Trust's August 2018 response

6) Frequency of "once per year" = annually; however, which semi-annual event (April or October) will depend on well installation date and ACL coordination

7) April monitoring event represents a is site-wide event and October monitoring event is limited to information needed for design

8) A synoptic round of water levels will be collected prior to sampling during each monitoring event.

9) AWC agreed to let the Golder sample AWC wells as part of semi-annual monitoring events beginning in October 2018.

10) Trip blanks will accompany each shipment of VOC samples (1 per day).

11) The following quality assurance/quality control (QA/QC) samples will be collected during each monitoring event at a rate of 1 per 20 primary samples: field duplicates, field equipment rinsate blanks, matrix spikes and matrix spike duplicates.

Prepared By:

Checked By:

Reviewed By:

KNG BPC

TAM

Table 2A Groundwater Elevation Data - DDA Monitoring Wells - November 2019 Delaware Sand & Gravel Superfund Site New Castle County, Delaware

Monitoring		Reference		Depth to	Groundwater	Extraction
Point ID	Hydrogeologic Unit	Elevation	Date	Groundwater	Elevation	Well
		(feet MSL)		(feet BTOIC)	(feet MSL)	Function
DDA Extraction Wells						
B-4DR	Columbia Aquifer - Columbia Sand	30.15	11/7/2019	31.55	-1.40	Extracting
BG-1	Columbia Aquifer	24.97	11/7/2019	28.20	-3.23	Extracting
C-18D	Columbia Aquifer	25.41	11/7/2019	26.94	-1.53	Extracting
C-19D	Columbia Aquifer	28.86	11/7/2019	29.68	-0.82	Extracting
C-20D	Columbia Aquifer	32.20	11/7/2019	NM	NC	Extracting
C-2D	Columbia Aquifer - Columbia Sand and Basal Gravel	22.44	11/7/2019	23.90	-1.46	Extracting
C-30	Columbia Aquifer	25.71	11/7/2019	27.23	-1.52	Extracting
C-4D	Columbia Aquifer - Columbia Sand and Basal Gravel	22.74	11/7/2019	24.25	-1.51	Extracting
DDA Monitoring Wells		·				
C-1D	Columbia Aquifer - Columbia Sand and Basal Gravel	22.30	11/7/2019	24.00	-1.70	-
C-3D	Columbia Aquifer	22.66	11/7/2019	24.00	-1.34	-
C-5D	Columbia Aquifer	23.20	11/7/2019	24.22	-1.02	-
C-6 DDA	Columbia Aquifer	25.32	11/7/2019	24.15	1.17	-
C-7	Columbia Aquifer	23.07	11/7/2019	20.06	3.01	-
C-8	Columbia Aquifer	23.50	11/7/2019	23.32	0.18	-
C-9	Columbia Aquifer	24.93	11/7/2019	25.85	-0.92	
C-10	Columbia Aquifer	26.43	11/7/2019	27.70	-1.27	-
C-12	Columbia Aquifer	26.04	11/7/2019	27.12	-1.08	_
C-14	Columbia Aquifer	25.50	11/7/2019	27.08	-1.58	-
C-15D	Columbia Aquifer	23.53	11/7/2019	25.00	-1.47	-
C-16	Columbia Aquifer	24.01	11/7/2019	25.45	-1.44	-
C-17	Columbia Aquifer	24.80	11/7/2019	24.00	0.80	_
C-23	Columbia Aquifer	29.70	11/7/2019	28.40	1.30	-
C-24	Columbia Aquifer	28.28	11/7/2019	27.36	0.92	
C-25	Columbia Aquifer	30.37	11/7/2019	28.76	1.61	-
C-27	Columbia Aquifer	29.25	11/7/2019	30.67	-1.42	_
MHW-1M	Base of Columbia Aquifer	29.83	11/7/2019	31.62	-1.79	~
MHW-1S	Columbia Aquifer	29.83	11/7/2019	31.23	-1.40	-
PZ-11-EXT	Columbia Aquifer	23.27	11/7/2019	23.20	0.07	_
PZ-11-INT-R	Columbia Aquifer	24.28	11/7/2019	25.02	-0.74	_
PZ-12-EXT	Columbia Aquifer	26.07	11/7/2019	25.07	1.00	-
PZ-12-INT	Columbia Aquifer	24.77	11/7/2019	26.10	-1.33	-
PZ-2-EXT	Columbia Aquifer	25.49	11/7/2019	24.75	0.74	-
PZ-2-INT	Columbia Aquifer	29.53	11/7/2019	29.72	-0.19	-
PZ-5-EXT	Columbia Aquifer	24.18	11/7/2019	29.70	-5.52	
PZ-5-INT	Columbia Aquifer	24.40	11/7/2019	29.85	-5.45	
PZ-6S	Columbia Aquifer	28.01	11/7/2019	24.43	3.58	-
DDA Monitoring Wells within Partition A						
P-4D	Columbia Aquifer - UPCU, Columbia Clay, Basal Gravel	25.22	11/7/2019	24.00	1.22	-
P-5	Columbia Aquifer	24.30	11/7/2019	23.95	0.35	
P-8D	Columbia Aquifer	23.55	11/7/2019	22.35	1.20	_
*** 100 100 100 100 100 100 100 100 100 10					 	

Groundwater Elevation Data - DDA Monitoring Wells - November 2019 Delaware Sand & Gravel Superfund Site New Castle County, Delaware

Table 2A

Monitoring Point ID	Hydrogeologic Unit	Reference Elevation (feet MSL)	Date	Depth to Groundwater (feet BTOIC)	Groundwater Elevation (feet MSL)	Extraction Well Function
PZ-3-INT	Columbia Aquifer	21.56	11/7/2019	24.40	-2.84	-
PZ-4-EXT	Columbia Aquifer	23.98	11/7/2019	NM	NC	_
PZ-4-INT-R	Columbia Aquifer	24.11	11/7/2019	21.30	2.81	-
PZ-6N	Columbia Aquifer	27.55	11/7/2019	24.55	3.00	-
DDA to PW-1(U) Monitoring Wells						
DDA-07-TZ	UPCU - Transition Zone	25.22	11/6/2019	24.25	0.97	-
DDA-07-US	UPA - Upper Sand	25.44	11/6/2019	24.44	1.00	_
DDA-08-TZ	UPCU - Transition Zone	26.20	11/6/2019	25.53	0.67	_
DDA-08-US	UPA - Upper Sand	24.52	11/6/2019	23.68	0.84	-
DDA-15-TZ	UPCU - Transition Zone	33.98	11/6/2019	33.30	0.68	
DDA-15-US	UPA - Upper Sand	34.58	11/6/2019	33.80	0.78	
MHW-1D	UPA - Upper Sand	29.99	11/6/2019	29.17	0.82	_

Notes

- (1) MSL = Mean Sea Level
- (2) BTOIC = Below Top of Inner Casing
- (3) DDA = Drum Disposal Area
- (4) LFExS = Low-flow Extraction System
- (5) NA = Not Available
- (6) NC = Not Calculated
- (7) NM = Not Measured
- (8) NCC = New Castle County
- (9) UPA = Upper Potomac Aquifer
- (10) UPCU = Upper Potomac Confining Unit

- (11) Survey data provided by Delaware Sand and Gravel Trust.
- (12) Survey data updated based on 12/5/2012, 12/11/2012, 12/18/2013, and 12/3/2019-12/4/2019 surveys, where available.
- (13) * = Water level data not provided by Artesian Water Company
- (14) ** = Perched water table
- (15) AWC = Artesian Water Company
- (16) ASR = Aquifer Storage and Recovery
- (17) As observed by Delaware Sand & Gravel Trust

Prepared by: TK

Checked by: KNG

Reviewed by: TAM

Table 2B Groundwater Elevation Data - January 2020 Delaware Sand & Gravel Superfund Site New Castle County, Delaware

Monitoring		Reference		Depth to	Groundwater	Extraction
Point ID	Hydrogeologic Unit	Elevation (feet MSL)	Date	Groundwater (feet BTOIC)	Elevation (feet MSL)	Well Function
DDA Extraction Wells B-4DR	Columbia Aquifer - Columbia Sand	30.15	1/28/2020	NM	NC NC	extracting
BG-1 C-18D C-19D	Columbia Aquifer Columbia Aquifer Columbia Aquifer	24.97 25.41 28.86	1/28/2020 1/28/2020 1/28/2020	NM NM NM	NC NC NC	extracting extracting extracting
C-20D C-2D	Columbia Aquifer Columbia Sand and Basal Gravel	32.16 22.44	1/28/2020 1/28/2020	NM NM	NC NC	extracting extracting
C-30 C-4D	Columbia Aquifer Columbia Aquifer - Columbia Sand and Basal Gravel	25.71 22.74	1/28/2020 1/28/2020	NM NM	NC NC	extracting extracting
DDA Monitoring Wells B-1D	Columbia Aquifer	27.40	1/28/2020	NM	NC	-
B-2D B-3D C-1D	Columbia Aquifer - Columbia Sand and Basal Gravel Columbia Aquifer Columbia Aquifer - Columbia Sand and Basal Gravel	28.60 31.21 22.30	1/28/2020 1/28/2020 1/28/2020	NM NM 23.32	NC NC -1.02	-
C-3D C-5D	Columbia Aquifer Columbia Aquifer Columbia Aquifer	22.66 23.20	1/28/2020 1/28/2020 1/28/2020	23.39 NM	-0.73 NC	
C-6 DDA C-7	Columbia Aquifer Columbia Aquifer	25.32 23.07	1/28/2020 1/28/2020	NM NM	NC NC	-
C-8 C-9	Columbia Aquifer Columbia Aquifer	23.50 24.93	1/28/2020 1/28/2020	NM NM	NC NC	-
C-10 C-12 C-14	Columbia Aquifer Columbia Aquifer Columbia Aquifer	26.43 26.04 25.50	1/28/2020 1/28/2020 1/28/2020	NM NM NM	NC NC NC	
C-15D C-16	Columbia Aquifer Columbia Aquifer	23.53 24.01	1/28/2020 1/28/2020	NM NM	NC NC	-
C-17 C-21D	Columbia Aquifer Columbia Aquifer	24.80 32.42	1/28/2020 1/28/2020	NM NM	NC NC	-
C-22D C-22S	Columbia Aquifer Columbia Aquifer	33.38 34.55	1/28/2020 1/28/2020 1/28/2020	NM NM	NC NC	
C-23 C-24 C-25	Columbia Aquifer Columbia Aquifer Columbia Aquifer Columbia Aquifer	29.70 28.28 30.37	1/28/2020 1/28/2020 1/28/2020	NM NM NM	NC NC NC	
C-27 MHW-1M	Columbia Aquifer Base of Columbia Aquifer	29.25 29.83	1/28/2020 1/28/2020	NM NM	NC NC	
MHW-1S PZ-11-EXT	Columbia Aquifer Columbia Aquifer	29.83 23.27	1/28/2020 1/28/2020	NM 22.32	NC 0.95	-
PZ-11-INT-R PZ-12-EXT PZ-12-INT	Columbia Aquifer Columbia Aquifer Columbia Aquifer	24.28 26.07 24.77	1/28/2020 1/28/2020 1/28/2020	22.31 NM NM	1.97 NC NC	- - -
PZ-2-EXT PZ-2-INT	Columbia Aquifer Columbia Aquifer Columbia Aquifer	25.49 29.53	1/28/2020 1/28/2020 1/28/2020	22.10 NM	3.39 NC	-
PZ-5-EXT PZ-5-INT	Columbia Aquifer Columbia Aquifer	24.18 24.40	1/28/2020 1/28/2020	22.91 24.38	1.27 0.02	-
PZ-6S DDA Monitoring Wells within Partition Area	Columbia Aquifer	28.01	1/28/2020	28.58	-0.57	-
P-4D P-5 P-8D	Columbia Aquifer - UPCU, Columbia Clay, Basal Gravel Columbia Aquifer Columbia Aquifer	25.22 24.30 23.55	1/28/2020 1/28/2020 1/28/2020	22.18 22.25 20.65	3.04 2.05 2.90	-
PZ-3-INT PZ-4-EXT	Columbia Aquifer Columbia Aquifer Columbia Aquifer	21.56	1/28/2020 1/28/2020 1/28/2020	20.94	0.62	-
PZ-4-INT-R PZ-6N	Columbia Aquifer Columbia Aquifer	23.98 24.11 27.55	1/28/2020 1/28/2020	22.60 19.58 25.08	1.38 4.53 2.47	-
DDA to PW-1(U) Monitoring Wells GA-101	Columbia Aquifer	23.65	1/28/2020	22.35	1.30	-
DGC-7C DDA-01	Columbia Aquifer UPA - Upper Sand	29.65 30.92 29.57	1/28/2020 1/28/2020	26.42 29.53 28.59	3.23 1.39	-
DDA-02 DDA-03 DDA-04	UPA - Upper Sand UPA - Upper Sand UPA - Upper Sand	29.57 27.12 31.03	1/28/2020 1/28/2020 1/28/2020	26.37	0.98 0.75 0.17	-
DDA-05 DDA-06	UPCU - Transition Zone UPCU - Transition Zone	28.68 28.14	1/28/2020 1/28/2020	30.86 27.80 27.53	0.88 0.61	-
DDA-07-TZ DDA-07-US	UPCU - Transition Zone UPA - Upper Sand	25.22 25.44	1/28/2020 1/28/2020	23.41 23.86	1.81 1.58	-
DDA-08-TZ DDA-08-US DDA-09-TZ	UPCU - Transition Zone UPA - Upper Sand UPCU - Transition Zone	26.20 24.52 30.86	1/28/2020 1/28/2020 1/28/2020	25.16 23.26 30.82	1.04 1.26 0.04	-
DDA-10-US DDA-11-LS	UPA - Upper Sand UPA - Lower Sand	24.29 31.38	1/28/2020 1/28/2020 1/28/2020	23.50 30.58	0.79 0.80	- - - -
DDA-11-US DDA-12-TZ	UPA - Upper Sand UPCU - Transition Zone	31.53 27.90	1/28/2020 1/28/2020	30.52 27.44	1.01 0.46	-
DDA-12-US DDA-13-TZ	UPA - Upper Sand UPCU - Transition Zone	28.27 29.90	1/28/2020 1/28/2020 1/28/2020	27.99 29.48 29.32	0.28 0.42	-
DDA-14-TZ DDA-15-TZ DDA-15-US	UPCU - Transition Zone UPCU - Transition Zone UPA - Upper Sand	30.32 33.98 34.58	1/28/2020 1/28/2020 1/28/2020	33.05 33.65	1.00 0.93 0.93	
DDA-16-TZ DDA-16-US	UPCU - Transition Zone UPA - Upper Sand	28.59 29.05	1/28/2020 1/28/2020	27.34 27.66	1.25 1.39	-
DDA-17 DGC-2D	UPA - Upper Sand UPA - Lower Sand	29.39 31.51	1/28/2020 1/28/2020	28.63 30.18	0.76 1.33	-
DGC-2S DGC-5 DGC-7S	UPA - Upper Sand UPCU - Transition Zone UPA - Upper Sand	31.90 15.14 29.74	1/28/2020 1/28/2020 1/28/2020	30.21 14.02 29.08	1.69 1.12 0.66	-
MHW-1D MW-45	UPA - Upper Sand UPA - Upper Sand UPA - Upper and Lower Sand	29.74 29.99 25.85	1/28/2020 1/28/2020 1/28/2020	28.89 25.87	1.10 -0.02	-
PW-1(U) PDI WP Wells	UPA - Upper Sand	31.38	1/28/2020	55.58	-24.20	Extrct ~ 17gpm
DDA-05-TZ-EXTR DDA-06-TZ-EXTR	UPCU - Transition Zone UPCU - Transition Zone	28.74 27.91	1/28/2020 1/28/2020	27.79 27.17	0.95 0.74	not operating not operating
DDA-18-TZ DDA-18-US DDA-19-TZ	UPCU - Transition Zone UPA - Upper Sand UPCU - Transition Zone	31.72 31.85 31.19	1/28/2020 1/28/2020 1/28/2020	30.28 30.49 30.98	1.44 1.36 0.21	- - -
DDA-19-US DDA-20-TZ	UPA - Upper Sand UPCU - Transition Zone	31.06 26.15	1/28/2020 1/28/2020	30.85 25.57	0.21 0.58	
DDA-20-US DDA-21-US-EXTR	UPA - Upper Sand UPA - Upper Sand	26.09 28.63	1/28/2020 1/28/2020	25.63 28.01	0.46 0.62	not operating
P-6-US-EXTR UPA-01-US-EXTR UPA-101-LSA	UPA - Upper Sand UPA - Upper Sand UPA - Lower Sand	45.17 35.87 47.01	1/28/2020 1/28/2020 1/28/2020	45.82 39.68 50.19	-0.65 -3.81 -3.18	not operating not operating
UFA-101-LOA		47.01	1/28/2020	50.40	-3.18 -3.13	-
UPA-101-LSB CA-102	UPA - Lower Sand Columbia Aquifer	49.31			5.10	-
UPA-101-LSB CA-102 UPA-102-TZ UPA-102-US	Columbia Aquifer UPCU - Transition Zone UPA - Upper Sand	49.31 50.02 50.40	1/28/2020 1/28/2020 1/28/2020	44.21 50.13 50.53	5.10 -0.12 -0.13	-
UPA-101-LSB CA-102 UPA-102-TZ	Columbia Aquifer UPCU - Transition Zone	49.31 50.02	1/28/2020 1/28/2020	44.21 50.13	5.10 -0.12	

Table 2B **Groundwater Elevation Data - January 2020 Delaware Sand & Gravel Superfund Site New Castle County, Delaware**

Point Of	Function
UPA-104.15	
UPA-105A-TZ	
UPA-1054-15 UPA-1069-15 UPA-1069-16 Size 1 1262000 (3.17) (3.21) UPA-1069-15 UPA-1069-15 UPA-1069-15 UPA-1069-15 UPA-1069-16 UPA-1069-15 UPA-1069-16 U	
UPA-1098-TZ	
UPA-1056-L5	
UPA- (10-17) UPA-	
UPA-106-US	
UPA-109-LS UPA-10we Sand 15-46 1/20/2020 16-31 -0.97 UPA-107-TZ UPCU-Treated norms - 77-98 1/20/2020 15-31 -0.30 UPA-107-TZ UPCU-Treated norms - 77-98 1/20/2020 15-31 -0.30 UPA-108-TZ UPCU-Treated norms - 8-99 1/20/2020 15-35 -0.90 UPA-108-TZ UPCU-Treated norms - 8-99 1/20/2020 15-36 -0.38 UPA-108-TZ UPCU-Treated norms - 8-99 1/20/2020 15-36 -0.34 UPA-108-TZ UPCU-Treated norms - 8-99 1/20/2020 15-30 -0.34 UPA-1108-TZ UPCU-Treated norms - 8-99 1/20/2020 15-30 -0.34 UPA-111-TZ UPCU-Treated norms - 8-99 1/20/2020 15-30 -0.34 UPA-111-TZ UPCU-Treated norms - 8-99 1/20/2020 15-30 -0.34 UPA-112-TZ UPCU-Treated norms - 8-99 1/20/2020 25-30 -0.17 UPA-112-TZ UPCU-Treated norms - 8-99 1/20/2020 25-30 -0.72 UPCU-Treated norm	
UPA-107-172	- - - - - - - -
UPA-107LS	
UPA-108-US	-
UPA-1086-LS UPA - Lower Sand 8.88 (729/2020 9.26 0.38 UPA-1086-LS UPA - Lower Sand 19.83 1728/2020 19.55 0.28 UPA-1086-LS UPA - Lower Sand 23.10 1728/2020 19.55 0.28 UPA-108-LS UPA - Lower Sand 23.10 1728/2020 22.56 0.34 UPA-108-LS UPA - Lower Sand 23.10 1728/2020 22.56 0.34 UPA-108-LS UPA - Lower Sand 19.80 1728/2020 10.30 3.88 UPA-108-LS UPA - Lower Sand 19.30 1728/2020 10.30 3.88 UPA-108-LS UPA - Lower Sand 19.30 1728/2020 10.30 3.88 UPA-108-LS UPA - Lower Sand 19.30 1728/2020 11.76 3.55 UPA-118-LS UPA - Lower Sand 19.30 1728/2020 17.72 3.34 UPA-118-LS UPA - Lower Sand 19.30 1728/2020 7.23 3.41 UPA-118-LS UPA - Lower Sand 19.30 1728/2020 7.23 3.41 UPA-118-LS UPA - Lower Sand 19.30 1728/2020 7.23 3.41 UPA-118-LS UPA - Lower Sand 19.30 1728/2020 7.23 3.41 UPA-118-LS UPA - Lower Sand 19.30 1728/2020 7.23 3.41 UPA-118-LS UPA - Lower Sand 29.10 1728/2020 7.23 3.41 UPA-118-LS UPA - Lower Sand 29.10 1728/2020 7.23 172 NC UPA-118-LS UPA - Lower Sand 28.11 1728/2020 7.23 172 NC UPA-118-LS UPA - Lower Sand 28.11 1728/2020 7.23 172 NC UPA-118-LS UPA - Lower Sand 28.11 1728/2020 7.23 172 NC UPA-118-LS UPA - Lower Sand 28.11 1728/2020 7.23 172 NC UPA-118-LS UPA - Lower Sand 28.11 1728/2020 7.23 172 NC UPA-118-LS UPA - Lower Sand 28.11 1728/2020 7.25 172 NC UPA-118-LS UPA - Lower Sand 48.14 177 1728/2020 7.25 172 NC UPA-118-LS UPA - Lower Sand 48.14 177 1728/2020 7.25 172 NC UPA-118-LS UPA - Lower Sand 48.14 177 1728/2020 7.25 172 NC UPA-118-LS UPA - Lower Sand 48.14 177 1728/2020 7.25 172 NC UPA-118-LS UPA - Lower Sand 48.14 177 1728/2020 7.25 172 NC UPA-118-LS UPA - Lower Sand 48.14 177 1728/2020 7.25 172 NC UPA-118-LS UPA - Lower Sand 48.14 177 1728/2020 7.25 172 NC UPA-118-LS UPA - UP	
UPA-109-USA	
UPA-109L/SB	_
CA-110	
UPA-11CUS	
UPA-111-LSA	_
UPA-111-LSB	_
UPA-112-US	
DPA-112-LS	
DGC-8C Columbia Aquifer 24.57 17.87.020 19.84 4.73	-
DGC-8D	-
DGC-85	-
DGC-10S	
DGC-11D	
RT-1-UP	-
UPA-01	-
UPA-02S	
UPA-03D	
UPA-101-US	
BW-1 UPA - Lower Sand 30.33 1/28/2020 35.13 4.80 BW-2 UPA - Lower Sand 33.70 1/28/2020 38.08 4.38 BW-3 UPA - Lower Sand 6.25 1/28/2020 8.71 -2.46 MW-18 UPA - Upper Sand 6.97 1/28/2020 9.88 -2.91 MW-22N UPA - Upper Sand 51.68 1/28/2020 57.88 -6.20 MW-22NU UPA - Upper Sand 52.19 1/28/2020 57.88 -6.20 MW-26N UPA - Upper Sand 36.76 1/28/2020 57.84 -5.75 MW-26N UPA - Upper and Lower Sand 36.76 1/28/2020 43.85 -7.09 MW-28 UPA - Upper and Lower Sand 20.74 1/28/2020 20.29 0.45 MW-31 UPA - Upper and Lower Sand 13.05 1/28/2020 11.71 1.34 MW-34 UPA - Upper and Lower Sand 7.20 1/28/2020 10.19 -2.99 MW-38N UPA - Upper and Lower Sand 35.55 1/28/20	
BW-2 UPA - Lower Sand 33,70 1/28/2020 36,08 4.38 BW-3 UPA - Lower Sand 6.25 1/28/2020 8.71 2.246 MW-18 UPA - Lower Sand 6.97 1/28/2020 9.88 2.91 MW-22NU UPA - Lower Sand 51.68 1/28/2020 57.88 -6.20 MW-28NU UPA - Upper Sand 52.19 1/28/2020 57.94 -5.75 MW-26N UPA - Upper Sand 36.76 1/28/2020 43.85 -7.09 MW-26N UPA - Upper and Lower Sand 20.74 1/28/2020 43.85 -7.09 MW-28 UPA - Upper and Lower Sand 16.99 1/28/2020 20.29 0.45 MW-31 UPA - Upper and Lower Sand 13.05 1/28/2020 16.29 0.70 MW-34 UPA - Upper and Lower Sand 7.20 1/28/2020 10.19 -2.99 MW-38N UPA - Upper and Lower Sand 35.55 1/28/2020 36.60 -3.05 MW-49N UPA - Lower Sand 51.41 1/28	_
MW-18 UPA - Upper Sand 6.97 1/28/2020 9.88 -2.91 MW-22N UPA - Lower Sand 51.68 1/28/2020 57.88 -6.20 MW-22NU UPA - Upper Sand 52.19 1/28/2020 57.94 -5.75 MW-26N UPA - Upper and Lower Sand 36.76 1/28/2020 43.85 -7.09 MW-28 UPA - Upper and Lower Sand 20.74 1/28/2020 20.29 0.45 MW-29 UPA - Upper and Lower Sand 18.99 1/28/2020 16.29 0.70 MW-31 UPA - Upper and Lower Sand 13.05 1/28/2020 11.71 1.34 MW-34 UPA - Upper and Lower Sand 7.20 1/28/2020 38.60 -3.05 MW-38N UPA - Upper and Lower Sand 35.55 1/28/2020 38.60 -3.05 MW-400 UPA - Lower Sand 36.39 1/28/2020 38.60 -2.07 MW-49N UPA - Upper and Lower Sand 51.41 1/28/2020 38.60 -7.19 P-4 (18) UPA - Upper Sand	
MW-22NU UPA - Lower Sand 51.68 1/28/2020 57.88 -6.20 MW-22NU UPA - Upper Sand 52.19 1/28/2020 57.94 -5.75 MW-26N UPA - Upper and Lower Sand 36.76 1/28/2020 43.85 -7.09 MW-28 UPA - Upper and Lower Sand 20.74 1/28/2020 20.29 0.45 MW-29 UPA - Upper and Lower Sand 16.99 1/28/2020 16.29 0.70 MW-31 UPA - Upper and Lower Sand 13.05 1/28/2020 11.71 1.34 MW-34A UPA - Upper and Lower Sand 7.20 1/28/2020 10.19 -2.99 MW-38N UPA - Upper and Lower Sand 35.55 1/28/2020 38.60 -3.05 MW-40 UPA - Upper and Lower Sand 36.39 1/28/2020 38.46 -2.07 MW-49N UPA - Upper and Lower Sand 51.41 1/28/2020 38.46 -2.07 MP - 4(18) UPA - Upper Sand 51.41 1/28/2020 58.60 -7.19 P-4(18) UPA - Upper Sand<	
MW-28 UPA - Upper and Lower Sand 20.74 1/28/2020 20.29 0.45 MW-29 UPA - Upper and Lower Sand 16.99 1/28/2020 16.29 0.70 MW-31 UPA - Upper and Lower Sand 13.05 1/28/2020 11.71 1.34 MW-34 UPA - Upper and Lower Sand 7.20 1/28/2020 10.19 -2.99 MW-38N UPA - Upper and Lower Sand 35.55 1/28/2020 38.60 -3.05 MW-40 UPA - Lower Sand 36.39 1/28/2020 38.46 -2.07 MW-49N UPA - Upper and Lower Sand 51.41 1/28/2020 58.60 -7.19 P-4 (18) UPA - Upper Sand 48.45 1/28/2020 52.87 4.42 P-4L UPA - Lower Sand 50.16 1/28/2020 54.59 -4.43 P-5U UPA - Lower Sand 23.80 1/28/2020 25.60 -2.50 WL-1U UPA - Upper Sand 47.58 1/28/2020 51.98 -4.40 WL-1L UPA - Lower Sand 47.34	
MW-28 UPA - Upper and Lower Sand 20.74 1/28/2020 20.29 0.45 MW-29 UPA - Upper and Lower Sand 16.99 1/28/2020 16.29 0.70 MW-31 UPA - Upper and Lower Sand 13.05 1/28/2020 11.71 1.34 MW-34 UPA - Upper and Lower Sand 7.20 1/28/2020 10.19 -2.99 MW-38N UPA - Upper and Lower Sand 35.55 1/28/2020 38.60 -3.05 MW-49N UPA - Lower Sand 36.39 1/28/2020 38.46 -2.07 MW-49N UPA - Upper and Lower Sand 51.41 1/28/2020 58.60 -7.19 P-4 (18) UPA - Upper Sand 48.45 1/28/2020 52.87 4.42 P-4L UPA - Lower Sand 50.16 1/28/2020 54.59 -4.43 P-5U UPA - Lower Sand 23.80 1/28/2020 27.89 -4.09 P-5U UPA - Upper Sand 23.10 1/28/2020 55.60 -2.50 WL-1U UPA - Upper Sand 47.58	
MW-31 UPA - Upper and Lower Sand 13.05 1/28/2020 11.71 1.34 MW-34 UPA - Upper and Lower Sand 7.20 1/28/2020 10.19 -2.99 MW-38N UPA - Upper and Lower Sand 35.55 1/28/2020 38.60 -3.05 MW-40 UPA - Lower Sand 36.39 1/28/2020 38.46 -2.07 MW-49N UPA - Upper and Lower Sand 51.41 1/28/2020 58.60 -7.19 P-4 (18) UPA - Upper Sand 48.45 1/28/2020 52.87 -4.42 P-4L UPA - Lower Sand 50.16 1/28/2020 54.59 -4.43 P-5L UPA - Lower Sand 23.80 1/28/2020 27.89 -4.09 P-5U UPA - Upper Sand 23.10 1/28/2020 25.60 -2.50 WL-1U UPA - Upper Sand 47.58 1/28/2020 51.98 -4.40 WL-1L UPA - Lower Sand 47.34 1/28/2020 53.15 -5.81 WL-2U UPA - Lower Sand 53.96 1/28/2020 56.48 -2.52	
MW-34 UPA - Upper and Lower Sand 7.20 1/28/2020 10.19 -2.99 MW-38N UPA - Upper and Lower Sand 35.55 1/28/2020 38.60 -3.05 MW-40 UPA - Lower Sand 36.39 1/28/2020 38.46 -2.07 MW-49N UPA - Upper and Lower Sand 51.41 1/28/2020 58.60 -7.19 P-4 (18) UPA - Upper Sand 48.45 1/28/2020 52.87 -4.42 P-4L UPA - Lower Sand 50.16 1/28/2020 54.59 -4.43 P-5L UPA - Lower Sand 23.80 1/28/2020 27.89 -4.09 P-5U UPA - Upper Sand 23.10 1/28/2020 25.60 -2.50 WL-1U UPA - Upper Sand 47.58 1/28/2020 51.98 -4.40 WL-1L UPA - Lower Sand 47.34 1/28/2020 55.05 -5.81 WL-2U UPA - Upper Sand 53.96 1/28/2020 56.48 -2.52	
MW-40 UPA - Lower Sand 36.39 1/28/2020 38.46 -2.07 MW-49N UPA - Upper and Lower Sand 51.41 1/28/2020 58.60 -7.19 P-4 (18) UPA - Upper Sand 48.45 1/28/2020 52.87 -4.42 P-4L UPA - Lower Sand 50.16 1/28/2020 54.59 -4.43 P-5L UPA - Lower Sand 23.80 1/28/2020 27.89 -4.09 P-5U UPA - Upper Sand 23.10 1/28/2020 25.60 -2.50 WL-1U UPA - Upper Sand 47.58 1/28/2020 51.98 -4.40 WL-1L UPA - Lower Sand 47.34 1/28/2020 53.15 -5.81 WL-2U UPA - Upper Sand 52.44 1/28/2020 55.05 -2.61 WL-2L UPA - Lower Sand 53.96 1/28/2020 56.48 -2.52	
MW-49N UPA - Upper and Lower Sand 51.41 1/28/2020 58.60 -7.19 P-4 (18) UPA - Upper Sand 48.45 1/28/2020 52.87 -4.42 P-4L UPA - Lower Sand 50.16 1/28/2020 54.59 -4.43 P-5L UPA - Lower Sand 23.80 1/28/2020 27.89 -4.09 P-5U UPA - Upper Sand 23.10 1/28/2020 25.60 -2.50 WL-1U UPA - Upper Sand 47.58 1/28/2020 51.98 -4.40 WL-1L UPA - Lower Sand 47.34 1/28/2020 53.15 -5.81 WL-2U UPA - Upper Sand 52.44 1/28/2020 55.05 -2.61 WL-2L UPA - Lower Sand 53.96 1/28/2020 56.48 -2.52	
P-4L UPA - Lower Sand 50.16 1/28/2020 54.59 -4.43 P-5L UPA - Lower Sand 23.80 1/28/2020 27.89 -4.09 P-5U UPA - Upper Sand 23.10 1/28/2020 25.60 -2.50 WL-1U UPA - Upper Sand 47.58 1/28/2020 51.98 -4.40 WL-1L UPA - Lower Sand 47.34 1/28/2020 53.15 -5.81 WL-2U UPA - Upper Sand 52.44 1/28/2020 55.05 -2.61 WL-2L UPA - Lower Sand 53.96 1/28/2020 56.48 -2.52	
P-5L UPA - Lower Sand 23.80 1/28/2020 27.89 -4.09 P-5U UPA - Upper Sand 23.10 1/28/2020 25.60 -2.50 WL-1U UPA - Upper Sand 47.58 1/28/2020 51.98 -4.40 WL-1L UPA - Lower Sand 47.34 1/28/2020 53.15 -5.81 WL-2U UPA - Upper Sand 52.44 1/28/2020 55.05 -2.61 WL-2L UPA - Lower Sand 53.96 1/28/2020 56.48 -2.52	-
WL-1U UPA - Upper Sand 47.58 1/28/2020 51.98 -4.40 WL-1L UPA - Lower Sand 47.34 1/28/2020 53.15 -5.81 WL-2U UPA - Upper Sand 52.44 1/28/2020 55.05 -2.61 WL-2L UPA - Lower Sand 53.96 1/28/2020 56.48 -2.52	
WL-2U UPA - Upper Sand 52.44 1/28/2020 55.05 -2.61 WL-2L UPA - Lower Sand 53.96 1/28/2020 56.48 -2.52	
WL-2L UPA - Lower Sand 53.96 1/28/2020 56.48 -2.52	
P-6_UPA UPA - Upper Sand 43.01 1/28/2020 44.48 -1.47 RW-2 UPA - Upper Sand 6.97 1/28/2020 10.34 -3.37	<u>-</u>
RW-5 UPA - Upper Sand 33.15 1/28/2020 35.20 -2.05	
RW-6 UPA - Upper Sand 14.98 1/28/2020 NM/NC - appears to be partially aband RW-10 UPA - Upper Sand 9.58 1/28/2020 10.11 -0.53	uonea -
AWC Wells	
AWC-E2 UPA - Upper and Lower Sand 34.00 1/28/2020 44.53 -10.53	
AWC-J1 UPA - Upper and Lower Sand 11.58 1/28/2020 23.32 -11.74	
AWC-MW-1 UPA - Lower Sand 10.34 1/28/2020 19.05 -8.71	
AWC-MW-2 UPA - Upper Sand 10.50 1/28/2020 20.86 -10.36 AWC-MW-3 UPA - Lower Sand 9.65 1/28/2020 19.92 -10.27	-
AWC-MW-4 UPA - Lower Sand 12.49 1/28/2020 22.85 -10.36	
AWC-MW-5 UPA - Upper Sand 12.49 1/28/2020 23.56 -11.07 AWC-MW-6 UPA - Lower Sand 18.58 1/28/2020 35.61 -17.03	
AWC-2* UPA - Lower Sand 64.58 1/28/2020 Ex	
AWC-6R* UPA - Upper and Lower Sand - 1/28/2020 These wells are Not Gauged because n AWC-7* UPA - Upper and Lower Sand 47.98 1/28/2020 they are used for potable water supply. Ex	
AWC-G3R* UPA - Upper and Lower Sand 19.70 1/28/2020 Ex	not operating
AWC-ASR* UPA - Lower Sand - 1/28/2020 Not Gauged - Injection ongoing @250 gpm since 1.	not operating ktrct ~255 gpi ktrct ~600 gpi

Notes

(1) MSL = Mean Sea Level

(2) BTOIC = Below Top of Inner Casing (3) DDA = Drum Disposal Area

(4) LFExS = Low-flow Extraction System

(5) NA = Not Available (6) NC = Not Calculated

(7) NM = Not Measured

(8) NCC = New Castle County

(9) UPA = Upper Potomac Aquifer (10) UPCU = Upper Potomac Confining Unit

(11) Survey data provided by Delaware Sand and Gravel Trust.(12) Survey data updated based on 12/5/2012, 12/11/2012, 12/18/2013, and 12/3/2019-12/4/2019 surveys, where available.

(13) * = Water level appears to be erroneous (14) ** = Perched water table (15) AWC = Artesian Water Company

(16) ASR = Aquifer Storage and Recovery
(17) As observed by Delaware Sand & Gravel Trust

(18) Golder replaced the expandable well cap on well P-4_UPA in May 2015. During the March-April 2015 monitoring event, Golder observed that the expandable well cap could not expand to correctly seal the well from water infiltration. Well P-4 is located in a localized topographic low point and, potentially susceptible to surface water infiltration.

Prepared by: ERW

Checked by: KNG

Reviewed by: TAM

Table 3 Groundwater Field Parameter Summary June-November 2019 Delaware Sand Gravel Superfund Site New Castle County, Delaware

Monitoring Point	Note Number Date Sai	npled	Hydrogeologic Unit	Temperature [°C]	pH (std)	Specific Conductance	Dissolved Oxygen (mg/L)	Redox Potential [mV]	Turbidity (ntu)	Volume Purged ⁽¹⁾	Depth to Water ⁽²⁾
DDA Low-Flow Extr	action System Wells					(mS/cm)			· · · · · ·	[liters]	[ft-btoic]
B-4DR	3 10/25/2		Columbia Aquifer - Columbia Sand	15.70	5.93	0.770	0.00	53	36.7	8	-
BG-1 C-18D	3 10/25/3 3 10/25/3		Columbia Aquifer Columbia Aquifer	15.73 16.18	6.82 6.54	0.471 0.450	2.08 0.00	-32 -51	7.4 0.0	8	-
C-19D	3 10/25/2		Columbia Aquifer	16.10	6.69	0.416	0.00	-60	0.0	8	-
C-20D C-2D	3 10/25/3 3 10/25/3		Columbia Aquifer Columbia Aquifer - Columbia Sand and Basal Gravel	15.49 16.40	6.63	0.489 0.355	1.87 0.00	-43 -63	0.0 32.7	8	-
C-30	3 10/25/2		Columbia Aquifer	16.30	6.78	0.400	0.00	-71	0.0	8	
C-4D DDA Monitorina We	3 10/25/ ells within Containment Are		Columbia Aquifer - Columbia Sand and Basal Gravel	16.92	6.84	0.508	0.63	-75	0.0	8	-
B-3D	10/28/	2019	Columbia Aquifer	15.58	6.82	0.409	0.00	-113	0.0	12	32.95
MHW-1M PZ-11-EXT	10/28/3 10/24/3		Base of Columbia Aquifer Columbia Aquifer	16.84 16.18	7.57 6.61	0.586 0.282	1.32 0.00	-151 -121	0.0	12	31.02 24.87
PZ-5-EXT	10/24/		Columbia Aquifer	16.01	6.44	0.243	1.00	-91	0.0	20	24.94
DDA to PW-1(U) Mo GA-101	nitoring Wells 10/9/2	019	Columbia Aquifer	17.07	6.87	0.538	0.00	-49	0.0	10	21.35
DGC-7C	4 10/30/2	2019	Columbia Aquifer	16.79	7.06	0.798	0.96	-125	57.2	12	28.02
DDA-01 DDA-02	10/28/3 10/2/2		UPA - Upper Sand UPA - Upper Sand	14.47 15.63	6.26	0.252 0.268	0.00	-13 -13	0.7 50.0	10 32	31.25 30.02
DDA-03	10/22/	2019	UPA - Upper Sand	15.82	6.25	0.306	0.00	92	0.0	14	27.85
DDA-05 DDA-06	10/28/3 10/22/3		UPCU - Transition Zone UPCU - Transition Zone	16.00 17.16	6.61 8.94	0.223 0.409	0.00	-114 -244	0.0 29.1	10 26	22.75 23.00
DDA-07-TZ	10/23/	2019	UPCU - Transition Zone	15.54	6.78	0.370	1.51	-82	4.4	14	19.98
DDA-07-US DDA-08-TZ	10/23/3 10/23/3		UPA - Upper Sand UPCU - Transition Zone	15.08 16.87	5.93 7.18	0.224 0.314	0.00	-199	0.0 11.2	14	29.19
DDA-10-US	10/23/3		UPA - Upper Sand	15.06	7.16	0.526	0.00	-126	35.6	10	28.80 24.35
DDA-11-LS	10/22/3		UPA - Lower Sand UPCU - Transition Zone	14.15	5.69	0.262	8.40	240	0.0	16	31.90
DDA-12-TZ DDA-12-US	10/21/3 10/21/3		UPCU - Transition Zone UPA - Upper Sand	15.39 14.28	7.56 7.52	0.358 0.294	7.23 6.32	-141 -148	48.1 17.9	26 14	28.02 28.20
DDA-15-TZ	10/28/2	2019	UPCU - Transition Zone	16.05	7.11	0.302	0.00	-173	0.0	12	34.10
DDA-16-TZ DDA-16-US	10/22/3 10/22/3		UPCU - Transition Zone UPA - Upper Sand	15.36 15.00	6.71 6.36	0.359 0.206	0.00	-60 5	17.1 0.0	40 12	28.02 23.00
DDA-18-TZ	10/25/2	2019	UPCU - Transition Zone	18.26	6.20	0.385	0.00	-20	0.0	14	31.82
DDA-18-US DDA-19-TZ	10/25/3 10/24/3		UPA - Upper Sand UPCU - Transition Zone	14.71 15.41	6.81 7.44	0.286 0.324	0.78	-83 -147	40.1 180.0	20 36	32.00 32.59
DDA-19-US	10/25/2	2019	UPA - Upper Sand	16.33	7.37	0.371	0.24	-170	0.4	18	32.38
DDA-20-TZ DDA-20-US	10/29/3 10/29/3		UPCU - Transition Zone UPA - Upper Sand	18.33 15.40	7.15 5.70	0.405 0.198	0.00	-131 29	16.7 0.0	24 14	26.56 27.00
DGC-2S	10/23/2	2019	UPA - Upper Sand	15.11	6.09	0.133	0.80	104	0.0	18	31.60
DGC-5 DGC-5	10/24/3 10/24/3		UPCU - Transition Zone UPCU - Transition Zone	14.11 14.21	6.19 6.20	0.394 0.404	0.00	1 -11	37.2 7.5	14 16	15.43 15.95
DGC-7S	10/30/3		UPCU - Transition Zone	15.94	6.51	0.404	0.00	-93	0.0	12	30.00
MHW-1D MHW-1D	10/28/3 10/28/3		UPA - Upper Sand	14.72	6.50	0.280	0.00	-21	0.0	12	28.02
PW-1(U)	3 10/22/2		UPA - Upper Sand UPA - Upper Sand	14.72 16.95	6.50 6.53	0.280 0.344	0.00 17.34	-21 45	0.0	10 19	30.02
Downgradient DS& DGC-8D	G Monitroing Locations	2040	URA Laura Cand	17.00		0.170	0.00				0100
DGC-85	10/14/3 10/14/3		UPA - Lower Sand UPA - Upper Sand	17.09 16.01	5.64 6.91	0.173 0.656	0.00 0.84	175 -93	0.0 38.2	12	24.90 25.10
DGC-10D	10/7/2		UPA - Lower Sand	20.38	5.57	0.177	0.08	222	0.0	14	49.80
DGC-10S DGC-11D	10/7/2 10/7/2		UPA - Upper Sand UPA - Upper Sand	19.83 15.16	5.87 5.33	0.149 0.183	0.00	138 267	51.4 0.0	38 12	49.16 48.22
DGC-11S	10/7/2		UPA - Upper Sand	16.08	5.75	0.065	0.77	238	0.0	12	47.02
RT-1-UP UPA-01	10/21/3 10/21/3		UPA - Upper Sand UPA - Upper Sand	15.15 18.61	6.09 6.73	0.119 0.000	0.00	49 -84	16.1 39.5	10 48	43.02 42.65
UPA-02D	10/14/2	2019	UPA - Lower Sand	14.14	6.58	0.347	0.27	-53	7.1	26	51.48
UPA-02S UPA-03D	10/14/3 10/14/3		UPA - Upper Sand UPA - Lower Sand	16.19 13.09	5.21 5.68	0.274 0.179	0.32 0.00	188 234	0.0 6.2	20 8	51.70 43.12
UPA-101-LSA	10/18/2	2019	UPA - Lower Sand	16.44	7.79	0.438	0.00	-258	33.2	24	-
UPA-101-LSB CA-102	10/18/3 10/18/3		UPA - Lower Sand Columbia Aquifer	16.61 19.86	6.81 6.39	0.421 0.894	0.00	-88 -33	77.6 20.8	20 14	42.82
UPA-102-TZ	10/18/2	2019	UPCU - Transition Zone	18.33	6.64	0.926	0.00	-90	0.0	14	52.15
UPA-102-US CA-103	10/14/3		UPA - Upper Sand Columbia Aquifer	18.09 17.29	7.24 5.88	0.672 0.237	0.00 1.19	-215 189	0.0 28.7	16 16	52.15 20.70
UPA-103-LS	10/4/2	019	UPA - Lower Sand	16.72	6.04	0.315	0.26	-22	2.0	22	25.90
UPA-103-TZ UPA-103-US	10/4/2 10/7/2		UPCU - Transition Zone UPA - Upper Sand	16.71 17.56	6.13 7.04	0.356 0.421	0.00	-36 -124	9.7 33.7	20 14	27.02 25.70
UPA-104-LS	10/1/2		UPA - Lower Sand	16.01	6.59	0.388	0.00	-202	3.0	10	46.20
UPA-104-TZ UPA-104-US	10/2/2 10/2/2		UPCU - Transition Zone UPA - Upper Sand	20.11	6.01 7.87	0.180 0.317	2.87 0.00	-41 -129	0.0	18 14	44.85 44.75
UPA-105A-LS	10/17/2	2019	UPA - Lower Sand	15.81	6.08	0.282	0.00	174	16.3	18	44.02
UPA-105A-TZ UPA-105A-US	10/1/2 10/18/3		UPCU - Transition Zone UPA - Upper Sand	19.68	6.46	0.125	0.00	-100	239.0	34 20	50.03
UPA-105B-LS	10/1/2		UPA - Lower Sand	15.39 19.58	6.48 12.30	0.178 0.433	1.90 0.00	-48 -144	11.4 33.3	18	40.55
UPA-105B-TZ	10/1/2		UPCU - Transition Zone	20.16	9.93	0.320	0.00	-159	8.0	24	43.42
UPA-105B-US CA-106	9/30/2 10/8/2		UPA - Upper Sand Columbia Aquifer	16.47 17.68	5.34 6.27	0.192 0.955	0.30	198 21	0.0 41.0	14 18	41.02 11.30
UPA-106-LS	10/8/2		UPA - Lower Sand	14.89	7.39	0.451	1.58	-174	40.7	52	18.00
UPA-106-USA UPA-106-USB	10/4/2 10/8/2		UPA - Upper Sand UPA - Upper Sand	16.58 15.73	6.03 7.28	0.395 0.541	0.00 2.01	40 -148	0.5 9.8	16 16	17.15 16.02
UPA-107-LS	10/3/2	019	UPA - Lower Sand	14.86	7.05	0.375	0.05	-159	0.0	16	55.67
UPA-107-TZ UPA-107-US	10/2/2 10/21/3		UPCU - Transition Zone UPA - Upper Sand	19.01 16.93	6.73	0.291	1.26 0.01	-83 -128	45.8 0.0	22 12	54.02 53.20
UPA-108B-LS	10/10/2	2019	UPA - Lower Sand	13.91	7.37	0.526	4.00	-189	57.3	26	12.02
UPA-108B-TZ UPA-108B-US	10/10/2 10/10/2		UPCU - Transition Zone UPA - Upper Sand	14.89 14.75	7.06 7.57	0.547 0.423	0.00	-133 -185	0.0	14	12.10 11.25
UPA-108-C-US	10/16/2		UPA - Upper Sand	15.59	6.94	0.522	0.00	-123	1.5	14	27.10
Downgradient NCC BW-2 (128)	Monitoring Locations 10/11/2	2019	UPA - Lower Sand	15.67	7.03	0.362	1.69	-59	52.9	20	40.05
BW-2 (138)	10/11/3	2019	UPA - Lower Sand	15.72	6.93	0.349	0.76	-57	37.3	14	39.40
MW-18 MW-26N (165)	10/15/3 10/9/2		UPA - Upper Sand UPA - Upper and Lower Sand	14.00 15.09	6.80	0.576 0.289	0.00	-83 118	7.3 0.0	16 12	46.82
MW-26N (128)	10/17/:	2019	UPA - Upper and Lower Sand	15.09	5.77	0.289	3.31	118 242	0.0	16	46.82 45.90
MW-26N (138)	10/17/2	2019	UPA - Upper and Lower Sand	15.54	6.36	0.295	0.00	180	0.0	14	45.90
MW-34 (80) MW-34 (110)	10/15/3 10/15/3		UPA - Upper and Lower Sand UPA - Upper and Lower Sand	13.48 13.67	6.41 6.51	0.240 0.263	0.00 0.20	49 15	62.3 100.0	28 16	12.08 11.96
MW-34 (124)	10/16/2	2019	UPA - Upper and Lower Sand	12.93	6.51	0.259	0.83	14	171.0	34	8.52
P5-L P5-U	10/3/2 10/3/2		UPA - Upper Sand UPA - Upper Sand	15.50 15.79	6.22	0.160 0.767	1.86 3.98	136 174	0.0	14 12	30.38 27.02
P-6	10/8/2		UPA - Upper Sand	16.74	16.74	16.740	16.74	16.74	16.7	10	46.00

February 2020

Project No.: 013-6052

Table 3 Groundwater Field Parameter Summary June-November 2019 Delaware Sand Gravel Superfund Site New Castle County, Delaware

Monitoring Point ID	Note Number Date	Sampled	Hydrogeologic Unit	Temperature [°C]	pH (std)	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Redox Potential [mV]	Turbidity (ntu)	Volume Purged ⁽¹⁾ [liters]	Depth to Water ⁽²⁾ [ft-btoic]
AWC Wells											
AWC-E1 (132)	10/	/28/2019	UPA - Upper Sand	13.71	7.02	0.372	0.00	-2	46.0	16	38.02
AWC-E1 (132)	11	1/7/2019	UPA - Upper Sand	14.25	6.23	0.463	0.91	6	12.7	8	45.00
AWC-E1 (156)	10/	/28/2019	UPA - Upper Sand	13.61	6.64	0.371	0.00	-11	3.1	10	56.20
AWC-E1 (156)	11	1/7/2019	UPA - Upper Sand	14.24	6.25	0.465	0.65	9	22.9	12	45.75
AWC-E2 (140)	10/	/29/2019	UPA - Upper Sand	13.55	6.72	0.320	0.20	-32	2.1	10	39.72
AWC-E2 (140)	11	1/7/2019	UPA - Upper Sand	14.39	6.37	0.304	0.57	-43	0.0	10	39.15
AWC-E2 (165)	10/	/28/2019	UPA - Upper Sand	13.22	6.65	0.356	0.00	-6	0.0	10	39.72
AWC-E2 (165)	11	1/7/2019	UPA - Upper Sand	14.56	6.24	0.392	0.56	19	7.6	14	39.20
AWC-K1	10/	/29/2019	UPA - Lower Sand	12.20	7.12	0.312	0.00	-71	361.0	44	39.20
AWC-2	11	1/7/2019	#N/A	14.98	5.93	0.212	6.55	208	0.7	2	-
AWC-6R	11	1/7/2019	#N/A	15.01	5.84	0.299	5.41	206	0.7	2	-

Prepared by: Checked by: Reviewed by: FRW

Notes:

(1) All wells were purged using the low-flow purging and sampling procedure based upon the USEPA Region II document entitled "Groundwater Sampling Procedure,
Low Stress (Low Flow) Purging and Sampling" dated March 20, 1998 except as noted below.

(2) Depth to water measurements were made prior to purging the wells. These values are not the same as the values measured during the synoptic round of water level measurements.

(3) Wells B.4DR, BG-1, C-2D, C-4D, C-18D, C-19D, C-2DD, C-3D and PW-1(U) are extraction wells that typically run continuously. Wells AWC-6R and AWC-7 are production wells operated by Artesian Water Company that run continuously. The (4) Well DGC-7C was purged and sampled with an HDPE bailer using the conventional 3 well volume method due to insufficient recharge for low flow purging.

Abbreviations:

∵ = Not Measured

AWC = Artesian Water Company

DDA = Drum Disposal Area DDA = Drum Lisposal Area

*C = Degrees Celsius
ft-btoic = Feet Below Top of Inner Casing
mg/L = Milligrams per Liter
mS/cm = Milliscimens per Centimeter
mV = Millivolts mV = Millivotis
NCC = New Castle County
ntu = Nephelometric Turbidity Units
std = Standard Units
TTO = Total Toxic Organics
UPA = Upper Potomac Aquifer
UPCU = Upper Potomac Confining Unit

Table 4 DDA Combined LFExS Mass Removal Estimate Delaware Sand & Gravel Superfund Site New Castle County, Delaware

		Flow F	Rate					ected Concentrations	Mass R	emoved		Ave	rage Mass	Removal R	ate					
Period of Mass Calculation	Days in period	Days of System Operation	Percent Operation	Total Volume for Period	Average Flow Rate ⁽⁹⁾	Adjusted Average Flow Rate ⁽¹⁰⁾	Sample Date	Total VOCs	BCEE	Total VOCs	BCEE	Concentration Note	Total VOCs	BCEE		Total VOCs			BCEE	
			%	Gallons	GPM	GPM		ug/l	ug/l	ug/l	ug/l		lb	lb	lb/day	lb/6-mo	lb/year	lb/day	lb/6-mo	lb/year
			1000/				5/26/2009	455.4	280			Startup date 5/4/2009								
5/4/2009 - 10/31/2009	180	180	100%	629,891	2.43	2.43	10/15/2009	166.1	53	311	167	Average of 5/26/2009 and 10/15/2009 values	1.63	0.88	9.07E-03	1.66	3.31	4.87E-03	0.89	1.78
					2.43	2.43	10/15/2009	100.1	33	311	107	Average of 10/15/2009 and 4/14/2010	1.03	0.00	9.07E-03	1.00	3.31	4.07 E-U3	0.09	1.70
11/1/2009 - 4/30/2010	180	180	100%	768,957	2.97	2.97	4/14/2010	225.1		196	27	values	1.26	0.17	6.98E-03	1.27	2.55	9.62E-04	0.18	0.35
				,								Average of 4/14/2010 and 10/11/2010								
5/1/2010 - 10/31/2010	183	183	100%	1,280,274	4.86	4.86	10/11/2010	635.3	20	430.0	10	values	4.59	0.11	2.51E-02	4.58	9.15	5.83E-04	0.11	0.21
												Average of 10/11/2010 and 4/4/2011								
11/1/2010 - 4/30/2011	180	176	98%	1,292,178	4.99	5.10	4/4/2011	287.3	20	461	20	values	4.97	0.22	2.76E-02	5.04	10.07	1.20E-03	0.22	0.44
E/4/0044 10/21/2011	100	400	1000/	1 744 050		0.04	10/6/2014	450.0	15	300	1.0	Average of 4/4/2011 and 10/6/2011 values	5 20	0.20	2 02 5 02	5 24	40.00	4 425 02	0.26	0.50
5/1/2011 - 10/31/2011	183	183	100%	1,741,056	6.61	6.61	10/6/2011	450.0	15	369	18	Average of 10/6/2011 and 4/2/12	5.36	0.26	2.93E-02	5.34	10.68	1.43E-03	0.26	0.52
11/1/2011 - 4/30/2012	181	177	98%	1,993,749	7.65	7.82	4/2/2012	324.3	13	387	14	values	6.43	0.23	3.55E-02	6.49	12.97	1.29E-03	0.23	0.47
77772917	101	,,,,	1 0070	1,000,110	1.00	7.02	1,2,20,12	021.0	1	+	<u> </u>		+ 0.10	0.20	0.552 52	0.70	12.01	1.202.00	0.20	
5/1/2012 - 10/31/2012	183	183	100%	1,796,158	6.82	6.82	10/8/2012	128.6	7.0	226	10	Average of 4/2/12 and 10/8/12 values	3.38	0.15	1.85E-02	3.38	6.75	8.18E-04	0.15	0.30
												Average of 10/8/12 and 3/18/13								
11/1/2012 - 4/30/2013	180	179	99%	2,397,889	9.25	9.30	3/18/2013	221.4	9.5	175	8.0	values		0.16	1.94E-02	3.55	7.09	8.88E-04	0.16	0.32
51410040 40/04/0040	400	400	900/	0.500.400		40.0	0.000.000.00		,,		40	Average of 3/18/13 and 9/30/13				4.07	0.74	4 405 00		0.50
5/1/2013 - 10/31/2013	183	180	98%	2,592,490	9.84	10.0	9/30/2013	230.0	14	226	12	values Average of 9/30/13 and 3/24/14		0.26	2.67E-02	4.87	9.74	1.42E-03	0.26	0.52
11/1/2013 - 4/30/2014	180	179	99%	2,340,780	8.98	9.03	3/24/2014	170.5	9.7	200	12	values	3.91	0.23	2.17E-02	3.97	7.94	1.29E-03	0.24	0.47
11/1/2010 1/00/2011	100	,,,,	1 00 70	2,040,100	0.00	0.00	0/24/2014	110.0	0.1	1 200	12	Average of 3/24/14 and 9/30/14	- 0.01	0.20	2.112 02	0.01	7.04	1.202 00	0.27	0.71
5/1/2014 - 10/31/2014	183	182	99%	2,639,447	10.08	10.14	9/30/2014	119.4	13	145	11	values	3.19	0.25	1.74E-02	3.19	6.37	1.37E-03	0.25	0.50
												Average of 9/30/14 and 3/30/15-								
11/1/2014 - 4/30/2015	180	180	100%	2,379,788	9.13	9.13	3/30/2015	103.1	20	111	17	4/2/15 values (note 12)	2.21	0.33	1.23E-02	2.24	4.48	1.82E-03	0.34	0.66
T							0,00,0045				١	Average of 3/30/15-4/2/15 (note 12)								
5/1/2015 - 10/31/2015	183	182	99%	2,486,638	9.38	9.44	9/28/2015	99.1	27	101	24	and 9/30/15 values Average of 9/28/15 and 3/30/2016	2.10	0.49	1.15E-02	2.09	4.19	2.66E-03	0.49	0.97
11/1/2015 - 4/30/2016	181	180	99%	1,916,462	7.31	7.35	4/7/2016	135.6	26	117	27	values	1.88	0.42	1.04E-02	1.89	3.79	2.34E-03	0.43	0.85
11/1/2010 1/00/2010	101	100	1 3070	1,010,402	7.01	1.00	1772010	100.0	20	 '''		Average of 4/7/2016 and 9/30/2016	1.00	0.42	1.042 02	1.00	0.70	2.042 00	0.40	0.00
5/1/2016 - 10/31/2016	183	182	99%	2,282,164	8.61	8.66	9/30/2016	181.6	19	159	23	values	3.02	0.43	1.65E-02	3.02	6.03	2.34E-03	0.43	0.85
												Average of 9/30/2016 and 3/27/2017								
11/1/2016 - 4/30/2017	180	180	100%	1,722,069	6.61	6.61	3/27/2017	295.8	14	239	17	values	3.43	0.24	1.91E-02	3.48	6.96	1.32E-03	0.25	0.48
40/04/00/7							10/0/0017					Average of 3/27/2017 and 10/9/2017								
5/1/2017 - 10/31/2017	183	182	99%	2,760,164	10.42	10.48	10/9/2017	116.0	23	206	19	values	4.74	0.43	2.59E-02	4.73	9.47	2.33E-03	0.43	0.85
11/1/2017 - 4/30/2018	180	178	99%	2.454.085	9.42	9.52	4/12/2018	99.6	17	108	20	Average of 10/9/2017 and 4/12/2018 values	2.21	0.41	1.23E-02	2.24	4.48	2.28E-03	0.42	0.83
17/1/2017 - 4/00/2010	+	110	3370	2,434,000	0.72	5.52	17 12/2010	33.0	1,	+ 100		Average of 4/12/2018 and 10/8/2018		 	1.232-02	2.27	7,70	2.200-00	0.72	0.00
5/1/2018 - 10/31/2018	183	180	98%	2,678,397	10.11	10.28	10/8/2018	211.3	14	155	16	values	3.47	0.35	1.90E-02	3.47	6.94	1.89E-03	0.35	0.69
												Average of 10/8/2018 and 5/13/2019								
11/1/2018 - 4/30/2019	180	180	100%	2,263,303	8.68	8.68	5/13/2019	133.1	13	172	14	values	3.25	0.25	1.81E-02	3.30	6.60	1.42E-03	0.26	0.52
51410040 4010410040	100	400	0001	0.007.107	44.55	44.5-	40/00/0040		_		,-	Average of 5/13/2019 and 10/28/2019			0.00= 0=	,	0.00		0.05	
5/1/2019 - 10/31/2019	183	180	98%	2,937,408	11.09	11.27	10/28/2019	5.5	7	69	10	values	1.70	0.25	9.28E-03	1.69	3.39	1.34E-03	0.25	0.49

NOTES

(1) The low flow extraction system (LFExS) began operation on May 4, 2009

(2) Analytical results used in the mass removal calculation are based on unvalidated effluent data for the total toxic organics sample and do not include tentatively identified compounds (TICs)

(3) Flow volume and average values based on totalizer volume spreadsheet provided by DS&G Remedial Trust

(4) ug/l = micrograms per liter

(5) lb = pound

(6) GPM = gallons per minute

(7) VOCs = volatile organic compounds

(8) BCEE = bis(2-chloroethyl)ether

- (9) Average flow rate represents system discharge rate to sewer
- (10) Adjusted average flow rate represents system flow for periods of system operation, excluding down-time
- (11) Total VOCs based on 624 analysis that does not include 1,4-dioxane
- (12) Primary sample collected on March 30, 2015 and re-sampled for SVOC analysis on April 2, 2015

Prepared by: AMH
Checked by: BPC
Reviewed by: TAM

Table 5 Individual LFExS Well Mass Removal Estimate Delaware Sand & Gravel Superfund Site New Castle County, Delaware

A	vg Flow		(hide)						Total Detected VOC Concentration	Total Detected VOC Concentration			Adjusted TVOC	Adjusted TVOC Mass Removal	Adjusted 1,4-Dioxane	Adjusted	Adjusted TVOC Mass Removal	Adjusted TVOC	Adjusted	Adjusted			
F	prior to	D in	Days	Days of	Percent	Adjusted		CI-	(Revised analyte	(Historical	1,4-Dioxane	BCEE	Mass Removal	(Historical	Mass	BCEE Mass	(Revised	Mass Removal	Mass	BCEE Mass		BCEE Mass	1,4-Dioxane
	sample (GPM)	Days in Period	System Down	System Operation	Operation (%)	Flow Rate (GPM)	Average Flow Period	Sample Date	list) (ug/l)	analyte list) (ug/l)	Concentration (ug/l)	Concentration (ug/l)	(Revised analyte list) (lb/day)	analyte list) (lb/day)	Removal (lb/day)	Removal (lb/day)	analyte list) (lb/year)	(Historical analyte list) (lb/year)	Removal (lb/year)	Removal (lb/year)	Removal (% of Total)	Removal (% of Total)	Mass Removal (% of Total)
_	through	10/31/2009		,	,								, , , , , ,		, ,,								
B4D	0.94	180	0	180 180	100% 100%	0.94		7/10/2009 7/10/2009	NA NA	224 199	1	500 29				5.64E-03 2.99E-04	NA NA			-		63% 3%	NA NA
C2D C4D	1.02	180 180	0	180	100%	0.86 1.02	-	7/10/2009	NA NA	49		140				1.71E-03	NA NA					19%	NA NA
C18D	0.59	180	0	180	100%	0.59		7/10/2009	NA	1884		63	NA NA			4.46E-04	NA					5%	NA
C19D BG-1	0.86	180 180	0	180 180	100% 100%	0.86	05/06/09 - 06/15/09 05/06/09 - 06/15/09	7/10/2009 7/10/2009	NA NA	46 1649		30 90	NA NA			3.10E-04 5.29E-04	NA NA	<u> </u>				3% 6%	NA NA
TOTAL=	4.76	100	0	100	10070	0.43	03/00/09 - 00/13/09	1110/2009	IVA	1049	IVA	TOTAL		2.87E-02		8.94E-03	NA NA					100%	NA NA
11/1/2009 t	through	4/30/2010																					
B4D	0.62	180	0	180	100%	0.62	03/31/10 - 04/12/10		NA	280		51				3.80E-04	NA		 	+		27%	NA
C2D C4D	0.39	180 180	0	180 180	100% 100%	0.39 0.81	03/31/10 - 04/12/10 03/31/10 - 04/12/10	4/14/2010	NA NA	35 207		14 46				6.55E-05 4.47E-04	NA NA			<u> </u>		5%	NA NA
C18D	0.75	180	0	180	100%	0.75		4/14/2010	NA	4371		46				4.14E-04	NA NA		 			30%	NA NA
C19D	1.02	180	0	180	100%	1.02		4/14/2010	NA	40	 	7				8.57E-05	NA		1	-		6%	NA
BG-1 TOTAL=	0 3.59	180	14	166	92%	0.00	03/31/10 - 04/12/10	4/14/2010	NA	561	NA.	22 TOTAL:		0.00E+00 4.41E-02		0.00E+00 1.39E-03	NA NA		1		P0000000000000000000000000000000000000	0% 100%	NA
	through	10/31/2010												77712 02			10		147	0.00	10070	10070	
B4D	0.05	183	69	114	62%	0.03	12/02/10 - 12/16/2010	12/16/2010	NA	402	NA	140	NA	1.50E-04		5.24E-05	NA	0.05	NA	0.02		6%	NA
C2D	0.85	183	8	175	96%	0.81	12/02/10 - 12/16/2010		NA	65		6.3				6.15E-05	NA		 			7%	NA
C4D C18D	1.00	183 183	25 73	158 110	86% 60%	0.86 0.66	12/02/10 - 12/16/2010 12/02/10 - 12/16/2010		NA NA	106 5198	1	29 46				3.01E-04 3.62E-04	NA NA	1	1			33% 40%	NA NA
C19D	0.06	183	27	156	85%	0.05	12/02/10 - 12/16/2010		NA	20		9.3	NA NA			5.71E-06	NA NA				***************************************	194	NA NA
C30	0.06	183	18	165	90%	0.05	12/02/10 - 12/16/2010		NA	4124		11				7.14E-06	NA					19%	NA
BG-1 TOTAL=	0.40 3.51	183	0	183	100%	0.40	12/02/10 - 12/16/2010	12/16/2010	NA	1578	NA NA	23 TOTAL:		7.58E-03 5.30E-02		1.10E-04 9.00E-04	NA NA	2.77 19.30		0.04		12% 100%	NA NA
	through	4/30/2011										10772		0.002-02		0.002-04		10.00		0.00	10070	10076	
B4D	0.61	180	16	164	91%	0.56	3/21/2011 - 4/7/2011	4/6/2011	NA	397	NA	74	NA	2.65E-03		4.94E-04	NA	0.97	NA	0.18	8%		NA
C2D	0.54	180	4	176	98%	0.53	3/21/2011 - 4/7/2011	4/6/2011	NA	111		2.7	NA			1.71E-05	NA			*		2%	NA
C4D C18D	0.57	180 180	9 19	171 161	95% 89%	0.54 0.56	3/21/2011 - 4/7/2011 3/21/2011 - 4/7/2011	4/6/2011 4/6/2011	NA NA	602 1996	 	26 21				1.69E-04 1.42E-04	NA NA					15% 13%	NA NA
C19D	0.57	180	38	142	79%	0.45	3/21/2011 - 4/7/2011	4/6/2011	NA NA	8.77	 	9.2				4.97E-05	NA NA					5%	NA NA
C30	0.70	180	13	167	93%	0.65	3/21/2011 - 4/7/2011	4/6/2011	NA	827		9.1	NA	6.45E-03		7.10E-05	NA			0.03	19%	6%	NA
BG-1 TOTAL=	1.30 4.92	180	14	166	92%	1.20	3/21/2011 - 4/7/2011	4/6/2011	NA	492	NA	11 TOTAL:		7.09E-03 3.44E-02		1.58E-04 1.10E-03	NA	2.59 11.58		0.06 0.23		14% 100%	NA
	through	10/31/2011										10,42	-	3.44L-02		1.102-00		11.50		0.23	10078	10078	
	1.11	183	59	124	68%	0.75	9/22/2011 - 10/6/2011	10/5/2011	NA	676	NA.	32	NA NA	6.10E-03		2.89E-04	NA	2.23	NA	0.11	17%		NA
C2D	1.01	183	0	183	100%	1.01	9/22/2011 - 10/6/2011	10/5/2011	NA	59	NA	2.9	NA	7.21E-04		3.52E-05	NA	0.26	NA		2%	3%	NA
C4D	0.95	183	25	158	86%	0.82		10/5/2011	NA NA	480		21				2.07E-04	NA NA			-		20%	NA NA
C18D C19D	1.08	183 183	38	145 183	79% 100%	0.86 1.14	9/22/2011 - 10/6/2011 9/22/2011 - 10/6/2011	10/5/2011 10/5/2011	NA NA	1507 21	 	8.1	NA NA			1.44E-04 1.11E-04	NA NA					14% 11%	NA NA
C30	1.27	183	0	183	100%	1.27	9/22/2011 - 10/6/2011	10/5/2011	NA	438	NA	7.9	NA	6.69E-03		1.20E-04	NA	2.44	NA	0.04	19%	12%	NA
BG-1 TOTAL=	1.06 7.62	183	8	175	96%	1.01	7/1/2011 - 9/6/2011	10/3/2011	NA	91	NA NA	8.5 TOTAL:	_	1.11E-03 3.51E-02		1.03E-04 1.01E-03	NA	0.40	ļ	0.04 0.26		10% 100%	NA
		4/20/2042										TOTAL	-	3.51E-02		1.012-03		10.56		0.26	100%	100%	
11/1/2011 t B4DR	through 0.17	4/30/2012 181	34	147	81%	0.14	3/15/12 - 4/12/12	4/2/2012	1935	NA	810	14	3.30E-03	B NA	1.38E-03	2.38E-05	1.20	NA.	0.50	0.01	6%	2%	10%
C2D	1.21	181	4	177	98%	1.19	3/12/12 - 4/12/12	4/2/2012	84	NA	0	3.4	1.20E-03	NA NA	0.00E+00	4.84E-05	0.44	NA	0.00	0.02	2%	4%	0%
C4D	1.00	181	4	177	98%	0.97	3/12/12 - 4/12/12	4/2/2012	1222	NA NA		25					5.22		 			27%	11%
C18D C19D	1.29 0.93	181 181	22	177 159	98% 88%	1.27 0.82	3/12/12 - 4/12/12 3/12/12 - 4/12/12	4/2/2012 4/2/2012	1122	NA NA	 	24 8.6					6.22 1.02					34% 8%	14% 20%
C30	0.98	181	4	177	98%	0.96	3/12/12 - 4/12/12	4/2/2012	779	NA	360	9.8	8.99E-03	NA NA			3.28					10%	
	1.49	181	34	147	81%	1.21	3/12/12 - 4/12/12	4/3/2012	347	NA	120	11	_				1.84				***************************************	15%	13%
	7.08	40/04/0040										TOTAL	5.27E-02	1	1.33E-02	1.09E-03	19.22		4.85	0.39	100%	100%	100%
5/1/2012 t B4DR	0.10	10/31/2012 183	61	122	67%	0.07	8/30/2012 - 10/1/2012	10/2/2012	1766	NA	770	22	1.48E-03	NA	6.45E-04	1.84E-05	0.54	NA NA	0.24	0.01	4%	2%	6%
C2D	1.15	183	53	130	71%	0.82	9/10/2012 - 10/1/2012	10/2/2012	39	NA NA		3.0					0.14	<u> </u>				2%	0%
	0.84	183	7	176	96%	0.81	8/30/2012 - 10/1/2012		680	NA	-	47					2.41				***************************************	379	21%
	0.62	183 183	8	183 175	100% 96%	0.62 0.63	9/24/2012 - 10/1/2012 9/10/2012 - 10/1/2012		1371 259	NA NA		26 14			6.65E-04 1.74E-03		3.74 0.72					16% 9%	6% 16%
C20D	NA NA	NA	NA NA	NA NA	NA	NA	NA	10/2/2012	309	NA NA		7.5				NA	NA NA	 		 		NA	NA
C30	1.05	183	7	176	96%	1.01	9/10/2012 - 10/1/2012	10/2/2012	743	NA	240	9.2	9.01E-03	NA NA	2.91E-03	1.12E-04	3.29	NA	1.06	0.04	24%	9%	28.9
-	2.13	183	0	183	100%	2.13	9/27/2012 - 10/1/2012	10/2/2012	306	NA	110	12			2.82E-03		2.86		1.03 4.06			25%	25%
TOTAL=	0.50		L	L							L	TOTAL:	= 3.75E-02	•	1.11E-02	1.22E-03	13.70		4.06	0.44	100%	100%	100%

Table 5 Individual LFExS Well Mass Removal Estimate Delaware Sand & Gravel Superfund Site New Castle County, Delaware

Well	Avg Flow prior to sample (GPM)	Days in Period	(hide) Days System Down	Days of System Operation	Percent Operation (%)	Adjusted Flow Rate (GPM)	Average Flow Period	Sample Date	Total Detected VOC Concentration (Revised analyte list) (ug/l)	Total Detected VOC Concentration (Historical analyte list) (ug/l)	1,4-Dioxane Concentration (ug/l)	BCEE Concentration (ug/l)	Adjusted TVOC Mass Removal (Revised analyte list) (lb/day)	Adjusted TVOC Mass Removal (Historical analyte list) (lb/day)	Adjusted 1,4-Dioxane Mass Removal (Ib/day)	Adjusted BCEE Mass Removal (lb/day)	Adjusted TVOC Mass Removal (Revised analyte list) (lb/year)	Adjusted TVOC Mass Removal (Historical analyte list) (lb/year)	Adjusted 1,4-Dioxane Mass Removal (Ib/year)	Adjusted BCEE Mass Removal (Ib/year)	TVOC Mass Removal (% of Total)	BCEE Mass Removal (% of Total)	1,4-Dioxane Mass Removal (% of Total)
11/1/2012 B4DR	through 0.27	4/30/2013 180	109	71	39%	0.11	3/4/2013 - 3/18/2013	3/19/2013	1554.30	NA	300	22	1.99E-03	NA	3.84E-04	2.81E-05	0.73	NA	0.14	0.01	3.9	2%	2%
C2D	1.36	180	0	180	100%	1.36		3/19/2013	136.14	NA	-	2.7		NA NA		4.41E-05	0.81	NA	0.33	0.02	 	3%	4%
C4D	1.15	180	0	180	100%	1.15		3/19/2013	1020.46	NA		15				2.07E-04	5.14	NA	0.50	0.08	l	16%	7%
C18D	1.00	180	0	180	100%	1.00	3/4/2013 - 3/18/2013		1422.60	NA NA		20	1.71E-02				6.23	NA NA	0.48	0.09		19%	6%
C19D C20D	1.35 2.55	180 180	13	180	100% 93%	1.35 2.37	3/4/2013 - 3/18/2013 3/4/2013 - 3/18/2013		181.53 169.88	NA NA		8.0 5.1	2.94E-03 4.83E-03			1.30E-04 1.45E-04	1.07	NA NA	0.95 1.66	0.05 0.05		10% 11%	13% 22%
C30	1.75	180	0	180	100%	1.75		3/19/2013	729.42	NA NA		8.6			6.51E-03	1.81E-04	5.59	NA	2.38	0.07		14%	220
BG-1	0.76	180	22	158	88%	0.67	3/4/2013 - 3/18/2013	3/19/2013	694.29	NA	380	38				3.04E-04	2.03	NA		0.11		24%	15%
TOTAL=		10/31/2013	<u> </u>									TOTAL	6.40E-02		2.07E-02	1.28E-03	23.36		7.55	0.48	100%	100%	100%
5/1/2013 B4DR	through 0.32	183	44	139	76%	0.25	9/16/2013 - 10/3/2013	10/4/2013	1873.09	NA NA	580	51	5.52E-03	NA	1.71E-03	1.50E-04	2.01	NA NA	0.62	0.05	10%	12%	8%
C2D	1.08	183	0	183	100%	1.08			119.39	NA NA		3.2					0.57	NA	0.25	0.02		3%	3%
C4D	0.95	183	4	179	98%	0.93	9/16/2013 - 10/3/2013		1062.31	NA		20					4.33	NA	0.36	0.08		18%	5%
C18D	1.07	183	42	141	77%	0.83	-		1830.45 539.76	NA NA		28 9.8				2.78E-04	6.64	NA NA	0.76			224	10%
C19D C20D	1.24 2.49	183 183	10	173 156	95% 85%	1.17 2.12	9/16/2013 - 10/3/2013 9/19/2013 - 10/7/2013	10/4/2013	262.47	NA NA		7.5	7.58E-03 6.69E-03	NA NA	7.31E-03 6.37E-03	1.38E-04 1.91E-04	2.77	NA NA	2.67 2.32	0.05 0.07	 	11% 15%	30%
C30	0.09	183	6	177	97%	0.09	9/3/2013 - 10/3/2013	10/4/2013	1136.02	NA		15	1.17E-03	NA NA		1.54E-05	0.43	NA	0.08	0.01		196	1%
BG-1	1.05	183	12	171	93%	0.98	9/19/2013 - 10/7/2013	10/7/2013	344.97	NA	140	17				2.00E-04	1.48	NA	0.60	0.07		16%	8%
TOTAL=	8.29	4/30/2014										TOTAL:	5.66E-02		2.10E-02	1.24E-03	20.67		7.66	0.45	100%	100%	100%
11/1/2013 B4DR	through 0.00	180	155	25	14%	NA	10/3/2013 - 3/27/2014	NS	NA	NA	NA	NA	NA	NA		NA	NA	NA	0.00	NA	NA NA	NA	O%
C2D	0.62	180	9	171	95%	0.59		3/25/2014	88.46	NA		2.3	6.29E-04		1.71E-04		0.23	NA	0.06	0.01	190	3%	1%
C4D	0.99	180	9	171	95%	0.94		3/28/2014	1074.65	NA		0.19	1.22E-02			2.15E-06	4.44	NA	0.28	0.00		0%	4%
C18D C19D	1.04	180	9 13	171	95% 93%	0.99	3/10/2014 - 3/27/2014 3/10/2014 - 3/27/2014		2536.12 193.20	NA NA	1	9.3		NA NA		2.61E-04 1.04E-04	10.98	NA NA	0.30 0.74	0.10 0.04		16%	5% 11%
C20D	3.02	180 180	28	152	84%	0.93 2.55	3/10/2014 - 3/27/2014		330.50	NA NA		4.3	1.01E-02			1.04E-04 1.31E-04	3.69	NA NA		0.04		21%	54%
C30	0.97	180	23	157	87%	0.84	3/10/2014 - 3/27/2014		1208.54	NA		7.3				7.40E-05	4.47	NA		0.03		12%	22%
BG-1	0.68	180	64	116	64%	0.44	3/10/2014 - 3/27/2014	3/28/2014	266.09	NA	91	9.3	1.39E-03			4.86E-05	0.51	NA		0.02		8%	3%
TOTAL= 5/1/2014	8.32 through	10/31/2014										TOTAL:	6.88E-02		1.80E-02	6.38E-04	25.11		6.56	0.25	100%	100%	100%
84DR	0.15	183	92	91	50%	0.08	9/15/2014-10/13/2014	10/13/2014	2916.21	NA	1100	85	2.66E-03	NA	1.00E-03	7.77E-05	0.97	NA	0.37	0.03	4%	6%	3%
C2D	1.57	183	0	183	100%	1.57	9/29/2014-10/13/2014		116.43	NA		1.8	+	NA		3.40E-05	0.80	NA	0.61	0.01		3%	6%
C4D	0.39	183	38	145	79%	0.31	8/4/2014-10/13/2014		438.10	NA		42				1.55E-04	0.59	NA	0.23	0.06	l	13%	2%
C18D C19D	0.75 1.43	183 183	10	173	95% 100%	0.70 1.43	9/29/2014-10/13/2014 9/29/2014-10/13/2014		975.24 233.60	NA NA	·	29 6.4					3.01	NA NA	0.29 1.38	0.09	·····	21% 9%	3% 13%
C20D	3.31	183	2	181	99%	3.27	9/29/2014-10/13/2014		662.24	NA NA		7.2					9.50	NA NA			 	24%	10.0
C30	1.44	183	0	183	100%	1.44	9/29/2014-10/13/2014	10/13/2014	869.36	NA		11	1.51E-02	NA	3.81E-03	1.91E-04	5.50	NA	1.39	0.07		16%	13%
BG-1	0.98	183	18	165	90%	0.88	9/29/2014-10/13/2014	10/14/2014	329.29	NA	190	9.4	_			9.97E-05	1.27	NA		0.04		8%	7%
TOTAL= 11/1/2014	10.03 through	4/30/2015										TOTAL	6.33E-02		3.02E-02	1.20E-03	23.11		11.03	0.44	100%	100%	100%
B4DR	0.23	180	31	146	81%	0.19	1/22/15-3/26/15	3/30/2015	1341.00	NA	110	210	3.00E-03	NA	2.46E-04	4.69E-04	1.09	NA	0.09	0.17	3%	28%	-
C2D	1.16	180	0	180	100%	1.16	3/12/15-3/26/15	3/30/2015	67.77	NA		2	9.42E-04	NA	2.64E-04	2.78E-05	0.34	NA	0.10	0.01		2%	196
C4D	0.90	180	0	180	100%	0.90	3/12/15-3/26/15	3/30/2015	1293.67	NA		31	_				5.09	NA	0.21	0.12	 	20%	2%
C18D C19D	1.19 1.04	180 180	0	180 180	100% 100%	1.19	3/12/15-3/26/15 3/12/15-3/26/15	3/30/2015 3/30/2015	3052.27 169.14	NA NA		7.8	4.34E-02 2.12E-03			2.99E-04 9.78E-05	15.85 0.77	NA NA	0.40 0.73	0.11 0.04		18% 6%	4% 6%
C20D	3.38	180	0	180	100%	3.38	3/12/15-3/26/15	3/30/2015	423.20	NA NA	+	5.2	1.72E-02				6.26	NA NA	5.92	0.04	 	13%	63%
C30	1.13	180	0	180	100%	1.13	3/12/15-3/26/15	3/30/2015	892.53	NA		8.6	1.21E-02		4.48E-03	1.17E-04	4.42	NA			- Reconstruction of the second	7%	17%
BG-1 TOTAL=	0.61 9.63	180	10	170	94%	0.57	3/12/15-3/26/15	3/30/2015	329.82	NA	140	16 TOTAL:				1.10E-04 1.66E-03	0.83 34.65	NA	0.35 9.43	0.04 0.61		7% 100%	4% 100%
5/1/2015	through	10/31/2015		-								IO IAL-	3.43E-02		4.50E*04	1.000-03	34.63		9.40	0.01	100 /6	100/6	100/6
B4DR	0.14	183	0	183	100%	0.14	7/20/15-9/21/15	9/30/2015	2099.39	NA	82	95	3.52E-03	NA	1.37E-04	1.59E-04	1.28	NA	0.05	0.06	5%		
C2D	0.86	183	0	183	100%	0.86	9/08/15-9/21/15	9/30/2015	28.28	NA		1.4					0.11	NA	0.05		I	2%	199
C4D C18D	1.25 0.72	183 183	7	176	96% 100%	1.20 0.72	9/08/15-9/21/15 9/08/15-9/21/15	9/30/2015 9/30/2015	167.13 3498.40	NA NA		6.4	2.40E-03 3.02E-02				0.88	NA NA	0.68 0.22	0.03	 	10% 17%	7% 2%
C19D	0.72	183	0	183	100%	0.72	9/08/15-9/21/15	9/30/2015	131.23	NA NA	1	5.2	+				0.54	NA NA				6%	5%
C20D	3.33	183	3	180	98%	3.28	9/08/15-9/21/15	9/30/2015	376.76	NA		5.9	1.48E-02	NA	1.42E-02	2.32E-04	5.41	NA	5.17	0.08	21%	26%	55%
C30	1.29	183	26	157	86%	1.11	9/08/15-9/21/15	9/30/2015	731.10	NA NA		10					3.55	NA NA			ļ -	15%	16%
BG-1 TOTAL=	0.54 9.06	183	3	180	98%	0.53	9/08/15-9/21/15	9/30/2015	1132.90	NA	510	10 TOTAL :	7.22E-03 6.97E-02		3.25E-03 2.58E-02		2.64 25.45	NA	1.19 9.40	0.02 0.33		7% 100%	13% 100%
11/1/2015	through	4/30/2016										.0,40	0.01 L-02		a.vvh."V&	*.00m*04	20.40		9.40	0.00	10076	100/0	.0070
B4DR	0.05	181	0	106	59%	0.03	3/24/16-4/7/16	4/7/2016	429.48	NA	41	180	1.51E-04	NA	1.44E-05	6.33E-05	0.06	NA	0.01	0.02	0%	2%	0%
C2D	1.22	181	0	181	100%	1.22	3/24/16-4/7/16	4/7/2016	25.61	NA		2.3	3.75E-04				0.14	NA	0.07	0.01	l 5000000000000000000000000000000000000	156	196
C4D C18D	1.04 0.63	181 181	7	169	93%	0.97	3/24/16-4/7/16 3/24/16-4/7/16	4/7/2016 4/7/2016	1238.14 2262.80	NA NA		150 19	1.44E-02 1.71E-02				5.27 6.25	NA NA	0.26 0.19		 	67%	4% 3%
C19D	1.08	181	0	176	97%	1.05	3/24/16-4/7/16	4/7/2016	242.39	NA NA		7.7					1.12	NA NA	1.06			4%	17%
C20D	3.31	181	3	180	99%	3.29	3/24/16-4/7/16	4/7/2016	240.53	NA	220	4.4	9.51E-03				3.47	NA				7%	60%
C30	0.94	181	26	180	99%	0.93	3/24/16-4/7/16	4/7/2016	583.38	NA		6.7	-				2.39	NA	0.82	0.03		3%	13%
BG-1 TOTAL=	9.00	181	3	177	98%	0.72	3/28/16-4/11/16	4/12/2016	384.58	NA	260	31 TOTAL :			2.24E-03 1.75E-02		1.21 19.91	NA	0.82 6.40	0.10 0.95		10% 100%	13%
10176-	0.00	1	1									IO IAL-	J.43L-02		1 52-52	2.001-03	10.51		0.40	0.55	10076	10070	100/8

013-6052

Table 5 Individual LFExS Well Mass Removal Estimate Delaware Sand & Gravel Superfund Site New Castle County, Delaware

Well	Avg Flow prior to sample (GPM)	Days in Period	(hide) Days System Down	Days of System Operation	Percent Operation (%)	Adjusted Flow Rate (GPM)	Average Flow Period	Sample Date	Total Detected VOC Concentration (Revised analyte list) (ug/l)	Total Detected VOC Concentration (Historical analyte list) (ug/l)	1,4-Dioxane Concentration (ug/l)	BCEE Concentration (ug/l)	Adjusted TVOC Mass Removal (Revised analyte list) (lb/day)	Adjusted TVOC Mass Removal (Historical analyte list) (lb/day)	Adjusted 1,4-Dioxane Mass Removal (Ib/day)	Adjusted BCEE Mass Removal (lb/day)	Adjusted TVOC Mass Removal (Revised analyte list) (Ib/year)	Adjusted TVOC Mass Removal (Historical analyte list) (lb/year)	Adjusted 1,4-Dioxane Mass Removal (Ib/year)	Adjusted BCEE Mass Removal (Ib/year)	TVOC Mass Removal (% of Total)	Removal	1,4-Dioxane Mass Removal (% of Total)
5/1/2016 B4DR	through 0.19	10/31/2016 183	101	82	45%	0.09	9/15/16-9/29/16	9/30/2016	940.27	NA	. 290	15	9.81E-04	NA	3.03E-04	1.56E-05	0.36	NA	0.11	0.01	3%	150	3%
C2D	1.04	183	11	172	94%	0.98	9/15/16-9/29/16	9/30/2016	89.18	NA		3.1					0.38	NA	0.18	0.01	 	3%	5%
C4D	0.88	183	0	183	100%	0.88	9/15/16-9/29/16	9/30/2016	1220.77	NA		76					4.69	NA	0.22	0.29		72%	6%
C18D	0.52	183	0	183	100%	0.52	9/15/16-9/29/16	9/30/2016	986.03	NA NA		13					2.25	NA NA	0.66	0.03		7%	18%
C19D C20D	0.38	183 183	14	183 169	100% 92%	0.38	9/29/16-10/13/16 9/19/16-10/3/16	10/13/2016	171.72 324.39	NA NA		7.9	7.85E-04 3.25E-03				0.29	NA NA	0.27 1.13	0.01		3% 4%	8%
C30	0.79	183	0	183	100%	0.79	9/15/16-9/29/16	9/30/2016	920.70	NA NA		9.3					3.18	NA NA	0.86	0.03		8%	24%
BG-1	0.53	183		183	100%	0.53	9/15/16-9/29/16	9/30/2016	90.93	NA	. 59	2.3					0.21	NA	0.14	0.01		1%	4%
TOTAL=		4/30/2017	<u> </u>			 						TOTAL:	3.43E-02		9.80E-03	1.11E-03	12.54		3.57	0.40	100%	100%	100%
11/1/2016 B4DR	through 0.11	180	4	176	98%	0.11	3/13/17-3/27/17	3/27/2017	4369.60	NA	. 140	13	5.55E-03	NA	1.78E-04	1.65E-05	2.02	NA NA	0.06	0.01	8%	2%	190
C2D	0.04	180	26	154	86%	0.03	3/13/17-3/27/17	3/27/2017	76.42	NA NA		1.7					0.01	NA NA	0.00			0%	0%
C4D	0.21	180	11	169	94%	0.20	3/13/17-3/27/17	3/27/2017	677.60	NA		95					0.58	NA	0.07	0.08		27%	196
C18D C19D	0.02	180 180	68	112	62% 96%	0.01	3/13/17-3/27/17 3/13/17-3/27/17	3/27/2017	3730.78 199.09	NA NA		10 24					0.21	NA NA	0.01 0.05	0.00		3%	1%
C20D	3.85	180	0	180	100%	3.85	3/13/17-3/27/17	3/29/2017	285.46	NA NA		6.6	1.32E-02	NA NA			4.81	NA NA	3.88	0.01		36%	12%
C30	0.20	180	19	161	89%	0.18	3/13/17-3/27/17	3/27/2017	3193.07	NA		9.2	6.84E-03	NA			2.50	NA	0.11	0.01		2%	2%
BG-1	4.54	180	0	180	100%	4.54	3/13/17-3/27/17	3/27/2017	716.32	NA	. 60	4.6	3.90E-02				14.25	NA	1.19	0.09		30%	22%
TOTAL=		40/24/2047						-				TOTAL=	6.70E-02		1.47E-02	8.39E-04	24.45		5.37	0.31	100%	100%	100%
5/1/2017 B4DR	through 0.06	10/31/2017 183	22	161	88%	0.05	9/28/17-10/12/17	10/12/2017	2683.20	NA	. 30	16	1,73E-03	NA	1.93E-05	1.03E-05	0.63	NA	0.01	0.00	2%	19%	C96
C2D	0.15	183	18	165	90%	0.13	9/28/17-10/12/17	10/12/2017	247.66	NA	4	16.0	3.94E-04	NA			0.14	NA	0.09	0.01	0%	1%	196
C4D	0.00	183	144	39	21%	0.00	9/28/17-10/12/17	10/12/2017	332.53	NA		94	0.00E+00				0.00	NA	0.00	0.00		0%	G%
C18D C19D	0.41	183	5	178	97% 100%	0.40	9/21/17-10/5/17 9/25/17-10/9/2017	10/9/2017	4952.20 250.11	NA NA		16 17		NA NA			8.62 0.84	NA NA	0.21 0.70	0.03		4% 8%	2% 8%
C20D	3.67	183	0	183	100%	3.67	9/25/17-10/9/2017	10/9/2017	432.56	NA NA	1	32.0	1.90E-02				6.95	NA NA	6.59	0.00		69%	
C30	0.54	183	8	175	96%	0.52	9/25/17-10/9/17	10/9/2017	4050.70	NA		12.0	2.53E-02				9.22	NA	0.46	0.03		4%	5%
BG-1	3.52	183	0	183	100%	3.52	9/21/17-10/5/17	10/9/2017	293.44	NA	. 45	7.1	1.24E-02				4.53	NA	0.69	0.11		15%	8%
TOTAL= 11/1/2017	9.11 through	4/30/2018										TOTAL=	8.47E-02		2.40E-02	2.05E-03	30.93		8.75	0.75	100%	100%	100%
B4DR	0.14	180	21	159	88%	0.12	3/30/18-4/13/18	4/13/2018	3513.50	NA	41	120	5.20E-03	NA	6.07E-05	1.78E-04	1.90	NA	0.02	0.06	19%	13%	0%
C2D	0.16	180	50	130	72%	0.12	3/30/18-4/13/18	4/13/2018	73.88	NA	+	2.1	1.05E-04				0.04	NA	0.01	0.00	100000000000000000000000000000000000000	0%	0%
C4D	0.18	180	57	123	68%	0.12	3/30/18-4/13/18	4/13/2018	451.50	NA		36	6.66E-04	NA			0.24	NA	0.04	0.02		4%	199
C18D C19D	NA 0.28	180	101	79 170	94%	0.27	3/30/18-4/13/18 3/30/18-4/13/18	NS 4/13/2018	332.06	NA NA		NA 30					0.39	NA NA	NA 0.29	0.03	 	NA 7%	NA 6%
C20D	4.89	180	0	180	100%	4.89	3/30/18-4/13/18	4/13/2018	210.61	NA NA		14.0	1.24E-02				4.51	NA NA	3.85			59%	80%
C30	0.07	180	48	132	73%	0.05	3/30/18-4/13/18	4/13/2018	3186.84	NA		130.0	2.05E-03	NA		 	0.75	NA	0.01	0.03		6%	0%
BG-1	4.10	180	0	180	100%	4.10	3/30/18-4/13/18	4/13/2018	121.14	NA	. 32	3.4	5.96E-03				2.18	NA	0.57	0.06		12%	12%
TOTAL= 5/1/2018	9.82 through	10/31/2018		+								TOTAL:	2.74E-02		1.32E-02	1.40E-03	10.01		4.79	0.50	100%	100%	100%
B4DR	0.00	183	32	151	83%	0.00	9/25/18-10/9/18	10/9/2018	1380.80	NA	71	14	6.65E-05	NA	3.42E-06	6.74E-07	0.02	NA	0.00	0.00	0%	0%	0%
C2D	0.76	183	4	179	98%	0.74	9/25/18-10/9/18	10/9/2018	70.70	NA		3.2	6.28E-04	NA	3.55E-04		0.23	NA	0.13	0.01		2%	2%
C4D	0.65	183	3	180	98%	0.64	9/25/18-10/9/18	10/9/2018	748.19	NA NA		56	5.71E-03				2.08	NA	0.16	0.16		37%	2%
C18D C19D	0.74	183 183	31	152 183	83% 100%	0.61 0.73	9/25/18-10/9/18 9/25/18-10/9/18	10/9/2018 10/9/2018	2115.10 302.24	NA NA		6.9	1.55E-02 2.67E-03				5.67 0.97	NA NA	0.29 0.93	0.06 0.02		14% 5%	4% 13%
C20D	3.01	183	0	183	100%	3.01	9/25/18-10/9/18	10/9/2018	396.37	NA NA		8.9	1.43E-02				5.23	NA NA	4.75		100000000000000000000000000000000000000	28%	65%
C30	0.29	183	17	166	91%	0.26	9/25/18-10/9/18	10/9/2018	918.30	NA		5.5	2.91E-03				1.06	NA	0.24			2%	3%
BG-1	3.30 9.48	183	0	183	100%	3.30	9/25/18-10/9/18	10/9/2018	142.19	NA	. 54	3.3					2.06	NA	0.78			11%	11%
TOTAL= 11/1/2018	9.46 through	5/14/2019										TOTAL:	4.75E-02		2.00E-02	1.15E-03	17.32		7.28	0.43	100%	100%	100%
B4DR	0.53	194	0	194	100%	0.53	4/25/19-5/9/19	5/13/2019	1601.30	NA	. 110	340	1.02E-02	NA	7.00E-04	2.16E-03	3.72	NA	0.26	0.79	13%	617	4%
C2D	0.26	194	21	173	89%	0.23	4/25/19-5/9/19	5/13/2019	147.17	NA		3.8	4.10E-04				0.15	NA	0.03	0.00	l	0%	0%
C4D C18D	0.83	194 194	7	194	100% 96%	0.83	4/25/19-5/9/19 4/25/19-5/9/19	5/13/2019 5/13/2019	301.20 3672.70	NA NA	<u> </u>	38 48	3.00E-03 3.15E-02				1.10	NA NA	0.19 0.56	0.14 0.15		11% 12%	3% 9%
C19D	0.64	194	0	194	100%	0.64	4/25/19-5/9/19	5/13/2019	398.93	NA NA		18.0	3.07E-03				1.12	NA NA	1.04			496	17%
C20D	3.91	194	0	194	100%	3.91	4/25/19-5/9/19	5/14/2019	227.78	NA	-	6.3	1.07E-02				3.90	NA	3.26	0.11		8%	
C30	0.74	194	0	194	100%	0.74	4/25/19-5/9/19	5/13/2019	1623.79	NA NA		3.7					5.27	NA	0.31			1%	5%
BG-1 TOTAL=	2.50 10.15	194	0	194	100%	2.50	4/25/19-5/9/19	5/14/2019	225.03	NA	. 42	4.4 TOTAL=			1.26E-03 1.67E-02		2.47 29.21	NA	0.46 6.11	0.05 1.30		4% 100%	8% 100%
5/15/2019	through	10/31/2019										, OIAL	5.00E-02			J.00E-00	20.21		V. 1 1	1.50	10070	100/0	10070
B4DR	0.04	169	21	148	87.57%	0.04	10/10/19-10/24/19	10/24/2019	1963.6	NA	. 77	85	8.26E-04	NA	3.24E-05	3.57E-05	0.30	NA	0.01	0.01	3%	4%	0%
C2D	0.19	169	25	144	85.21%	0.16	10/10/19-10/24/19	10/25/2019	437.04	NA		1.2	+				0.31	NA	0.01	0.00		0%	0%
C4D C18D	0.23	169 169	3	169 166	100.00% 98.22%	0.23	10/10/19-10/24/19 10/10/19-10/24/19	10/25/2019	74.54 1800.8	NA NA		59 19	2.06E-04 8.71E-03				0.08 3.18	NA NA	0.03 0.23			18% 10%	1% 5%
C19D	1.41	169	0	169	100.00%	1.41	10/10/19-10/24/19	10/25/2019	218.03	NA NA		17					1.35	NA NA	1.17			524	30%
C20D	3.3	169	0	169	100.00%	3.30	10/10/19-10/24/19	10/25/2019	158.89	NA	140	5.1	6.29E-03				2.30	NA	2.02			22%	6.29
C30	0.19	169	3	166	98.22%	0.19	10/10/19-10/24/19	10/25/2019	842.3	NA	-	2.2					0.69	NA	0.06	0.00		10%	2%
BG-1 TOTAL=	2.37 8.1 4	169	0	169	100.00%	2.37	10/10/19-10/24/19	10/25/2019	85.61	NA	. 35	4.3 TOTAL=			9.96E-04 1.07E-02		0.89 9.10	NA	0.36 3.89	0.04 0.32		13% 100%	9% 100%
10176-	U. 14	*	1									IO IAL-	2.491.02		1.07 E-02	J. 10L-04	9.10		5.55	0.32	10076	10070	100/8

013-6052

Individual LFExS Well Mass Removal Estimate Delaware Sand & Gravel Superfund Site New Castle County, Delaware

Notes:

1) GPM = gallons per minute

2) VOC = volatile organic compound

3) ug/l = micrograms per liter (ppb)

4) BCEE = bis(2-chloroethyl) ether

5) TVOC = total volatile organic compounds

6) lb/day = pounds per day

7) lb/year = pounds per year

8) 'Average flow prior to sample' is calculated over an approximate two-week period with variability due to when totalizer readings are available, with the exception of the following:

- '5/4/2009 through 10/31/2009' period which is calculated over the entire duration due to limited available totalizer data

- '5/1/2011 through 10/31/2011' period for BG-1 is based on flow rate early in the semi-annual monitoring period prior to pump failure in late September 2011.

- '5/1/2012 through 10/31/2012' period for B4DR and C4D are based on a flow rate calculated over a period of approximately one-month due to pump shutdowns in the two-week period skewing the flow rate

- '5/1/2013 through 10/31/2013' period for C30 is based on a flow rate calculated over a period of approximately one-month due to pump shutdowns in the two-week period skewing the flow rate.

- '10/3/2013 through 3/27/2014' period for B4DR is based upon a flow rate calculated over a period of approximately five months due to pump shutdown.

- '4/28/2014 through 9/29/2014' period for C4D is based upon a flow rate calculated over a period of approximately four months due to pump shutdowns in the two-week period skewing the flow rate.

9) Adjusted flow rate is calculated using flow rate prior to sample collection and percent of system operation.

10) TVOC and BCEE mass removal rates are calculated using adjusted flow rates.

11) B4D was replaced by B4DR on January 19, 2012.

12) Total VOC prior to the April 2012 data is based on a historical VOC analyte list. Since that time, the analyte list was revised to include additional compounds, including 1.4-dioxane.

13) In April 2017, the VOC analyte list was revised to include 1,2,3-Trimethylbenzene, Dichlorofluoromethane and Indane.

14) C20D was brought online as an extraction well on September 27, 2012; however, was not fully operational until December 4, 2012.

Prepared by:

Checked by:

Reviewed by:

KNG

TAM

Table 6 013-6052

Well PW-1(U) Mass Removal Estimate Delaware Sand & Gravel Superfund Site New Castle County, Delaware

System Startup

		System Startu																		
	Sample Month		Nov-04	Jan-05	May-05	Jul-05	Oct-05	Apr-06	Jul-06	Oct-06	Jan-07	May-07	Oct-07	Jan-08	Apr-08	Jul-08	Oct-08	Jan-09	Apr-09	Jul-09
	Sample Date		11/3/2004	1/31/2005	5/2/2005	7/20/2005	10/27/2005	4/27/2006	7/11/2006	10/13/2006	1/10/2007	5/7/2007	10/1/2007	1/1/2008	4/1/2008	7/1/2008	10/1/2008	1/1/2009	4/1/2009	7/13/2009
	Sampler		Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Ruth	Ruth	Ruth	Ruth	Ruth	Ruth	Ruth	Golder
Date of PW-1(U) totalizer reading		10/28/2004	11/5/2004	2/2/2005	5/2/2005	7/21/2005	11/3/2005	4/27/2006	7/10/2006	10/12/2006	1/10/2007	4/26/2007	10/1/2007	1/8/2008	4/2/2008	7/15/2008	9/25/2008	1/5/2009	3/25/2009	7/12/2009
PW-1(U) Totalizer Reading (NCC)	gal	0	189257	1824351	3775923	7129794	11076040	16932640	20085882	23875940	26443467	30852010	38824424	43129074	47051554	50533666	53833997	57254018	60456235	64458411
PW-1(U) Totalizer Reading (DS&G)	gal		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gallons pumped since last sample	gal	0	189257	1635094	1951572	3353871	3946246	5856600	3153242	3790058	2567527	4408543	7972414	4304650	3922480	3482112	3300331	3420021	3202217	4002176
Days since last sample	days	0	8	89	89	80	105	175	74	94	90	106	158	99	85	104	72	102	79	109
Average Flow Rate Since Last Sample	gpm	0		12.8	15.2	29.1	26.1	23.2	29.6	28.0	19.8	28.9	35.0	30.2	32.1	23.3	31.8	23.3	28.2	25.5
Targeted Volatile Organic Compounds																				
Benzene	ug/l	NA	150	350	230	150	180	250	260	260	240	250	220	140	160	140	81	120	130	110
Toluene	ug/l	NA	18	25	170	170	270	510	560	570	460	490	420	400	490	220	210	260	300	290
Ethylbenzene	ug/l	NA	95	150	160	85	100	120	140	140	110	96	63	59	75	39	41	47	66	64
Xylenes, Total	ug/l	NA	230	530	460	320	360	360	340	360	310	280	230	180	230	140	130	140	190	170
1,4-Dioxane	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Targeted VOCs (BTEX)	ug/l	NA	493	1055	1020	725	910	1240	1300	1330	1120	1116	933	779	955	539	462	567	686	634
Total Analyzed VOCs (Total VOCs)	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Estimated Mass Removal (BTEX)	lb/day	NA	0.00	0.16	0.19	0.25	0.29	0.35	0.46	0.45	0.27	0.39	0.39	0.28	0.37	0.15	0.18	0.16	0.23	0.19
Estimated Mass Removal (BTEX)	lb/quarter	NA	0	15	17	23	26	31	42	40	24	35	35	25	33	14	16	14	21	17
Estimated Mass Removal (BTEX)	lb/year	NA	0	58	67	91	103	125	166	161	96	139	141	102	132	54	64	57	83	70
Estimated Mass Removal (1,4-Dioxane)	lb/day	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Estimated Mass Removal (1,4-Dioxane)	lb/quarter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Estimated Mass Removal (1,4-Dioxane)	lb/year	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Estimated Mass Removal (Total VOC)	lb/day	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA
Estimated Mass Removal (Total VOC)	lb/guarter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Estimated Mass Removal (Total VOC)	lb/year	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Targeted Semi-Volatile Organic Compounds																				
Bis(2-chloroethyl) Ether	ug/l	NA	74	96	24	28	43	44	48	45	37	44	40	31	37	43	31	34	27	31
Estimated Mass Removal	lb/day	NA	0.000	0.015	0.004	0.010	0.013	0.012	0.017	0.015	0.009	0.015	0.017	0.011	0.014	0.012	0.012	0.010	0.009	0.009
Estimated Mass Removal	lb/quarter	NA	0.0	1.3	0.39	0.88	1.2	1.1	1.5	1.4	0.8	1.4	1.5	1.0	1.3	1.1	1.1	0.9	0.82	0.9
Estimated Mass Removal	lb/year	NA	0.0	5.3	1.6	3.5	4.8	4.4	6.1	5.4	3.2	5.5	6.1	4.0	5.1	4.3	4.3	3.4	3.3	3.4

 Table 6
 013-6052

Well PW-1(U) Mass Removal Estimate Delaware Sand & Gravel Superfund Site New Castle County, Delaware

	Sample Month	Oct-09	Apr-10	Jul-10	Apr-11	Oct-11	Feb-12	Apr-12	Oct-12	Mar-13	Oct-13	Apr-14	Oct-14	Mar-15	Oct-15	Apr-16	Sep-16	Apr-17	Oct-17	Apr-18	Oct-18	May-19	Oct-19
	Sample Date	10/13/2009	4/14/2010	7/8/2010	4/11/2011	10/6/2011	2/23/2012	4/4/2012	10/2/2012	3/19/2013	9/30/2013	4/2/2014	9/30/2014	3/30/2015	9/28/2015	4/7/2016	9/30/2016	4/11/2017	10/9/2017	4/12/2018	10/8/2018	5/14/2019	10/22/2019
	Sampler	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder	Golder
Date of PW-1(U) totalizer reading		10/12/2009	4/12/2010	7/15/2010	4/26/2011	10/6/2011	2/17/2012	4/16/2012	10/4/2012	4/17/2013	9/25/2013	4/2/2014	9/30/2014	3/30/2015	9/30/2015	4/7/2016	9/29/2016	4/11/2017	10/9/2017	4/12/2018	10/8/2018	5/14/2019	10/22/2019
PW-1(U) Totalizer Reading (NCC)	gal	67732261	74703485	78349021	87701433	93961997	98241721	100496869	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PW-1(U) Totalizer Reading (DS&G)	gal	NA	NA	NA	NA	NA	46351520	48266516	753247	7393803	13670142	9439024	19286181	28467313	38013099	47798444	56115498	65482679	74114433	82206929	90216280	99728955	106552611
Gallons pumped since last sample	gal	3273850	6971224	3645536	6308868	6260564	4279724	2255148	4837281	6640556	6276339	9439024	9847157	9181132	9545786	9785345	8317054	9367181	8631754	8092496	8009351	9512675	6823656
Days since last sample	days	92	182	94	195	163	134	59	183	195	161	167	181	181	184	190	175	194	181	185	179	218	161
Average Flow Rate Since Last Sample	gpm	24.7	26.6	26.9	22.5	26.7	22.2	26.5	18.4	23.7	27.1	39.3	37.8	35.2	36.0	35.8	33.0	33.5	33.1	30.4	31.1	30.3	29.4
rgeted Volatile Organic Compounds																							
Benzene	ug/l	120	96	88	58	90	61	74	50	38	38	35	37	30	28	21	22	14	14	11	11	10	15
Toluene	ug/l	250	170	180	27	67.5	75	98	65	24	15	2.4	1.5	ND	0.29	0.33	0.68	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/l	59	60	62	19	35.6	39	56	49	23	33	24	19	19	11	20	8.4	4.3	2.3	2.8	2.2	2.1	3
Xylenes, Total	ug/l	170	150	160	50	102	86	120	110	48	63	47	34	42	31	47	25	15	11	15	12	14	17
1,4-Dioxane	ug/l	NA	NA	NA	NA	NA	NA	95	68	56	68	45	79	67	79	60	61	65	100	73	65	48	47
Total Targeted VOCs (BTEX)	ug/l	599	476	490	154	295	261	348	274	133	149	108	92	91	70	88	56	33	27	29	25	26	35
Total Analyzed VOCs (Total VOCs)	ug/l	NA	NA	NA	NA	NA	NA	521	411	227	265	192	204	201	181	203	155	130 ⁽¹³⁾	157	134	118	97	149
Estimated Mass Removal (BTEX)	lb/day	0.18	0.15	0.16	0.04	0.09	0.07	0.11	0.06	0.04	0.05	0.05	0.04	0.04	0.03	0.04	0.02	0.01	0.01	0.01	0.01	0.01	0.01
Estimated Mass Removal (BTEX)	lb/quarter	16	14	14	4	8	6	10	5	3	4	5	4	3	3	3	2	1	1	1	1	1	1
Estimated Mass Removal (BTEX)	lb/year	64	55	57	15	34	25	40	22	14	18	19	15	14	11	14	8.1	4.8	3.9	3.9	3.4	3.5	4.5
Estimated Mass Removal (1,4-Dioxane)	lb/day	NA	NA	NA	NA	NA	NA	0.03	0.01	0.02	0.02	0.02	0.04	0.03	0.03	0.03	0.02	0.03	0.04	0.03	0.02	0.02	0.02
Estimated Mass Removal (1,4-Dioxane)	lb/quarter	NA	NA	NA	NA	NA	NA	3	1	1	2	2	3	3	3	2	2	2	4	2	2	2	1
Estimated Mass Removal (1,4-Dioxane)	lb/year	NA	NA	NA	NA	NA	NA	11	5.5	5.8	8.1	7.7	13	10	12	9.4	8.8	9.5	14.5	9.7	8.8	6.4	6.1
Estimated Mass Removal (Total VOC)	lb/dav	H NA	NA NA	NA NA	NA NA	NA	NA	0.17	0.09	0.06	0.09	0.09	0.09	0.09	0.08	0.09	0.06	0.05	0.06	0.05	0.04	0.04	0.05
Estimated Mass Removal (Total VOC)	lb/quarter	NA NA	NA NA	NA NA	NA NA	NA	NA NA	15	8	6	8	8	8	8	7	8	6	5	6	4	4	.3	5
Estimated Mass Removal (Total VOC)	lb/year	NA NA	NA NA	NA	NA NA	NA	NA	61	33	24	31	33	34	31	29	32	22	19	23	18	16	13	19
i rgeted Semi-Volatile Organic Compound:	3																						
Bis(2-chloroethyl) Ether	ug/l	25	31	24	15	26	26	24	23	14	14	13	15	13	16	15	11	11	10	8.4	9.1	6.2	5.6
Estimated Mass Removal	lb/day	0.007	0.010	0.008	0.004	0.008	0.007	0.008	0.005	0.004	0.005	0.006	0.007	0.005	0.007	0.006	0.004	0.004	0.004	0.003	0.003	0.002	0.002
Estimated Mass Removal	lb/quarter	0.67	0.9	0.70	0.36	0.75	0.62	0.69	0.46	0.36	0.41	0.55	0.61	0.49	0.62	0.58	0.39	0.40	0.36	0.28	0.31	0.20	0.18
Estimated Mass Removal	lb/year	2.7	3.6	2.8	1.5	3.0	2.5	2.8	1.8	1.5	1.7	2.2	2.5	2.0	2.5	2.4	1.6	1.6	1.5	1.1	1.2	0.8	0.7

Table 6 013-6052 February 2020

Well PW-1(U) Mass Removal Estimate Delaware Sand & Gravel Superfund Site New Castle County, Delaware

Notes

1) lbs = pounds

2) gal = gallons

3) gpm = gallons per minute
4) VOC = volatile organic compounds 5) ug/l = micrograms per liter

6) NA= not applicable

7) NCC = New Castle County; operated extraction well PW-1(U) until October 15, 2012

8) DS&G = Delaware Sand and Gravel; operators of extraction well PW-1(U) since October 15, 2012

9) Targeted compounds excludes compounds that are not consistently detected

10) Historic PW-1(U) totalizer readings were provided to Golder on June 11, 2012 by Ruth; therefore, approximate flow rates were removed and historic mass removals were re-calculated. Prior calculations were based on a flow rate of 30 gpm 11) On September 9, 2012, a new totalizer was installed on PW-1(U). The last available totalizer reading prior to the change out was 52,350,550 gallons

12) On September 26, 2013, the power to the well PW-1(U) pump and totalizer were interrupted. The totalizer was reset and the equipment was restarted on October 17, 2013.

13) In April 2017, the VOC analyte list was revised to include 1,2,3-Trimethylbenzene, Dichlorofluoromethane and Indane.

Prepared by:

Checked by:

Reviewed by:

AMH

BPC

TAM

Table 7 Summary of Mass Removal Estimates Delaware Sand & Gravel Superfund Site New Castle County, Delaware

	PW-1(U) Mass Removal	DDA Combined LFExS Mass Removal	Individual LFExS Well Mass Removal					
Period of Calculation	May 2019 - October 2019	May 2019 - October 2019	May 2019 - October 2019					
TVOC Mass Removal Estimate	19 lb/year	3.39 lb/year*	9.10 lb/year					
BCEE Mass Removal Estimate	0.7 lb/year	0.49 lb/year	0.32 lb/year					
1,4-Dioxane Mass Removal Estimate	6.1 lb/year	N/A	3.89 lb/year					
Average System Flow Rate	29.4 gpm	11.27 gpm	8.14 gpm					
Notes	Mass removal calculated based on the sum of targeted VOCs and BCEE and an average flow rate.	Mass removal calculated based on the sum of targeted VOCs and BCEE from system effluent samples and the system extraction volume which is based on the difference between totalizer readings. System effluent samples are collected after the balancing tank; therefore, some VOC volatilization may occur. Calculated average flow rates are based on totalizer readings over a 6-month period including system down-time.	targeted VOCs and BCEE from individual well samples and average instantaneous flow rate for each well over a nearly one month period during almost continuous system operation. This calculation					

Notes:

- 1) LFExS = low-flow extraction system
- 2) lbs = pounds
- 3) gpm = gallons per minute
- 4) TVOC = total volatile organic compounds (based on target analyte list that includes 1,4-dioxane)
- 5) BCEE = bis(2-chloroethyl) ether
- 6) *does not include 1,4-dioxane in mass removal estimate

Prepared by: BPC 2/20/20 Checked by: KNG 2/20/2020

Reviewed by: TAM 2/25/2020

Figures

DDA Combined LFExS Mass Removal Estimate Delaware Sand & Gravel Superfund Site New Castle County, Delaware

Note: TVOC mass removal does not include 1,4, dioxane in calculation since it is not analyzed for in the TTO sample.

APPENDIX A

Data Quality Assessments - October/ November 2019 (includes Form 1s) January 2020 013-6052

Data Quality Assessment October 2019 Semi-Annual Groundwater Monitoring Event Delaware Sand and Gravel Superfund Site New Castle, DE

This report presents the findings of the data quality assessment performed on the analyses of environmental samples collected for the *Semi-Annual Monitoring Report*, *October 2019*. The groundwater monitoring was conducted at the Delaware Sand and Gravel (DS&G) Superfund Site (Site), located in New Castle, Delaware. Samples for this Monitoring Event were collected between September 30, 2019 and November 1, 2019. The chemical data for samples collected at the Site were evaluated to identify data quality issues which could affect the use of the data for decision making purposes. A total of 97 primary samples and the following Quality Assurance/Quality Control (QA/QC) samples were collected:

- Twenty-four (24) trip blanks;
- Three (3) equipment rinsate blanks;
- Four (4) matrix spike / matrix spike duplicate (MS/MSD) pairs; and
- Four (4) field duplicate samples.

Samples were analyzed for Target Compound List (TCL) Volatile Organic Compounds (VOCs), TCL Semivolatile Organic Compounds (SVOCs), Target Analyte List (TAL) total metals (including mercury), total metals (cobalt, iron, and manganese), dissolved metals (cobalt, iron, manganese), ammonia, cations (calcium, magnesium, sodium, potassium), anions (nitrate, nitrite, sulfate, chloride), sulfide, and carbonate/bicarbonate alkalinity. Not all samples were analyzed for all listed parameters. Refer to Table 1 for the specific analyses for each sample. Test America of Edison, New Jersey performed all chemical analyses utilizing the following methodology:

- TCL VOCs by United States Environmental Protection Agency (USEPA) SW846¹ Method 8260C/8260C Selected Ion Monitoring (SIM) Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) (December 1996);
- TCL SVOCs by USEPA SW846 Method 8270D/8270D SIM Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS) (January 1998);
- TAL Total Metals by USEPA Method 200.8 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry (1994);
- Total Mercury by USEPA Method 245.1 Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry (1994);
- Total and Dissolved Iron, Manganese, Cobalt by USEPA SW846 Method 6010D Inductively Coupled Plasma-Atomic Emission Spectrometry (November 2000);
- Ammonia by Standard Method SM4500 NH3 H Ammonia by Selective Electrode (2011);

¹ USEPA, 1996, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846): 3rd edition, Environmental Protection Agency, National Center for Environmental Publications, Cincinnati, Ohio, accessed at URL https://www.epa.gov/hw-sw846/sw-846-compendium.

_

January 2020 013-6052

Total Calcium, Magnesium, Sodium, Potassium by USEPA Method 200.8 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry (1994);

- Nitrate, Nitrite, Sulfate, Chloride by USEPA Method 300.0 Determination of Inorganic Anions by Ion Chromatography (1993);
- Sulfide by Standard Method 4500-S2-F Standard Methods for the Examination of Water and Wastewater: lodometric Method (2005);
- Carbonate and Bicarbonate Alkalinity by Standard Method 2320B Standard Methods for the Examination of Water and Wastewater: Titration Method (2005).

Information regarding the sample point identifications, analytical methods, Quality Control (QC) samples, sampling dates, and contract laboratory sample delivery group (SDG) designations are summarized in Table 1.

All groundwater results were validated following guidelines provided by USEPA Contract Laboratory Program (CLP) National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017) and NFG for Inorganic Superfund Data Review (January 2017), as applicable to the above listed analytical methods. In general, chemical results for the samples collected at the Site were qualified on the basis of outlying precision or accuracy parameters, or on the basis of professional judgment. The following definitions provide a brief explanation of the qualifiers which may have been assigned to data during the data evaluation process.

- J The analyte is present; however, the reported value may not be accurate or precise.
- J- The analyte is present; however, the reported value may not be accurate or precise. The result is biased low.
- The analyte is present; however, the reported value may not be accurate or precise. The result is biased high.
- The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **U** The analyte was analyzed for but was not detected above the sample reporting limit.
- The analyte was not detected above the sample reporting limit. However, the reporting limit is approximate.

The data generated during this Monitoring Event met the QC criteria established in the respective analytical methods and CLP guidelines, except as noted below. Qualifications may not have been required for all samples. Table 2 summarizes detailed qualifications applied to the data. A summary of the analytical detections is presented in Appendix A of the Semi-Annual Monitoring Report, October 2019.

- The nitrate and nitrite results for sample DGC-5 (40) were rejected (R) as the analysis was performed more than 2x outside the method holding time.
- Certain non-detect SVOC results were rejected (R) when an MS/MSD recovered grossly below QC criteria.
- Certain detected acetone results were qualified as non-detect (U) and reported at the sample result due to trip blank contamination.

January 2020 013-6052

The ammonia result for sample AWC-K1 was qualified as non-detect (U) at the sample reporting limit due to method blank contamination.

- Certain detected ammonia results were qualified as estimated, biased high (J+) due to method blank contamination.
- Certain detected 1,4-dioxane results were qualified as estimated, biased low (J-) as associated surrogate recoveries were below QC criteria.
- The phenol result for sample UPA-102-TZ, detected between the method detection limit (MDL) and reporting limit (RL), was qualified as estimated without bias (J) when associated LCS/LCSD recovery was above QC criteria.
- Certain non-detect VOC and SVOC results were qualified as estimated (UJ) when associated LCS/LCSD recoveries were below QC criteria.
- Certain detected SVOC results were qualified as estimated, biased high (J+) when associated LCS/LCSD recoveries were above QC criteria.
- Certain detected VOC, chloride, and sulfate results were qualified as estimated, biased low (J-) when associated MS/MSD recoveries were below or grossly below QC criteria.
- The sulfate result for sample UPA-104-US was qualified as estimated, biased high (J+) when associated MS/MSD recoveries were above QC criteria.
- Certain non-detect VOC, SVOC, and nitrite results were qualified as estimated (UJ) when associated MS/MSD recoveries were below QC criteria.

Based on the data evaluations and data quality assessment, the analytical data for samples collected at the Site were determined to be acceptable (including estimated data) for their intended use. Generally acceptable levels of accuracy and precision, based on LCS, MS/MSD, field duplicate and surrogate recoveries, were achieved for the data. In addition, the data completeness (i.e. the ratio of the amount of valid data obtained to the amount expected, including estimated data, was 99.9%.

									Par	ameters	s / Meth	ods			
SDG	Field Identification	Matrix	Lab Identification	QC Samples	Collection Date	TCL VOCs via 8260C & 8260C SIM	TCL SVOCs via 8270D & 8270D SIM	TAL Total Metals + Hg via 200.8 / 245.1	Total Metals (Co, Fe, Mn) via 6010D	Dissolved Metals (Co, Fe, Mn) via 6010D	Ammonia via SM4500	Cations (Ca, Mg, Na, K) via 200.8	Anions (Nitrate, Nitrite, Sulfate, Chloride) via 300.0	Sulfide via SM4500	Carbonate and Bicarbonate Alkalinity via 2320B
460-192645-1	UPA-105B-US	WG	460-192645-1; 460-192645-2		9/30/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-192645-1	TBGW_093019	WQ	460-192645-3	TB	9/30/2019	X									
460-192645-1	UPA-105B-TZ	WG	460-192721-1		10/1/2019						Х	Х	X	Х	X
460-192645-1	UPA-105A-TZ	WG	460-192721-2		10/1/2019						Х	Х	X	X	Х
460-192645-1	UPA-105B-LS	WG	460-192721-3		10/1/2019						Х	Х	Х	X	X
460-192645-1	UPA-104-LS	WG	460-192721-4		10/1/2019						Х	Х	Х	X	Х
460-192645-1	TBGW_100119	WQ	460-192721-9	TB	10/1/2019	X									
460-192645-1	UPA-104-US	WG	460-192902-1	MS/MSD	10/2/2019	X	X			Х	Х	Х	Х	X	X
460-192645-1	UPA-107-US	WG	460-192902-2		10/2/2019	Х	X			Х	Х	Х	X	Х	Х
460-192645-1	UPA-104-TZ	WG	460-192902-3		10/2/2019	Х	X			Х	Х	Х	X	Х	Х
460-192645-1	UPA-107-TZ	WG	460-192902-4		10/2/2019	Х	X			Х	Х	X	Х	Х	Х
460-192645-1	FDGW_100219	WG	460-192902-5	FD (UPA-107-US)	10/2/2019	Х	X			Х	Х	Х	X	Χ	Х
460-192645-1	TBGW_100219	WQ	460-192902-6	TB	10/2/2019	X									
460-193027-1	P-5L	WG	460-193027-1		10/3/2019	X	X			Х	X	X	X	X	Χ
460-193027-1	P-5U	WG	460-193027-2		10/3/2019	-	_			-	Х	X	X	X	X
460-193027-1	UPA-107-LS	WG	460-193027-3		10/3/2019	X	X			X	Х	X	X	X	X
460-193027-1	TBGW_100319	WQ	460-193027-4	ТВ	10/3/2019	X				-	-	_	-	_	-
460-193027-1	UPA-106-USA	WG	460-193074-1		10/4/2019	X	Х			Х	X	Х	X	Х	Х
460-193027-1	UPA-103-TZ	WG	460-193074-2		10/4/2019	X	Х			Х	Х	X	X	Х	Х
460-193027-1	UPA-103-LS	WG	460-193074-3		10/4/2019	Х	X			Х	Х	X	X	Х	Х
460-193027-1	TBGW_100419	WQ	460-193074-4	TB	10/4/2019	Х				-	-	-	-	-	-
460-193027-1	DGC-11S	WG	460-193280-1		10/7/2019	X	X			Х	X	Х	Х	X	Х
460-193027-1	DGC-11D	WG	460-193280-2		10/7/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-193027-1	UPA-103-US	WG	460-193280-3		10/7/2019	Х	Х			Х	Х	Х	Х	Х	Х

Page 1 of 10

									Par	ameters	/ Meth	ods			
SDG	Field Identification	Matrix	Lab Identification	QC Samples	Collection Date	TCL VOCS via 8260C & 8260C SIM	TCL SVOCs via 8270D & 8270D SIM	TAL Total Metals + Hg via 200.8 / 245.1	Total Metals (Co, Fe, Mn) via 6010D	Dissolved Metals (Co, Fe, Mn) via 6010D	Ammonia via SM4500	Cations (Ca, Mg, Na, K) via 200.8	Anions (Nitrate, Nitrite, Sulfate, Chloride) via 300.0	Sulfide via SM4500	Carbonate and Bicarbonate Alkalinity via 2320B
460-193027-1	DGC-10D	WG	460-193280-4		10/7/2019	Х	Х			Х	Х	Х	Х	X	X
460-193027-1	DGC-10S	WG	460-193280-5		10/7/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-193027-1	TBGW_100719	WQ	460-193280-6	ТВ	10/7/2019	Х	-			-	-		-	-	-
460-193027-1	UPA-106-CA	WG	460-193375-1		10/8/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-193027-1	UPA-106-USB	WG	460-193375-2		10/8/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-193027-1	UPA-106-LS	WG	460-193375-3		10/8/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-193027-1	P-6	WG	460-193375-4		10/8/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-193027-1	TBGW_100819	WQ	460-193375-5	TB	10/8/2019	Х	-			-	-	-	-	-	-
460-193458-1	UPA-102-CA	WG	460-193458-1	ma 23	10/9/2019	Х	Х			X	Х	Х	X	X	Х
460-193458-1	UPA-103-CA	WG	460-193458-2		10/9/2019	Х	Х			Х	Х	Х	Х	X	Х
460-193458-1	MW-26N	WG	460-193458-3	***	10/9/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-193458-1	GA-101	WG	460-193458-4	NO 300	10/9/2019	Х	Х			Х	Х				
460-193458-1	TBGW_100919	WQ	460-193458-5	TB	10/9/2019	Х									
460-193458-1	UPA-108B-US	WG	460-193634-1		10/10/2019	Х	Х			Х	Х	Х	Х	Х	X
460-193458-1	UPA-108B-LS	WG	460-193634-2		10/10/2019	Х	Х			X	Х	Х	Х	Х	Х
460-193458-1	UPA-108B-TZ	WG	460-193634-3		10/10/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-193458-1	UPA-102-TZ	WG	460-193634-4		10/10/2019	Х	Х			X	Х	Х	Х	Х	X
460-193458-1	TBGW_101019	WQ	460-193634-5	TB	10/10/2019	Х									
460-193458-1	BW-2(128)	WG	460-193677-1		10/11/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-193458-1	BW-2(138)	WG	460-193677-2	No. 144	10/11/2019	Х	Х			X	Х	Х	Х	X	X
460-193458-1	BW-2(3X)	WG	460-193677-3		10/11/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-193458-1	TBGW_101119	WQ	460-193677-4	TB	10/11/2019	Х									
460-193458-1	UPA-03D	WG	460-193869-1		10/14/2019	Х	Х		Х	X	Х	Х	Х	Х	Х
460-193458-1	DGC-8D	WG	460-193869-2	300 300	10/14/2019						Х	Х	Х	Х	Х
460-193458-1	DGC-8S	WG	460-193869-3		10/14/2019						Х	Х	X	Х	Х

						Parameters / Methods									
SDG	Field Identification	Matrix	Lab Identification	QC Samples	Collection Date	TCL VOCS via 8260C & 8260C SIM	TCL SVOCs via 8270D & 8270D SIM	TAL Total Metals + Hg via 200.8 / 245.1	Total Metals (Co, Fe, Mn) via 6010D	Dissolved Metals (Co, Fe, Mn) via 6010D	Ammonia via SM4500	Cations (Ca, Mg, Na, K) via 200.8	Anions (Nitrate, Nitrite, Sulfate, Chloride) via 300.0	Sulfide via SM4500	Carbonate and Bicarbonate Alkalinity via 2320B
460-193458-1	UPA-02D	WG	460-193869-4		10/14/2019	Х	Х		Х	Х	Х	Х	Х	Х	Х
460-193458-1	UPA-02S	WG	460-193869-5		10/14/2019						Х	Х	Х	Х	Х
460-193458-1	UPA-102-US	WG	460-193869-6		10/14/2019	Х	Х			Х	Х	Х	Х	Χ	Х
460-193458-1	TBGW_101419	WQ	460-193869-7	TB	10/14/2019	Х									
460-194006-1	MW-18	WG	460-194006-1	MS/MSD	10/15/2019	Х	Х			Х	Х	Х	Х	Х	Χ
460-194006-1	MW-34 (80)	WG	460-194006-2		10/15/2019	Х	X			Х	Х	Х	Х	Х	Х
460-194006-1	MW-34 (110)	WG	460-194006-3		10/15/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-194006-1	FDGW_101519	WG	460-194006-4	FD (MW-34 (80))	10/15/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-194006-1	TBGW_101519	WQ	460-194006-5	TB	10/15/2019	Х									
460-194006-1	MW-34(124)	WG	460-194064-1		10/16/2019	Х	X			Х	Х	Х	Х	X	Х
460-194006-1	UPA-108C-US	WG	460-194064-2	our man	10/16/2019	Х	X			Х	Х	Х	Х	X	Х
460-194006-1	RBGW_101619	WQ	460-194064-3	RB	10/16/2019	Х	X			Х	Х	Х	Х	Х	Х
460-194006-1	TBGW_101619	WQ	460-194064-4	TB	10/16/2019	Х									
460-194006-1	MW-26N_128	WG	460-194233-1		10/17/2019	Х	Х			Х	Х	Х	Х	X	Х
460-194006-1	MW-26N_138	WG	460-194233-2		10/17/2019	Х	Х		X	Х	Х	Х	Х	X	Х
460-194006-1	MW-26N_3X	WG	460-194233-3		10/17/2019	Х	Х	X		Х	Х	Х	Х	Х	Х
460-194006-1	TBGW_101719	WQ	460-194233-4	TB	10/17/2019	Х									
460-194006-1	UPA-105A-LS	WG	460-194328-1		10/18/2019	Х	Х			Х	Х	X	Х	Х	Х
460-194006-1	UPA-105A-US	WG	460-194328-2		10/18/2019	X	X			Х	Х	Х	Х	Х	Х
460-194006-1	UPA-101A-LSA	WG	460-194328-3	AD 140	10/18/2019	Х	X			Х	Х	Х	Х	X	Х
460-194006-1	UPA-101A-LSB	WG	460-194328-4		10/18/2019	Х	Х			Х	Х	Х	Х	X	Х
460-194006-1	TBGW_101819	WQ	460-194328-5	TB	10/18/2019	Х									
460-194514-1	RT-1-UP	WG	460-194514-1	an an	10/21/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-194514-1	UPA-01	WG	460-194514-2	W 24	10/21/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-194514-1	DDA-12-US	WG	460-194514-3		10/21/2019	Х	X			Х	Х	Х	Х	X	Х

						Parameters / Methods									
SDG	Field Identification	Matrix	Lab Identification	QC Samples	Collection Date	TCL VOCs via 8260C & 8260C SIM	TCL SVOCs via 8270D & 8270D SIM	TAL Total Metals + Hg via 200.8 / 245.1	Total Metals (Co, Fe, Mn) via 6010D	Dissolved Metals (Co, Fe, Mn) via 6010D	Ammonia via SM4500	Cations (Ca, Mg, Na, K) via 200.8	Anions (Nitrate, Nitrite, Sulfate, Chloride) via 300.0	Sulfide via SM4500	Carbonate and Bicarbonate Alkalinity via 2320B
460-194514-1	DDA-02	WG	460-194514-4		10/21/2019	Х	X			X	X	X	X	Х	Х
460-194514-1	TBGW_102119	WQ	460-194514-5	TB	10/21/2019	Х									
460-194514-1	DDA-03	WG	460-194632-1		10/22/2019						Х	Х	X	Х	X
460-194514-1	DDA-06	WG	460-194632-2		10/22/2019						X	X	X	Х	Х
460-194514-1	PW-1(U)	WG	460-194632-3		10/22/2019	Х	X			Х	X	X	X	Х	Х
460-194514-1	TBGW_102219	WQ	460-194632-4	TB	10/22/2019	Х									
460-194514-1	DGC-2S	WG	460-194732-1		10/23/2019						X	Х	Х	Х	Х
460-194514-1	PZ-5-EXT	WG	460-194826-3	No. 244	10/24/2019	Х	Х			X	Х				
460-194514-1	PZ-11-EXT	WG	460-194826-3		10/24/2019	Х	Х			X	Х		-		
460-194514-1	DDA-19-TZ	WG	460-194826-3		10/24/2019	Х	X			Х	Х	Х	Х	Х	Х
460-194514-1	DDA-19-US	WG	460-194826-3		10/24/2019	Х	X			Х	Х	Х	X	Х	X
460-194514-1	TBGW_102419	WQ	460-194826-3	TB	10/24/2019	Х	I								
460-194826-2	DGC-5 (40)	WG	460-194826-1		10/24/2019	Х	X			X	X	X	Х	Х	Х
460-194826-2	DGC-5 (50)	WG	460-194826-2		10/24/2019	Х	Х			X	Х				
460-194826-2	DGC-2S	WG	460-194921-1		10/24/2019								X		
460-194826-2	B-4DR	WG	460-194921-2		10/24/2019	Х	Х			X	Х				
460-194826-2	BG-1	WG	460-194921-3		10/25/2019	Х	Х			Х	Х				
460-194826-2	C-4D	WG	460-194921-4		10/25/2019	Х	Х			X	Х				
460-194826-2	C-18D	WG	460-194921-5		10/25/2019	Х	X			Х	Х				
460-194826-2	C-19D	WG	460-194921-6		10/25/2019	Х	Х			X	Х				
460-194826-2	C-20D	WG	460-194921-7		10/25/2019	Х	X			X	X				
460-194826-2	C-30	WG	460-194921-8		10/25/2019	Х	X			X	X				
460-194826-2	DDA-18-TZ	WG	460-194921-9		10/25/2019	Х	X			X	Х	X	X	Х	Х
460-194826-2	DDA-18-US	WG	460-194921-10	MS/MSD	10/25/2019	Х	X			Х	Х	X	Х	Х	X
460-194826-2	FDGW_102519	WG	460-194921-11	FD (DDA-18-TZ)	10/25/2019	Х	X			X	X	X	X	Х	X

G:\PROJECTS\2001 Projects\013-6052 DS&G\Chemistry\2019\2019_10 Semi-Annual\DUSR\2019 October Semi-Annual DUSR Tables.xlsx

ED_004821A_00009452-00081

									Par	ameters	s / Meth	ods			
SDG	Field Identification	Matrix	Lab Identification	QC Samples	Collection Date	TCL VOCs via 8260C & 8260C SIM	TCL SVOCs via 8270D & 8270D SIM	TAL Total Metals + Hg via 200.8 / 245.1	Total Metals (Co, Fe, Mn) via 6010D	Dissolved Metals (Co, Fe, Mn) via 6010D	Ammonia via SM4500	Cations (Ca, Mg, Na, K) via 200.8	Anions (Nitrate, Nitrite, Sulfate, Chloride) via 300.0	Sulfide via SM4500	Carbonate and Bicarbonate Alkalinity via 2320B
460-194826-2	RBGW_102519	WQ	460-194921-12	RB	10/25/2019	Х	X			Х	X	Х	Х	X	X
460-194826-2	TBGW_102519-A	WQ	460-194921-13	TB	10/25/2019	Х									
460-194826-2	C-2D	WG	460-194926-1		10/25/2019	Х	X			Х	Х				
460-194826-2	TBGW_102519-B	WQ	460-194926-2	TB	10/25/2019	Х									
460-195120-1	DDA-01	WG	460-195120-1		10/28/2019						Х	Х	Х	X	X
460-195120-1	DDA-05	WG	460-195120-2		10/28/2019						Х	Х	Х	X	Х
460-195120-1	MHW-1D	WG	460-195120-3		10/28/2019	Х	X			Х	Х	Х	Х	Х	Х
460-195120-1	TBGW_102819	WQ	460-195120-4	TB	10/28/2019	Х									
460-195120-1	DDA-20-US	WG	460-195187-1	MS/MSD	10/29/2019	Х	X			Х	X	X	Х	X	X
460-195120-1	DDA-20-TZ	WG	460-195187-2		10/29/2019	Х	X			Х	Х	Х	Х	X	X
460-195120-1	AWC-E1(132)	WG	460-195187-3		10/29/2019				Х	Х					
460-195120-1	AWC-E1(156)	WG	460-195187-4	m m	10/29/2019				X	Х					
460-195120-1	AWC-E2(140)	WG	460-195187-5		10/29/2019				Х	Х					
460-195120-1	AWC-E2(165)	WG	460-195187-6		10/29/2019				Х	Х					
460-195120-1	AWC-K1	WG	460-195187-7		10/29/2019	Х	X			Х	Х				
460-195120-1	FDGW_102919	WG	460-195187-8	FD (DDA-20-TZ)	10/29/2019	Х				Х		Х	Х	Х	
460-195120-1	TBGW_102919	WQ	460-195187-9	TB	10/29/2019	Х									
460-195120-1	DGC-7S	WG	460-195259-1		10/30/2019						Х	X	Х	Х	Х
460-195120-1	DGC-7C	WG	460-195259-2	w w-	10/30/2019	Х	Х			Х	Х				
460-195120-1	DDA-10-US	WG	460-195259-3	60 MI	10/30/2019	Х	Х			Х	Х	Х	Х	Х	Х
460-195120-1	RBGW_103019	WQ	460-195259-4	RB	10/30/2019	Х	Х			Х	Х	Х	Х	X	Х
460-195120-1	TBGW_103019	WQ	460-195259-5	TB	10/30/2019	Х									
460-195926-1	AWC-E1 (132)	WG	460-195926-1		11/1/2019						Х	Х	Х	Χ	Х
460-195926-1	AWC-E1 (156)	WG	460-195926-2	865 365	11/1/2019						X	Х	Х	Х	Χ
460-195926-1	AWC-E2 (140)	WG	460-195926-3		11/1/2019						Х	X	Х	Х	X

Page 5 of 10

Sample Point Identifications

October 2019 Semi-Annual Groundwater Monitoring Event

Delaware Sand Gravel Superfund Site New Castle, Delaware

									Par	ameters	/ Meth	ods			
SDG	Field Identification	Matrix	Lab Identification	QC Samples	Collection Date	TCL VOCs via 8260C & 8260C SIM	TCL SVOCs via 8270D & 8270D SIM	TAL Total Metals + Hg via 200.8 / 245.1	Total Metals (Co, Fe, Mn) via 6010D	Dissolved Metals (Co, Fe, Mn) via 6010D	Ammonia via SM4500	Cations (Ca, Mg, Na, K) via 200.8	Anions (Nitrate, Nitrite, Sulfate, Chloride) via 300.0	Sulfide via SM4500	Carbonate and Bicarbonate Alkalinity via 2320B
460-195926-1	AWC-E2 (165)	WG	460-195926-4		11/1/2019						Х	X	X	Х	Χ
460-195926-1	AWC-2	WG	460-195926-5		11/1/2019						Х	Х	Х	Х	Х
460-195926-1	AWC-6R	WG	460-195926-6		11/1/2019						Х	Х	Х	Х	Х
460-195926-1	TBGW_11719	WQ	460-195926-7	TB	11/1/2019	Х									

Abbreviations:

Co - Cobalt

FB - Field Blank

FD - Field Duplicate

Fe - Iron

Hg - Mercury

Mn - Manganese

MS - Matrix Spike

MSD - Matrix Spike Duplicate

QC - Quality Control

RB - Rinsate Blank

SDG - Sample Delivery Group

SIM - Selected Ion Monitoring

SVOCs - Semivolatile Organic Compounds

TAL - Target Analyte List

TB - Trip Blank

TCL - Target Compound List

VOCs - Volatile Organic Compounds

WG - Groundwater

WQ - Water, Quality Control

October 2019 Semi-Annual Groundwater Monitoring Event Delaware Sand and Gravel Superfund Site New Castle, Delaware

SDG	Sample Name	Fraction	Constituent	New Result	New RL	Qualifier	Reason
460-194826-2	DGC-5 (40)	N	Nitrate			R	Sample analyzed more than 2x outside holding time
460-194826-2	DGC-5 (40)	N	Nitrite			R	Sample analyzed more than 2x outside holding time
460-192645-1	UPA-104-US	N	Acetone		5.1	U	Trip blank contamination
460-193027-1	UPA-103-LS	N	Acetone		5.5	U	Trip blank contamination
460-193027-1	UPA-106-LS	N	Acetone		5.8	U	Trip blank contamination
460-193027-1	P-6	N	Acetone		6.2	U	Trip blank contamination
460-193458-1	GA-101	N	Acetone		13	U	Trip blank contamination
460-194006-1	UPA-101A-LSA	N	Acetone		5.8	U	Trip blank contamination
460-195120-1	DGC-7C	N	Acetone		17	U	Trip blank contamination
460-195120-1	DDA-10-US	N	Acetone		5.8	U	Trip blank contamination
460-195120-1	AWC-K1	N	Ammonia	0.1		U	Method blank contamination
460-195120-1	DGC-7S	N	Ammonia			J+	Method blank contamination
460-195120-1	DDA-10-US	N	Ammonia			J+	Method blank contamination
460-195120-1	DDA-20-US	N	2,4-Dinitrophenol			R	MS/MSD recovery grossly below QC criteria
460-195120-1	DDA-20-US	N	4-Nitrophenol			R	MS/MSD recovery grossly below QC criteria
460-195120-1	DDA-20-US	N	Bisphenol-A			R	MS/MSD recovery grossly below QC criteria
460-195120-1	DDA-20-US	N	Phenol			R	MS/MSD recovery grossly below QC criteria
460-195120-1	DDA-20-US	N	Chloride			R	MS/MSD recovery grossly below QC criteria
460-192645-1	UPA-104-US	N	Chloride			J-	MS/MSD recovery grossly below QC criteria
460-192645-1	UPA-104-US	N	Benzene			J-	MS/MSD recovery below QC criteria
460-194006-1	MW-18	N	Chloride			J-	MS/MSD recovery below QC criteria
460-194826-2	DDA-18-US	N	Chloride			J-	MS/MSD recovery below QC criteria
460-194826-2	DDA-18-US	N	Sulfate			J-	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	Sulfate			J-	MS/MSD recovery below QC criteria
460-192645-1	UPA-104-US	N	Nitrite			UJ	MS/MSD recovery below QC criteria
460-192645-1	UPA-104-US	N	Carbon disulfide			UJ	MS/MSD recovery below QC criteria
460-192645-1	UPA-104-US	N	2,4-Dinitrotoluene			UJ	MS/MSD recovery below QC criteria
460-192645-1	UPA-104-US	N	3,3'-Dichlorobenzidine			UJ	MS/MSD recovery below QC criteria
460-192645-1	UPA-104-US	N	Benzo[a]pyrene			UJ	MS/MSD recovery below QC criteria
460-192645-1	UPA-104-US	N	n,n'-Dimethylaniline			UJ	MS/MSD recovery below QC criteria
460-192645-1	UPA-104-US	N	N-Methylaniline			UJ	MS/MSD recovery below QC criteria
460-194826-2	DDA-18-US	N	Nitrite			UJ	MS/MSD recovery below QC criteria
460-194826-2	DDA-18-US	N	1,2,4-Trimethylbenzene			UJ	MS/MSD recovery below QC criteria
460-194826-2	DDA-18-US	N	1,3,5-Trimethylbenzene			UJ	MS/MSD recovery below QC criteria
460-194826-2	DDA-18-US	N	Indane			UJ	MS/MSD recovery below QC criteria
460-194826-2	DDA-18-US	N	N-Propylbenzene			UJ	MS/MSD recovery below QC criteria
460-194826-2	DDA-18-US	N	3,3'-Dichlorobenzidine			UJ	MS/MSD recovery below QC criteria
460-194826-2	DDA-18-US	N	3-Nitroaniline			UJ	MS/MSD recovery below QC criteria
460-194826-2	DDA-18-US	N	Benzo[a]pyrene			UJ	MS/MSD recovery below QC criteria
460-194826-2	DDA-18-US	N	N-Methylaniline			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	2,4,5-Trichlorophenol			UJ	MS/MSD recovery below QC criteria

October 2019 Semi-Annual Groundwater Monitoring Event Delaware Sand and Gravel Superfund Site New Castle, Delaware

SDG	Sample Name	Fraction	Constituent	New Result	New RL	Qualifier	Reason
460-195120-1	DDA-20-US	N	2,4,6-Trichlorophenol			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	2,4-Dimethylphenol			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	2-Chlorophenol			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	2-Methylphenol			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	2-Nitrophenol			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	4,6-Dinitro-2-methylphenol			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	4-Chloro-3-methylphenol			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	4-Methylphenol			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	Anthracene			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	Benzo[a]anthracene			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	Benzo[a]pyrene			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	Benzo[b]fluoranthene			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	Benzo[k]fluoranthene			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	Bis(2-chloroethoxy)methane			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	Bis(2-chloroethyl)ether			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	Di-n-octyl phthalate			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	N-Methylaniline			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	N-Nitrosodiphenylamine			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	Pentachlorophenol			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	Phenanthrene			UJ	MS/MSD recovery below QC criteria
460-195120-1	DDA-20-US	N	Nitrite			UJ	MS/MSD recovery below QC criteria
460-192645-1	UPA-104-US	N	Sulfate			J+	MS/MSD recovery above QC criteria
460-194514-1	DDA-12-US	N	1,4-Dioxane			J-	Surrogate recovery below QC criteria
460-194514-1	PZ-11-EXT	N	1,4-Dioxane			J-	Surrogate recovery below QC criteria
460-194826-2	C-2D	N	1,4-Dioxane			J-	Surrogate recovery below QC criteria
460-193458-1	UPA-102-CA	N	Caprolactam			UJ	LCS/LCSD recovery below QC criteria
460-193458-1	MW-26N	N	Caprolactam			UJ	LCS/LCSD recovery below QC criteria
460-193458-1	GA-101	N	Caprolactam			UJ	LCS/LCSD recovery below QC criteria
460-194006-1	MW-34(124)	N	1,3,5-Trimethylbenzene			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-105B-US	N	Benzo[b]fluoranthene			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-105B-US	N	Benzo[a]pyrene			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-104-US	N	2,4-Dinitrophenol			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-104-US	N	2,4-Dinitrotoluene			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-104-US	N	Benzo[a]pyrene			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-104-US	N	4,6-Dinitro-2-methylphenol			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-104-US	N	2-Nitrophenol			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-104-TZ	N	2,4-Dinitrophenol			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-104-TZ	N	2,4-Dinitrotoluene			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-104-TZ	N	Benzo[a]pyrene			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-104-TZ	N	4,6-Dinitro-2-methylphenol			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-104-TZ	N	2-Nitrophenol			UJ	LCS/LCSD recovery below QC criteria

Page 8 of 10

October 2019 Semi-Annual Groundwater Monitoring Event Delaware Sand and Gravel Superfund Site New Castle, Delaware

SDG	Sample Name	Fraction	Constituent	New Result	New RL	Qualifier	Reason
460-192645-1	UPA-107-US	N	2,4-Dinitrophenol			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-107-US	N	2,4-Dinitrotoluene			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-107-US	N	Benzo[a]pyrene			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-107-US	N	4,6-Dinitro-2-methylphenol			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-107-US	N	2-Nitrophenol			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-107-TZ	N	2,4-Dinitrophenol			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-107-TZ	N	2,4-Dinitrotoluene			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-107-TZ	N	Benzo[a]pyrene			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-107-TZ	N	4,6-Dinitro-2-methylphenol			UJ	LCS/LCSD recovery below QC criteria
460-192645-1	UPA-107-TZ	N	2-Nitrophenol			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	DGC-11S	N	Dibromochloromethane			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	DGC-11D	N	Dibromochloromethane			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	UPA-103-US	N	Dibromochloromethane			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	DGC-10D	N	Dibromochloromethane			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	DGC-10S	N	Dibromochloromethane			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	DGC-11S	N	Bisphenol-A			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	DGC-11D	N	Bisphenol-A			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	UPA-103-US	N	Bisphenol-A			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	DGC-10D	N	Bisphenol-A			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	DGC-10S	N	Bisphenol-A			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	UPA-106-CA	N	Caprolactam			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	UPA-106-USB	N	Caprolactam			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	UPA-106-LS	N	Caprolactam			UJ	LCS/LCSD recovery below QC criteria
460-193027-1	P-6	N	Caprolactam			UJ	LCS/LCSD recovery below QC criteria
460-194514-1	PW-1(U)	N	Caprolactam			UJ	LCS/LCSD recovery below QC criteria
460-194514-1	PZ-5-EXT	N	Caprolactam			UJ	LCS/LCSD recovery below QC criteria
460-194514-1	PZ-11-EXT	N	Caprolactam			UJ	LCS/LCSD recovery below QC criteria
460-194514-1	DDA-19-TZ	N	Caprolactam			UJ	LCS/LCSD recovery below QC criteria
460-194514-1	DDA-19-US	N	Caprolactam			UJ	LCS/LCSD recovery below QC criteria
460-194514-1	PZ-5-EXT	N	Pentachlorophenol			UJ	LCS/LCSD recovery below QC criteria
460-194514-1	PZ-11-EXT	N	Pentachlorophenol			UJ	LCS/LCSD recovery below QC criteria
460-194514-1	DDA-19-TZ	N	Pentachlorophenol			UJ	LCS/LCSD recovery below QC criteria
460-194514-1	DDA-19-US	N	Pentachlorophenol			UJ	LCS/LCSD recovery below QC criteria
460-194826-2	C-20D	N	Pentachlorophenol			UJ	LCS/LCSD recovery below QC criteria
460-194826-2	C-30	N	Pentachlorophenol			UJ	LCS/LCSD recovery below QC criteria
460-194826-2	DDA-18-TZ	N	Pentachlorophenol			UJ	LCS/LCSD recovery below QC criteria
460-194826-2	C-2D	N	Pentachlorophenol			UJ	LCS/LCSD recovery below QC criteria
460-194826-2	DGC-5 (40)	N	Pentachlorophenol			UJ	LCS/LCSD recovery below QC criteria
460-194826-2	DGC-5 (50)	N	Pentachlorophenol			UJ	LCS/LCSD recovery below QC criteria
460-194826-2	B-4DR	N	Benzo[a]anthracene			J+	LCS/LCSD recovery above QC criteria
460-194826-2	C-4D	N	Benzo[a]anthracene			J+	LCS/LCSD recovery above QC criteria

Page 9 of 10

October 2019 Semi-Annual Groundwater Monitoring Event Delaware Sand and Gravel Superfund Site New Castle, Delaware

SDG	Sample Name	Fraction	Constituent	New Result	New RL	Qualifier	Reason
460-194826-2	C-18D	N	Benzo[a]anthracene			J+	LCS/LCSD recovery above QC criteria
460-194826-2	C-19D	N	Benzo[a]anthracene			J+	LCS/LCSD recovery above QC criteria
460-194826-2	B-4DR	N	Benzo[b]fluoranthene			J+	LCS/LCSD recovery above QC criteria
460-194826-2	C-4D	N	Benzo[b]fluoranthene			J+	LCS/LCSD recovery above QC criteria
460-194826-2	C-18D	N	Benzo[b]fluoranthene			J+	LCS/LCSD recovery above QC criteria
460-194826-2	C-19D	N	Benzo[b]fluoranthene			J+	LCS/LCSD recovery above QC criteria
460-193458-1	UPA-102-TZ	N	Phenol			J	LCS/LCSD above QC criteria, Sample result between MDL and RL
All SDGs	All samples		All results	-		-	Laboratory applied U-qualifiers indicating non-detect results and J-qualifiers indicating results Below the reporting limit are retained unless other qualifications are indicated in this table. All other laboratory qualifiers are removed.

Abbreviations:

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MDL - Method Detection Limit

MS - Matrix Spike

MSD - Matrix Spike Duplicate

QC - Quality Control

RL - Reporting Limit

SDG - Sample Delivery Group

Fraction:

N: No Fraction / Not Applicable

Qualifier Definitions:

- J: Estimated Result
- J-: Estimated Result, Biased Low
- J+: Estimated Result, Biased High
- R: Rejected Result
- U: Non-Detect Result
- UJ: Non-Detect Result; RL is Estimated

Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

Lab Sample ID: 460-192645-1

Matrix: Water

Job ID: 460-192645-1

Client Sample ID: UPA-105B-US

Date Collected: 09/30/19 15:00 Date Received: 09/30/19 19:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	2.76		0.10	0.056	mg/L			10/01/19 15:14	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/01/19 15:14	1
Sulfate	11.1		0.60	0.35	mg/L			10/01/19 15:14	1
Method: 300.0 - Anions, Ion Chr	omatogra	iphv - DL							
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	42.1	Q	1.92	0.22	mg/L			10/01/19 16:29	16
Method: 200.8 - Metals (ICP/MS)	- Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	13200		250	233	ug/L		10/03/19 09:36	10/03/19 16:47	5
Potassium	2890		250	73.5	ug/L		10/03/19 09:36	10/03/19 16:47	5
Magnesium	5270		250	24.8	ug/L		10/03/19 09:36	10/03/19 16:47	5
Sodium	20600		250	66.8	ug/L		10/03/19 09:36	10/03/19 16:47	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			10/01/19 15:56	1
Bicarbonate Alkalinity as CaCO3	16.7		5.0	5.0	mg/L			10/03/19 10:54	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/03/19 10:54	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/03/19 15:48	1

Client Sample ID: UPA-105B-US

Date Collected: 09/30/19 15:00

Date Received: 09/30/19 19:30

Lab Sample ID: 460-192645-2

Matrix: Water

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
1,4-Dioxane	3.0		0.40	0.20	ug/L			10/03/19 18:51	1			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene	101		72 - 133			-		10/03/19 18:51	1			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/04/19 07:24	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/04/19 07:24	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/04/19 07:24	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/04/19 07:24	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/04/19 07:24	1
Acetone	4.4	U	5.0	4.4	ug/L			10/04/19 07:24	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/04/19 07:24	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/04/19 07:24	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/04/19 07:24	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/04/19 07:24	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/04/19 07:24	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/04/19 07:24	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/04/19 07:24	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/04/19 07:24	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/04/19 07:24	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/04/19 07:24	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105B-US

Lab Sample ID: 460-192645-2 Date Collected: 09/30/19 15:00

Matrix: Water

Date Received: 09/30/19 19:30

Method: 8260C - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/04/19 07:24	-
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/04/19 07:24	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/04/19 07:24	
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/04/19 07:24	
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/04/19 07:24	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/04/19 07:24	
Benzene	0.20	U	1.0	0.20	ug/L			10/04/19 07:24	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/04/19 07:24	
Bromoform	0.54	U	1.0	0.54	ug/L			10/04/19 07:24	
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/04/19 07:24	
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/04/19 07:24	
Tetrachloroethene	6.2		1.0	0.25	ug/L			10/04/19 07:24	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/04/19 07:24	
Toluene	0.38	U	1.0	0.38	ug/L			10/04/19 07:24	
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/04/19 07:24	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/04/19 07:24	
Styrene	0.42	U	1.0	0.42	ug/L			10/04/19 07:24	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/04/19 07:24	
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/04/19 07:24	
MTBE	0.47	U	1.0	0.47	ug/L			10/04/19 07:24	
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/04/19 07:24	
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/04/19 07:24	
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/04/19 07:24	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/04/19 07:24	
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/04/19 07:24	
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/04/19 07:24	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/04/19 07:24	
Indane	0.35	U	1.0	0.35	ug/L			10/04/19 07:24	
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/04/19 07:24	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/04/19 07:24	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/04/19 07:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		74 - 132			•		10/04/19 07:24	
Toluene-d8 (Surr)	99		80 - 120					10/04/19 07:24	
4-Bromofluorobenzene	99		77 - 124					10/04/19 07:24	
Dibromofluoromethane (Surr)	99		72 - 131					10/04/19 07:24	

Method: 8270D SIM - Semivol	latile Organic Compoun	ds (GC/MS	SIM)				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016 U	0.050	0.016 ug/L		10/03/19 09:39	10/04/19 01:45	1
Benzo[a]pyrene	0.022 ₩UJ	0.050	0.022 ug/L		10/03/19 09:39	10/04/19 01:45	1
Benzo[b]fluoranthene	0.024 U UJ	0.050	0.024 ug/L		10/03/19 09:39	10/04/19 01:45	1
Hexachlorobenzene	0.013 U	0.020	0.013 ug/L		10/03/19 09:39	10/04/19 01:45	1
Pentachlorophenol	0.15 U	0.20	0.15 ug/L		10/03/19 09:39	10/04/19 01:45	1
Bis(2-chloroethyl)ether	0.53	0.030	0.026 ug/L		10/03/19 09:39	10/04/19 01:45	1

Eurofins TestAmerica, Edison 11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105B-US

Lab Sample ID: 460-192645-2 Date Collected: 09/30/19 15:00

Matrix: Water

Method: 8270D - Semivolati	le Organic Co	mpounds (GC/MS)						
Analyte		Qualifier	ŔL		Unit	D	Prepared	Analyzed	Dil Fa
Phenol	0.29	U	10		ug/L		10/03/19 09:39	10/03/19 22:49	
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/03/19 09:39	10/03/19 22:49	
2-Methylphenol	0.26	U	10	0.26	ug/L		10/03/19 09:39	10/03/19 22:49	
4-Methylphenol	0.24	U	10	0.24	ug/L		10/03/19 09:39	10/03/19 22:49	
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/03/19 09:39	10/03/19 22:49	
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/03/19 09:39	10/03/19 22:49	
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/03/19 09:39	10/03/19 22:49	
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/03/19 09:39	10/03/19 22:49	
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/03/19 09:39	10/03/19 22:49	
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/03/19 09:39	10/03/19 22:49	
2,4-Dinitrophenol	14	U	20	14	ug/L		10/03/19 09:39	10/03/19 22:49	
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/03/19 09:39	10/03/19 22:49	
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/03/19 09:39	10/03/19 22:49	
1,3-Dichlorobenzene	2.0	U	10		ug/L		10/03/19 09:39	10/03/19 22:49	
I,4-Dichlorobenzene	1.3	U	10		ug/L		10/03/19 09:39	10/03/19 22:49	
1,2-Dichlorobenzene	1.3	U	10		ug/L			10/03/19 22:49	
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L			10/03/19 22:49	
Hexachloroethane	1.2	U	2.0		ug/L			10/03/19 22:49	
Nitrobenzene	0.57		1.0		ug/L			10/03/19 22:49	
sophorone	0.80		10		ug/L			10/03/19 22:49	
Bis(2-chloroethoxy)methane	0.24		10		ug/L			10/03/19 22:49	
1,2,4-Trichlorobenzene	1.3		2.0		ug/L			10/03/19 22:49	
Naphthalene	1.1		10		ug/L			10/03/19 22:49	
4-Chloroaniline	1.9		10		ug/L			10/03/19 22:49	
Hexachlorobutadiene	0.78		1.0		ug/L			10/03/19 22:49	
2-Methylnaphthalene	1.1		10	1.1	-			10/03/19 22:49	
Hexachlorocyclopentadiene	1.7		10		ug/L			10/03/19 22:49	
2-Chloronaphthalene	1.2		10		ug/L			10/03/19 22:49	
2-Onoronaphinalene 2-Nitroaniline	0.47		10		_			10/03/19 22:49	
	0.47		10		ug/L			10/03/19 22:49	
Dimethyl phthalate	0.77				ug/L				
Acenaphthylene			10		ug/L			10/03/19 22:49	
2,6-Dinitrotoluene	0.39		2.0		ug/L			10/03/19 22:49	
3-Nitroaniline	0.96		10		ug/L			10/03/19 22:49	
Acenaphthene	1.1		10		ug/L			10/03/19 22:49	
Dibenzofuran	1.1		10		ug/L			10/03/19 22:49	
2,4-Dinitrotoluene	1.0		2.0		ug/L			10/03/19 22:49	
Diethyl phthalate	0.98		10		ug/L			10/03/19 22:49	
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/03/19 22:49	
Fluorene	0.91		10		ug/L			10/03/19 22:49	
4-Nitroaniline	0.54		10		ug/L			10/03/19 22:49	
N-Nitrosodiphenylamine	0.89		10		ug/L			10/03/19 22:49	
4-Bromophenyl phenyl ether	0.75		10		ug/L			10/03/19 22:49	
Phenanthrene	0.58		10		ug/L			10/03/19 22:49	
Anthracene	0.63		10		ug/L			10/03/19 22:49	
Carbazole	0.68		10		ug/L			10/03/19 22:49	
Di-n-butyl phthalate	0.84	U	10		ug/L		10/03/19 09:39	10/03/19 22:49	
Fluoranthene	0.84	U	10	0.84	ug/L		10/03/19 09:39	10/03/19 22:49	
Pyrene	1.6	U	10	1.6	ug/L		10/03/19 09:39	10/03/19 22:49	
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/03/19 09:39	10/03/19 22:49	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105B-US

Lab Sample ID: 460-192645-2 Date Collected: 09/30/19 15:00

Matrix: Water

Date Received: 09/30/19 19:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/03/19 09:39	10/03/19 22:49	
Chrysene	0.91	U	2.0	0.91	ug/L		10/03/19 09:39	10/03/19 22:49	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/03/19 09:39	10/03/19 22:49	
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/03/19 09:39	10/03/19 22:49	
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/03/19 09:39	10/03/19 22:49	
Indeno[1,2,3-cd]pyrene	1.3	U	2.0	1.3	ug/L		10/03/19 09:39	10/03/19 22:49	
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/03/19 09:39	10/03/19 22:49	
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/03/19 09:39	10/03/19 22:49	
Diphenyl ether	1.2	U	10	1.2	ug/L		10/03/19 09:39	10/03/19 22:49	
n,n'-Dimethylaniline	0.91	U	1.0	0.91	ug/L		10/03/19 09:39	10/03/19 22:49	
Caprolactam	0.68	U	10	0.68	ug/L		10/03/19 09:39	10/03/19 22:49	
bis (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/03/19 09:39	10/03/19 22:49	
Bisphenol-A	9.9	U *	10	9.9	ug/L		10/03/19 09:39	10/03/19 22:49	
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/03/19 09:39	10/03/19 22:49	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L				10/03/19 09:39	10/03/19 22:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	77		51 - 108				10/03/19 09:39	10/03/19 22:49	
Phenol-d5 (Surr)	19		14 - 39				10/03/19 09:39	10/03/19 22:49	
Terphenyl-d14 (Surr)	75		40 - 148				10/03/19 09:39	10/03/19 22:49	
2,4,6-Tribromophenol (Surr)	87		26 - 139				10/03/19 09:39	10/03/19 22:49	
0.51 / 1/0 /	33		25 - 58				10/03/19 09:39	10/03/19 22:49	
z-r-iuorophenoi (Surr)							10/03/19 09:39	10/03/19 22:49	
, , ,	71		45 - 107						
2-Fluorobiphenyl (Surr)	71		45 _ 107						
2-Fluorobiphenyl (Surr) Method: 6010D - Metals (ICP)	71) - Dissolved	Qualifier	45 ₋ 107	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr) Method: 6010D - Metals (ICP) Analyte	71) - Dissolved				Unit ug/L	D	Prepared 10/04/19 08:13	Analyzed 10/04/19 15:45	
2-Fluorophenol (Surr) 2-Fluorobiphenyl (Surr) Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved	71) - Dissolved Result	Qualifier	RL	1.7		D	10/04/19 08:13		Dil Fa

Client Sample ID: TBGW_093019

Date Collected: 09/30/19 00:00

Date Received: 09/30/19 19:30

Lab Sample ID: 460-192645-3 Matrix: Water

Method: 8260C SIM - Volatile	Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/03/19 02:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	96		72 - 133			-		10/03/19 02:10	1

Method: 8260C - Volatile C	rganic Compo	unds by GC/	MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/04/19 14:05	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/04/19 14:05	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/04/19 14:05	1
Chloroethane	0.32	. U	1.0	0.32	ug/L			10/04/19 14:05	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/04/19 14:05	1
Acetone	13		5.0	4.4	ug/L			10/04/19 14:05	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_093019

Lab Sample ID: 460-192645-3 Date Collected: 09/30/19 00:00

Matrix: Water

Method: 8260C - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon disulfide	0.82	U	1.0	0.82	ug/L		<u> </u>	10/04/19 14:05	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/04/19 14:05	1
1,1-Dichloroethane	0.26	U	1.0		ug/L			10/04/19 14:05	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/04/19 14:05	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/04/19 14:05	1
Chloroform	0.33	U	1.0		ug/L			10/04/19 14:05	1
1,2-Dichloroethane	0.43	U	1.0		ug/L			10/04/19 14:05	1
2-Butanone	1.9	U	5.0		ug/L			10/04/19 14:05	1
1,1,1-Trichloroethane	0.24	U	1.0		ug/L			10/04/19 14:05	1
Carbon tetrachloride	0.21	U	1.0		ug/L			10/04/19 14:05	1
Bromodichloromethane	0.34	U	1.0		ug/L			10/04/19 14:05	1
1,2-Dichloropropane	0.35	U	1.0		ug/L			10/04/19 14:05	1
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/04/19 14:05	1
Trichloroethene	0.31	U	1.0		ug/L			10/04/19 14:05	1
Dibromochloromethane	0.28	U	1.0		ug/L			10/04/19 14:05	1
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/04/19 14:05	1
Benzene	0.20		1.0		ug/L			10/04/19 14:05	1
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/04/19 14:05	1
Bromoform	0.54		1.0		ug/L			10/04/19 14:05	1
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/04/19 14:05	1
2-Hexanone	1.1		5.0		ug/L			10/04/19 14:05	1
Tetrachloroethene	0.25		1.0		ug/L			10/04/19 14:05	
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/04/19 14:05	1
Toluene	0.38		1.0		ug/L			10/04/19 14:05	. 1
Chlorobenzene	0.38		1.0		ug/L			10/04/19 14:05	
Ethylbenzene	0.30		1.0		ug/L			10/04/19 14:05	1
Styrene	0.42		1.0		ug/L			10/04/19 14:05	1
Xylenes, Total	0.65		2.0		ug/L			10/04/19 14:05	1
Ethyl ether	0.21		1.0		ug/L			10/04/19 14:05	1
MTBE	0.47		1.0		ug/L			10/04/19 14:05	1
Tetrahydrofuran	1.0		2.0		ug/L			10/04/19 14:05	
Cyclohexane	0.32		1.0		ug/L			10/04/19 14:05	1
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/04/19 14:05	. 1
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/04/19 14:05	
Isopropylbenzene	0.34		1.0		ug/L			10/04/19 14:05	1
N-Propylbenzene	0.32		1.0		ug/L			10/04/19 14:05	. 1
Methylcyclohexane	0.26		1.0		ug/L			10/04/19 14:05	
Dichlorofluoromethane	0.34		1.0		ug/L			10/04/19 14:05	1
Indane	0.35		1.0		ug/L			10/04/19 14:05	. 1
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/04/19 14:05	·······1
Tentativaly Identified Compound	Est. Result	Qualifier	Unit	D .	DT	CAS No.	Prepared	Analyzad	Dil Fac
Tentatively Identified Compound Tentatively Identified Compound	None	Quantier	ug/L	<i>-</i>	RT	CAS NO.	rrepareu	Analyzed 10/04/19 14:05	DII Fac
Surrogate	%Recovery	Ouglifica	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	- Qualifier	74 - 132				riepaieu	10/04/19 14:05	DII Fac
Toluene-d8 (Surr)	93 96		74 - 132 80 - 120					10/04/19 14:05	1
Bromofluorobenzene	100		77 - 124					10/04/19 14:05	1
Dibromofluoromethane (Surr)	100		77 - 124 72 - 131					10/04/19 14:05	

Eurofins TestAmerica, Edison 11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105B-TZ

Lab Sample ID: 460-192721-1

Date Collected: 10/01/19 11:55 Matrix: Water

Date Received: 10/01/19 20:00

Analyte	tile Organic Co Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/04/19 10:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		72 - 133					10/04/19 10:15	1
Method: 8260C - Volatile (Organic Compo	unds by G	C/MS						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/04/19 16:10	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/04/19 16:10	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/04/19 16:10	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/04/19 16:10	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/04/19 16:10	1
Acetone	4.4	U	5.0	4.4	ug/L			10/04/19 16:10	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/04/19 16:10	1
1,1-Dichloroethene	0.26	U	1.0	0.26				10/04/19 16:10	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/04/19 16:10	1
trans-1.2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/04/19 16:10	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	-			10/04/19 16:10	1
Chloroform	0.33	U	1.0	0.33	-			10/04/19 16:10	1
1,2-Dichloroethane	0.43		1.0	0.43	-			10/04/19 16:10	1
2-Butanone (MEK)	1.9		5.0		ug/L			10/04/19 16:10	1
1,1,1-Trichloroethane	0.24		1.0	0.24	-			10/04/19 16:10	1
Carbon tetrachloride	0.21		1.0	0.21	ug/L			10/04/19 16:10	
Bromodichloromethane	0.34		1.0	0.34	-			10/04/19 16:10	1
1,2-Dichloropropane	0.35		1.0	0.35	-			10/04/19 16:10	1
cis-1,3-Dichloropropene	0.22		1.0	0.22				10/04/19 16:10	
Trichloroethene	0.31		1.0	0.31	-			10/04/19 16:10	1
Dibromochloromethane	0.28		1.0	0.28	-			10/04/19 16:10	1
1,1,2-Trichloroethane	0.43		1.0	0.43	-			10/04/19 16:10	
Benzene	0.20		1.0		ug/L			10/04/19 16:10	1
trans-1,3-Dichloropropene	0.49		1.0	0.49	-			10/04/19 16:10	1
Bromoform	0.54		1.0	0.54	_			10/04/19 16:10	
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/04/19 16:10	1
2-Hexanone	1.1		5.0		ug/L ug/L			10/04/19 16:10	1
Tetrachloroethene	0.25		1.0	0.25	-			10/04/19 16:10	1
1,1,2,2-Tetrachloroethane	0.23		1.0	0.23	-			10/04/19 16:10	1
Toluene	0.38		1.0		-			10/04/19 16:10	1
Chlorobenzene	0.38		1.0	0.38	ug/L ug/L			10/04/19 16:10	
Ethylbenzene	0.30				-				1
•			1.0		ug/L			10/04/19 16:10	1
Styrene	0.42		1.0	0.42	-			10/04/19 16:10	1
Xylenes, Total	0.65		2.0	0.65	-			10/04/19 16:10	1
Diethyl ether	0.21		1.0	0.21	-			10/04/19 16:10	1
MTBE	0.47		1.0	0.47	-			10/04/19 16:10	1
Tetrahydrofuran	1.0		2.0		ug/L			10/04/19 16:10	1
Cyclohexane	0.32		1.0	0.32	-			10/04/19 16:10	1
1,2,4-Trimethylbenzene	0.37		1.0	0.37	-			10/04/19 16:10	1
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/04/19 16:10	1
Isopropylbenzene	0.34		1.0		ug/L			10/04/19 16:10	1
N-Propylbenzene	0.32	U	1.0		ug/L ug/L			10/04/19 16:10 10/04/19 16:10	1

Eurofins TestAmerica, Edison

11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105B-TZ

Lab Sample ID: 460-192721-1 Date Collected: 10/01/19 11:55

Matrix: Water

Analyte Indane Dichlorofluoromethane 1,2,3-Trimethylbenzene Tentatively Identified Compound Tentatively Identified Compound Surrogate 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluoromethane (Surr)	0.35 0.34 0.36 Est. Result None %Recovery 92 103 97	U U Qualifier	RL 1.0 1.0 1.0 Unit ug/L Limits 74 - 132	0.	35 34 36	Unit ug/L ug/L ug/L	CAS No.	Prepared Prepared	Analyzed 10/04/19 16:10 10/04/19 16:10 10/04/19 16:10 Analyzed 10/04/19 16:10	Dil Fac
Dichlorofluoromethane 1,2,3-Trimethylbenzene Tentatively Identified Compound Tentatively Identified Compound Surrogate 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene	0.34 0.36 Est. Result None %Recovery 92 103	U U Qualifier	1.0 1.0 Unit ug/L Limits	0. 0.	34 36	ug/L ug/L	CAS No.	Prepared	10/04/19 16:10 10/04/19 16:10 Analyzed	Dil Fac
1,2,3-Trimethylbenzene Tentatively Identified Compound Tentatively Identified Compound Surrogate 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene	0.36 Est. Result None %Recovery 92 103	Qualifier	1.0 Unit ug/L Limits	0.	36	ug/L	CAS No.	Prepared	10/04/19 16:10 Analyzed	Dil Fac
Tentatively Identified Compound Surrogate 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene	None %Recovery 92 103		ug/L Limits	<u>D</u>	R	RT	CAS No.	Prepared	-	
Surrogate 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene	%Recovery 92 103	Qualifier	Limits						10/04/19 16:10	
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene	92 103	Qualifier								
Toluene-d8 (Surr) 4-Bromofluorobenzene	103		74 - 132					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene									10/04/19 16:10	
	97		80 - 120						10/04/19 16:10	•
Dibromofluoromethane (Surr)			77 - 124						10/04/19 16:10	
,	96		72 - 131						10/04/19 16:10	
Benzo[a]anthracene Benzo[a]pyrene	0.016 0.022		0.050 0.050			ug/L ug/l		10/04/19 10:15 10/04/19 10:15	10/05/19 00:51 10/05/19 00:51	
Analyte Renzolalanthracene		Qualifier	RL			Unit	D	Prepared 10/04/19 10:15	Analyzed	Dil Fa
Benzo[a]pyrene						ug/L				•
Benzo[b]fluoranthene	0.024		0.050			ug/L		10/04/19 10:15		
Hexachlorobenzene	0.013		0.020			ug/L		10/04/19 10:15		
Pentachlorophenol	0.15	U	0.20			ug/L		10/04/19 10:15	10/05/19 00:51	
Bis(2-chloroethyl)ether	0.026	U	0.030	0.0	26	ug/L		10/04/19 10:15	10/05/19 00:51	1
Method: 8270D - Semivolatile			` '							
Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fa
Phenol	0.29	U	10			ug/L		10/04/19 10:15	10/04/19 19:52	,
2-Chlorophenol	0.38	U	10	0.	38	ug/L		10/04/19 10:15	10/04/19 19:52	•
2-Methylphenol	0.26	U	10	0.	26	ug/L		10/04/19 10:15	10/04/19 19:52	
4-Methylphenol	9.4	J	10	0.	24	ug/L		10/04/19 10:15	10/04/19 19:52	
2-Nitrophenol	0.75	U	10	0.	75	ug/L		10/04/19 10:15	10/04/19 19:52	
2,4-Dimethylphenol	0.24	U	10	0.	24	ug/L		10/04/19 10:15	10/04/19 19:52	
2,4-Dimetryphenol		U	10	٠	40					
2,4-Dirhetryphenol	0.42	-		U.	42	ug/L		10/04/19 10:15	10/04/19 19:52	

Analyte	Result	Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/04/19 10:15	10/04/19 19:52	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/04/19 10:15	10/04/19 19:52	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/04/19 10:15	10/04/19 19:52	1
4-Methylphenol	9.4	J	10	0.24	ug/L		10/04/19 10:15	10/04/19 19:52	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/04/19 10:15	10/04/19 19:52	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/04/19 10:15	10/04/19 19:52	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/04/19 10:15	10/04/19 19:52	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/04/19 10:15	10/04/19 19:52	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/04/19 10:15	10/04/19 19:52	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/04/19 10:15	10/04/19 19:52	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/04/19 10:15	10/04/19 19:52	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/04/19 10:15	10/04/19 19:52	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/04/19 10:15	10/04/19 19:52	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/04/19 10:15	10/04/19 19:52	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/04/19 10:15	10/04/19 19:52	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/04/19 10:15	10/04/19 19:52	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/04/19 10:15	10/04/19 19:52	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/04/19 10:15	10/04/19 19:52	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/04/19 10:15	10/04/19 19:52	1
Isophorone	0.80	U	10	0.80	ug/L		10/04/19 10:15	10/04/19 19:52	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/04/19 10:15	10/04/19 19:52	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/04/19 10:15	10/04/19 19:52	1
Naphthalene	1.1	U	10	1.1	ug/L		10/04/19 10:15	10/04/19 19:52	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/04/19 10:15	10/04/19 19:52	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/04/19 10:15	10/04/19 19:52	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/04/19 10:15	10/04/19 19:52	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105B-TZ

Date Received: 10/01/19 20:00

Lab Sample ID: 460-192721-1 Date Collected: 10/01/19 11:55

Matrix: Water

Method: 8270D - Semivolatile Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	1.7		10		ug/L	<u>-</u>	•	10/04/19 19:52	
2-Chloronaphthalene	1.2		10		ug/L			10/04/19 19:52	
2-Nitroaniline	0.47		10		ug/L			10/04/19 19:52	
Dimethyl phthalate	0.77		10		ug/L			10/04/19 19:52	
Acenaphthylene	0.82		10		ug/L			10/04/19 19:52	
2,6-Dinitrotoluene	0.39		2.0		ug/L			10/04/19 19:52	
3-Nitroaniline	0.96		10		ug/L			10/04/19 19:52	
Acenaphthene	1.1		10	1.1				10/04/19 19:52	
Dibenzofuran	1.1		10	1.1	-			10/04/19 19:52	
2.4-Dinitrotoluene	1.0		2.0	1.0	•			10/04/19 19:52	
Diethyl phthalate	0.98		10		ug/L			10/04/19 19:52	
4-Chlorophenyl phenyl ether	1.3		10	1.3				10/04/19 19:52	
Fluorene	0.91		10		ug/L			10/04/19 19:52	
4-Nitroaniline	0.51		10		ug/L			10/04/19 19:52	
N-Nitrosodiphenylamine	0.89		10		ug/L			10/04/19 19:52	
4-Bromophenyl phenyl ether	0.75		10		ug/L			10/04/19 19:52	
Phenanthrene	0.78		10		ug/L			10/04/19 19:52	
Anthracene	0.63		10		ug/L			10/04/19 19:52	
Carbazole	0.68		10		ug/L			10/04/19 19:52	
Di-n-butyl phthalate	0.84		10		ug/L			10/04/19 19:52	
Fluoranthene	0.84		10		ug/L			10/04/19 19:52	
Pyrene	1.6		10	1.6	-			10/04/19 19:52	
Butyl benzyl phthalate	0.85		10		ug/L			10/04/19 19:52	
3,3'-Dichlorobenzidine	1.4		10	1.4	_			10/04/19 19:52	
Chrysene	0.91		2.0		ug/L			10/04/19 19:52	
Bis(2-ethylhexyl) phthalate	1.7		2.0	1.7	_			10/04/19 19:52	
Di-n-octyl phthalate	4.8		10	4.8	_			10/04/19 19:52	
Benzo[k]fluoranthene	0.67		1.0		ug/L ug/L			10/04/19 19:52	
	1.3		2.0	1.3	_			10/04/19 19:52	
Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene	0.72		1.0		ug/L ug/L			10/04/19 19:52	
() /	1.4		1.0		ug/L ug/L			10/04/19 19:52	
Benzo[g,h,i]perylene Diphenyl ether	1.4		10		ug/L ug/L			10/04/19 19:52	
n,n'-Dimethylaniline	0.91		1.0		ug/L ug/L			10/04/19 19:52	
•	0.68		1.0		_			10/04/19 19:52	
Caprolactam	0.63		10		ug/L ug/L			10/04/19 19:52	
bis (2-chloroisopropyl) ether	9.9		10		ug/L ug/L			10/04/19 19:52	
Bisphenol-A N-Methylaniline	0.48		5.0		ug/L ug/L			10/04/19 19:52	
Tentatively Identified Compound	Est. Result	Qualifier	Unit		RT	CAS No.	Prepared	Analyzed	Dil Fac
Butanoic acid, 3-methyl-		J N	ug/L		.92		10/04/19 10:15	-	Diria
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	80		51 - 108					10/04/19 19:52	
Phenol-d5 (Surr)	26		14 - 39					10/04/19 19:52	
Terphenyl-d14 (Surr)	62		40 - 148					10/04/19 19:52	
2,4,6-Tribromophenol (Surr)	92		26 - 139					10/04/19 19:52	,
2-Fluorophenol (Surr)	39		25 - 58					10/04/19 19:52	
2-Fluorobiphenyl (Surr)	73		45 ₋ 107					10/04/19 19:52	•

Eurofins TestAmerica, Edison 11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105B-TZ

Lab Sample ID: 460-192721-1

Date Collected: 10/01/19 11:55 Matrix: Water

Date	Received	l: 10/01	/19	20:00

Analyte	omatogra [.] Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	17.6		0.72	0.084	mg/L			10/02/19 14:34	6
Nitrate as N	0.056	U	0.10	0.056	-			10/02/19 13:34	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/02/19 13:34	1
Sulfate	0.35	U	0.60		mg/L			10/02/19 13:34	1
_ Method: 200.8 - Metals (ICP/MS) - Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	24000		250	233	ug/L		10/03/19 09:36	10/03/19 18:19	5
Potassium	4580		250	73.5	ug/L		10/03/19 09:36	10/03/19 18:19	5
Magnesium	6780		250	24.8	ug/L		10/03/19 09:36	10/03/19 18:19	5
Sodium	21300		250	66.8	ug/L		10/03/19 09:36	10/03/19 18:19	5
· Method: 6010D - Metals (ICP) - I	Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cahalt Dissalvad	1.7		50.0	4 99	ug/L		10/07/19 08:20	10/07/19 19:13	
Cobalt, Dissolved	1.7	U	50.0	1.7	ug/L		10/01/10 00.20	10/07/10 10.10	1
Iron, Dissolved	14200	U	150	1. <i>7</i> 34.2	•		10/07/19 08:20	10/07/19 19:13	1 1
,		U			ug/L				1 1 1
Iron, Dissolved Manganese, Dissolved	14200	Ü	150	34.2	ug/L		10/07/19 08:20	10/07/19 19:13	1 1 1
Iron, Dissolved	14200 221	Qualifier	150	34.2	ug/L ug/L	D	10/07/19 08:20	10/07/19 19:13	1 1 1 Dil Fac
Iron, Dissolved Manganese, Dissolved General Chemistry	14200 221	Qualifier	150 15.0	34.2 0.99	ug/L ug/L Unit	<u>D</u>	10/07/19 08:20 10/07/19 08:20	10/07/19 19:13 10/07/19 19:13	
Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	14200 221 Result	Qualifier	150 15.0 RL	34.2 0.99 MD L	ug/L ug/L Unit	<u>D</u>	10/07/19 08:20 10/07/19 08:20	10/07/19 19:13 10/07/19 19:13 Analyzed	
Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	14200 221 Result 0.068	Qualifier U	150 15.0 RL 0.10	34.2 0.99 MDL 0.068 5.0	ug/L ug/L Unit mg/L	<u>D</u>	10/07/19 08:20 10/07/19 08:20	10/07/19 19:13 10/07/19 19:13 Analyzed 10/03/19 11:30	

Client Sample ID: UPA-105A-TZ

Date Collected: 10/01/19 12:30

Date Received: 10/01/19 20:00

Lab Sample ID: 460-192721-2 Matrix: Water

Method: 8260C SIM - Volatile C	Organic Co	mpounds (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/04/19 11:05	1
Surrogate 4-Bromofluorobenzene	%Recovery	Qualifier	Limits 72 - 133			-	Prepared	Analyzed 10/04/19 11:05	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/04/19 16:28	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/04/19 16:28	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/04/19 16:28	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/04/19 16:28	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/04/19 16:28	1
Acetone	4.4	U	5.0	4.4	ug/L			10/04/19 16:28	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/04/19 16:28	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/04/19 16:28	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/04/19 16:28	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/04/19 16:28	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/04/19 16:28	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/04/19 16:28	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/04/19 16:28	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105A-TZ

Lab Sample ID: 460-192721-2 Date Collected: 10/01/19 12:30

Matrix: Water

Date Received: 10/01/19 20:00

Method: 8260C - Volatile Org Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L		-	10/04/19 16:28	1
1,1,1-Trichloroethane	0.24	U	1.0		ug/L			10/04/19 16:28	1
Carbon tetrachloride	0.21	U	1.0		ug/L			10/04/19 16:28	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/04/19 16:28	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/04/19 16:28	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/04/19 16:28	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/04/19 16:28	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/04/19 16:28	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/04/19 16:28	1
Benzene	0.20	U	1.0	0.20	ug/L			10/04/19 16:28	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/04/19 16:28	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/04/19 16:28	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/04/19 16:28	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/04/19 16:28	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/04/19 16:28	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/04/19 16:28	1
Toluene	0.38	U	1.0	0.38	ug/L			10/04/19 16:28	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/04/19 16:28	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/04/19 16:28	1
Styrene	0.42	U	1.0	0.42	ug/L			10/04/19 16:28	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/04/19 16:28	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/04/19 16:28	1
MTBE	0.47	U	1.0	0.47	ug/L			10/04/19 16:28	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/04/19 16:28	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/04/19 16:28	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/04/19 16:28	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/04/19 16:28	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/04/19 16:28	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/04/19 16:28	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/04/19 16:28	1
Indane	0.35	U	1.0	0.35	ug/L			10/04/19 16:28	1
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/04/19 16:28	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/04/19 16:28	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/04/19 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		74 - 132					10/04/19 16:28	1
Toluene-d8 (Surr)	104		80 - 120					10/04/19 16:28	1
4-Bromofluorobenzene	96		77 - 124					10/04/19 16:28	1
Dibromofluoromethane (Surr)	94		72 - 131					10/04/19 16:28	1
Method: 8270D SIM - Semivo	latile Organi	c Compo	unds (GC/N	IS SIM)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac

Method: 8270D SIM - Semivol	latile Organio	: Compoun	ids (GC/MS i	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/04/19 10:15	10/05/19 01:12	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/04/19 10:15	10/05/19 01:12	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/04/19 10:15	10/05/19 01:12	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/04/19 10:15	10/05/19 01:12	1
Pentachlorophenol	0.15	U	0.20	0.15	ug/L		10/04/19 10:15	10/05/19 01:12	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105A-TZ

Lab Sample ID: 460-192721-2 Date Collected: 10/01/19 12:30

Matrix: Water

Date Received: 10/01/19 20:00

Method: 8270D SIM - Semiv Analyte		c Compou Qualifier	nds (GC/MS RL	SIM) (Co		i) D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethyl)ether	0.026		0.030	0.026		<u>-</u>	•	10/05/19 01:12	1
 	:l-		(00/880)						
Method: 8270D - Semivolati Analyte		mpounds Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29		10		ug/L	b	10/04/19 10:15	-	1
2-Chlorophenol	0.38	_	10	0.29	-			10/04/19 20:14	1
2-Methylphenol	0.26		10	0.26	-			10/04/19 20:14	1
4-Methylphenol	0.24		10	0.24				10/04/19 20:14	
2-Nitrophenol	0.75		10	0.24				10/04/19 20:14	1
2,4-Dimethylphenol	0.73		10	0.73	•		10/04/19 10:15		1
2,4-Dichlorophenol	0.42		10	0.42	•			10/04/19 20:14	
4-Chloro-3-methylphenol	0.58		10	0.42				10/04/19 20:14	1
2,4,6-Trichlorophenol	0.30		10	0.30	•		10/04/19 10:15		1
2,4,5-Trichlorophenol	0.28		10					10/04/19 20:14	
•	0.28		20	0.28				10/04/19 20:14	•
2,4-Dinitrophenol	0.69		20 20		ug/L		10/04/19 10:15		1
4-Nitrophenol 4,6-Dinitro-2-methylphenol	0.69		20	0.69				10/04/19 20:14	1 1
• •	2.0		10		ug/L			10/04/19 20:14	•
1,3-Dichlorobenzene 1.4-Dichlorobenzene	1.3		10	2.0	ug/L		10/04/19 10:15		1
	1.3		10		ug/L			10/04/19 20:14	1 1
1,2-Dichlorobenzene	0.43			1.3 0.43	ug/L			10/04/19 20:14	•
N-Nitrosodi-n-propylamine Hexachloroethane	1.2		1.0 2.0		_		10/04/19 10:15		1
					ug/L				1
Nitrobenzene	0.57		1.0	0.57	_			10/04/19 20:14	1
Isophorone	0.80		10	0.80	_			10/04/19 20:14	1
Bis(2-chloroethoxy)methane	0.24		10	0.24	_			10/04/19 20:14	1
1,2,4-Trichlorobenzene	1.3		2.0		ug/L			10/04/19 20:14	1
Naphthalene	1.1		10	1.1	ug/L			10/04/19 20:14	1
4-Chloroaniline	1.9		10	1.9	ug/L			10/04/19 20:14	1
Hexachlorobutadiene	0.78		1.0		ug/L			10/04/19 20:14	1
2-Methylnaphthalene	1.1		10	1.1	ug/L			10/04/19 20:14	1
Hexachlorocyclopentadiene	1.7		10		ug/L			10/04/19 20:14	1
2-Chloronaphthalene	1.2		10		ug/L			10/04/19 20:14	1
2-Nitroaniline	0.47		10	0.47	•			10/04/19 20:14	1
Dimethyl phthalate	0.77		10	0.77	•		10/04/19 10:15		1
Acenaphthylene	0.82		10	0.82	•		10/04/19 10:15		1
2,6-Dinitrotoluene	0.39		2.0	0.39			10/04/19 10:15		1
3-Nitroaniline	0.96		10	0.96	-			10/04/19 20:14	
Acenaphthene	1.1		10		ug/L		10/04/19 10:15		1
Dibenzofuran	1.1		10		ug/L			10/04/19 20:14	1
2,4-Dinitrotoluene	1.0		2.0		ug/L		10/04/19 10:15		1
Diethyl phthalate	0.98		10	0.98				10/04/19 20:14	1
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/04/19 20:14	1
Fluorene	0.91		10	0.91			10/04/19 10:15		1
4-Nitroaniline	0.54		10	0.54	-			10/04/19 20:14	1
N-Nitrosodiphenylamine	0.89		10	0.89	•			10/04/19 20:14	1
4-Bromophenyl phenyl ether	0.75		10	0.75			10/04/19 10:15		1
Phenanthrene	0.58		10	0.58	-			10/04/19 20:14	1
Anthracene	0.63		10	0.63	-			10/04/19 20:14	1
Carbazole	0.68		10	0.68	ug/L		10/04/19 10:15	10/04/19 20:14	1
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/04/19 10:15	10/04/19 20:14	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105A-TZ

Date Received: 10/01/19 20:00

Lab Sample ID: 460-192721-2 Date Collected: 10/01/19 12:30

Matrix: Water

Method: 8270D - Semivolatile Analyte	***	Qualifier	RL		L Unit	D	Prepared	Analyzed	Dil Fa
Fluoranthene	0.84	U	10	0.8	4 ug/L		10/04/19 10:15	10/04/19 20:14	
Pyrene	1.6	U	10	1.	6 ug/L		10/04/19 10:15	10/04/19 20:14	
Butyl benzyl phthalate	0.85	U	10	0.8	5 ug/L		10/04/19 10:15	10/04/19 20:14	
3,3'-Dichlorobenzidine	1.4	U	10	1.	4 ug/L		10/04/19 10:15	10/04/19 20:14	
Chrysene	0.91	U	2.0	0.9	1 ug/L		10/04/19 10:15	10/04/19 20:14	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.			10/04/19 10:15	10/04/19 20:14	1
Di-n-octyl phthalate	4.8	U	10	4.			10/04/19 10:15	10/04/19 20:14	1
Benzo[k]fluoranthene	0.67	U	1.0	0.6	7 ug/L		10/04/19 10:15	10/04/19 20:14	1
Indeno[1,2,3-cd]pyrene	1.3	U	2.0	1.			10/04/19 10:15	10/04/19 20:14	1
Dibenz(a,h)anthracene	0.72	U	1.0	0.7			10/04/19 10:15	10/04/19 20:14	1
Benzo[g,h,i]perylene	1.4		10		4 ug/L			10/04/19 20:14	1
Diphenyl ether	1.2		10		2 ug/L			10/04/19 20:14	
n,n'-Dimethylaniline	0.91		1.0	0.9				10/04/19 20:14	1
Caprolactam	0.68		10	0.6	•			10/04/19 20:14	1
bis (2-chloroisopropyl) ether	0.63		10	0.6				10/04/19 20:14	
Bisphenol-A	9.9		10	9.				10/04/19 20:14	1
N-Methylaniline	0.48		5.0		9 ug/L 8 ug/L			10/04/19 20:14	1
n-Metrylaniine	0.40	U	5.0	0.4	o ug/L		10/04/19 10.15	10/04/19 20.14	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				10/04/19 10:15	10/04/19 20:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	70		51 - 108				10/04/19 10:15	10/04/19 20:14	-
Phenol-d5 (Surr)	23		14 - 39				10/04/19 10:15	10/04/19 20:14	1
Terphenyl-d14 (Surr)	55		40 - 148				10/04/19 10:15	10/04/19 20:14	1
2,4,6-Tribromophenol (Surr)	78		26 - 139				10/04/19 10:15	10/04/19 20:14	
2-Fluorophenol (Surr)	34		25 - 58				10/04/19 10:15	10/04/19 20:14	-
2-Fluorobiphenyl (Surr)	65		45 _ 107				10/04/19 10:15	10/04/19 20:14	1
ː Method: 300.0 - Anions, Ion (hromatogra	nhv							
Analyte		Qualifier	RL	MD	L Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.56		0.12	0.01	4 mg/L			10/02/19 13:49	
Nitrate as N	0.056	U	0.10	0.05	6 mg/L			10/02/19 13:49	1
Nitrite as N	0.076	U	0.12	0.07	6 mg/L			10/02/19 13:49	1
Sulfate	15.1		0.60		5 mg/L			10/02/19 13:49	1
: Method: 200.8 - Metals (ICP/N	AC) Total D	ncavarah	lo.						
Analyte		Qualifier	RL	MD	L Unit	D	Prepared	Analyzed	Dil Fac
Calcium	14800	Quantici	250		3 ug/L		10/03/19 04:26	10/03/19 18:21	511140
Potassium	3950		250		5 ug/L		10/03/19 04:26	10/03/19 18:21	5
	2930		250		8 ug/L		10/03/19 04:26	10/03/19 18:21	5
Magnesium Sodium	10100		250		8 ug/L			10/03/19 18:21	5
-					=				
Method: 6010D - Metals (ICP) Analyte		Qualifier	RL	R/ID	L Unit	D	Prepared	Analyzed	Dil Fac
						b			
Cobalt, Dissolved	1.7	U	50.0		7 ug/L		10/07/19 08:20	10/07/19 19:21	1
Iron, Dissolved	3200		150		2 ug/L		10/07/19 08:20	10/07/19 19:21	1
Manganese, Dissolved	93.6		15.0	-	9 ug/L		10/07/19 08:20		1

Eurofins TestAmerica, Edison 11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105A-TZ

Lab Sample ID: 460-192721-2 Date Collected: 10/01/19 12:30

Matrix: Water

Date Received: 10/01/19 20:00

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			10/03/19 11:32	1
Bicarbonate Alkalinity as CaCO3	55.0		5.0	5.0	mg/L			10/03/19 11:36	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/03/19 11:36	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/03/19 15:48	1

Lab Sample ID: 460-192721-3 Client Sample ID: UPA-105B-LS

Date Collected: 10/01/19 15:35 Matrix: Water

Date Received: 10/01/19 20:00

Method: 8	260C SIM - Volatile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	1.4		0.40	0.20	ug/L			10/04/19 11:31	1
Surrogate	%Recover	Oualifier	Limits				Prepared	Analyzed	Dil Fac
		·					- repareu		Dirrac
4-Bromofluore	obenzene 93	i	72 - 133					10/04/19 11:31	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/04/19 16:46	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/04/19 16:46	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/04/19 16:46	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/04/19 16:46	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/04/19 16:46	1
Acetone	4.4	U	5.0	4.4	ug/L			10/04/19 16:46	1
Carbon disulfide	6.4		1.0	0.82	ug/L			10/04/19 16:46	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/04/19 16:46	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/04/19 16:46	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/04/19 16:46	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/04/19 16:46	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/04/19 16:46	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/04/19 16:46	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/04/19 16:46	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/04/19 16:46	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/04/19 16:46	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/04/19 16:46	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/04/19 16:46	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/04/19 16:46	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/04/19 16:46	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/04/19 16:46	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/04/19 16:46	1
Benzene	0.20	U	1.0	0.20	ug/L			10/04/19 16:46	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/04/19 16:46	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/04/19 16:46	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/04/19 16:46	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/04/19 16:46	1
Tetrachloroethene	3.3		1.0	0.25	ug/L			10/04/19 16:46	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/04/19 16:46	1
Toluene	0.38	U	1.0	0.38	ug/L			10/04/19 16:46	1
Chlorobenzene	0.38	U	1.0		ug/L			10/04/19 16:46	1
Ethylbenzene	0.30	U	1.0		ug/L			10/04/19 16:46	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105B-LS

Lab Sample ID: 460-192721-3 Date Collected: 10/01/19 15:35

Matrix: Water

Date Received: 10/01/19 20:00

2,4-Dinitrophenol

4,6-Dinitro-2-methylphenol

1,3-Dichlorobenzene

1,4-Dichlorobenzene

4-Nitrophenol

Method: 8260C - Volatile Org ^{Analyte}		Qualifier	` RL		Unit	D	Prepared	Analyzed	Dil Fa
Styrene	0.42		1.0	0.42	ug/L		<u> </u>	10/04/19 16:46	
Kylenes, Total	0.65	U	2.0		ug/L			10/04/19 16:46	
Diethyl ether	0.21	U	1.0		ug/L			10/04/19 16:46	
MTBE	0.47	U	1.0	0.47	ug/L			10/04/19 16:46	
etrahydrofuran	1.0	U	2.0		ug/L			10/04/19 16:46	
Cyclohexane	0.32	U	1.0		ug/L			10/04/19 16:46	
,2,4-Trimethylbenzene	0.37	U	1.0		ug/L			10/04/19 16:46	
,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/04/19 16:46	
sopropylbenzene	0.34	U	1.0	0.34	ug/L			10/04/19 16:46	
I-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/04/19 16:46	
1ethylcyclohexane	0.26	U	1.0	0.26	ug/L			10/04/19 16:46	
ndane	0.35	U	1.0		ug/L			10/04/19 16:46	
Dichlorofluoromethane	0.34	U	1.0		ug/L			10/04/19 16:46	
,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/04/19 16:46	
entatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil F
entatively Identified Compound	None		ug/L					10/04/19 16:46	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
2-Dichloroethane-d4 (Surr)	94		74 - 132					10/04/19 16:46	
oluene-d8 (Surr)	105		80 - 120					10/04/19 16:46	
JIGOTO GO (GUIT)			00-720						
, ,	96		77 - 124					10/04/19 16:46	
-Bromofluorobenzene Dibromofluoromethane (Surr)								10/04/19 16:46 10/04/19 16:46	
l-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Inalyte	96 96 Iatile Organi Result	Qualifier	77 ₋ 124 72 ₋ 131 unds (GC/M RL	MDL	Unit	<u>D</u>	Prepared	10/04/19 16:46 Analyzed	Dil F
-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene	96 96 latile Organi Result 0.016	Qualifier U	77 - 124 72 - 131 unds (GC/M RL 0.050	MDL 0.016	ug/L	<u>D</u>	10/04/19 10:15	Analyzed 10/05/19 01:33	Dil F
-Bromofluorobenzene hibromofluoromethane (Surr) Method: 8270D SIM - Semivo malyte lenzo[a]anthracene denzo[a]pyrene	96 96 latile Organi Result 0.016 0.022	Qualifier U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050	0.016 0.022	ug/L ug/L	<u>D</u>	10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33	Dil F
-Bromofluorobenzene bibromofluoromethane (Surr) flethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene	96 96 Iatile Organi Result 0.016 0.022 0.024	Qualifier U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050	0.016 0.022 0.024	ug/L ug/L ug/L	<u>D</u>	10/04/19 10:15 10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33	Dil F
-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo analyte denzo[a]anthracene denzo[a]pyrene denzo[b]fluoranthene dexachlorobenzene	96 96 Iatile Organi Result 0.016 0.022 0.024 0.013	Qualifier U U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.050	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L	<u>D</u>	10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33	Dil F
-Bromofluorobenzene bibromofluoromethane (Surr) flethod: 8270D SIM - Semivo unalyte enzo[a]anthracene denzo[a]pyrene denzo[b]fluoranthene dexachlorobenzene dentachlorophenol	96 latile Organi Result 0.016 0.022 0.024 0.013 0.15	Qualifier U U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.020 0.20	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33	DilF
-Bromofluorobenzene hibromofluoromethane (Surr) flethod: 8270D SIM - Semivo nalyte enzo[a]anthracene henzo[a]pyrene henzo[b]fluoranthene lexachlorobenzene entachlorophenol	96 96 Iatile Organi Result 0.016 0.022 0.024 0.013	Qualifier U U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.050	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33	Dil F
-Bromofluorobenzene hibromofluoromethane (Surr) Method: 8270D SIM - Semivo nalyte enzo[a]anthracene henzo[a]pyrene henzo[b]fluoranthene lexachlorobenzene hentachlorophenol his(2-chloroethyl)ether Method: 8270D - Semivolatile	96 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.11	Qualifier U U U U U U mpounds	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33	
-Bromofluorobenzene hibromofluoromethane (Surr) Method: 8270D SIM - Semivo nalyte enzo[a]anthracene henzo[a]pyrene henzo[b]fluoranthene lexachlorobenzene hentachlorophenol his(2-chloroethyl)ether Method: 8270D - Semivolatile nalyte	96 96 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.11 e Organic Co	Qualifier U U U U U U Qualifier	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030 (GC/MS) RL	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L	D	10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 Prepared	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33	Dil F
-Bromofluorobenzene ibromofluoromethane (Surr) lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene lexachlorobenzene entachlorophenol sis(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte henol	96 96 Iatile Organi Result 0.016 0.022 0.024 0.013 0.15 0.11 e Organic Co Result 0.29	Qualifier U U U U U U U U U U U U U U U U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 Prepared 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33	
Bromofluorobenzene ibromofluoromethane (Surr) lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol iis(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte henol -Chlorophenol	96 96 Iatile Organi Result 0.016 0.022 0.024 0.013 0.15 0.11 e Organic Co Result 0.29 0.38	Qualifier U U U U U U U U U U U U U U U U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030 6 (GC/MS) RL 10	0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38	ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 Prepared 10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33	
Bromofluorobenzene ibromofluoromethane (Surr) lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol is(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol	96 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.11 e Organic Co Result 0.29 0.38 0.26	Qualifier U U U U U U U U U U U U U U U U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33	
Bromofluorobenzene ibromofluoromethane (Surr) lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol iis(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol	96 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.11 e Organic Co Result 0.29 0.38 0.26 0.24	Qualifier U U U U U U U U U U U U U U U U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030 (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33	
Bromofluorobenzene ibromofluoromethane (Surr) lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol iis(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol	96 96 Iatile Organi Result 0.016 0.022 0.024 0.013 0.15 0.11 e Organic Co Result 0.29 0.38 0.26 0.24 0.75	Qualifier U U U U U U U U U U U U U U U U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030 (GC/MS) RL 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35	
Bromofluorobenzene ibromofluoromethane (Surr) lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol iis(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol -Nitrophenol -Nitrophenol	96 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.11 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24	Qualifier U U U U U U U U U U U U U U U U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.020 0.030 s (GC/MS) RL 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35	
Bromofluorobenzene ibromofluoromethane (Surr) lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene lexachlorobenzene entachlorophenol sis(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol -Nitrophenol -A-Dimethylphenol	96 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.11 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42	Qualifier U U U U U U U U U U U U U U U U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35	
-Bromofluorobenzene bibromofluoromethane (Surr) Method: 8270D SIM - Semivo snalyte enzo[a]anthracene denzo[a]pyrene denzo[b]fluoranthene dexachlorobenzene dentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile snalyte denol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol -Nitrophenol ,4-Dimethylphenol -Chloro-3-methylphenol	96 96 Iatile Organi Result 0.016 0.022 0.024 0.013 0.15 0.11 Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	Qualifier U U U U U U U U U U U U U U U U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35	
-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo analyte denzo[a]anthracene denzo[a]pyrene denzo[b]fluoranthene	96 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.11 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42	Qualifier U U U U U U U U U U U U U U U U U U	77 - 124 72 - 131 unds (GC/M RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 10:15 10/04/19 10:15	Analyzed 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/05/19 01:33 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35 10/04/19 20:35	

Eurofins TestAmerica, Edison

10/04/19 10:15 10/04/19 20:35

10/04/19 10:15 10/04/19 20:35

10/04/19 10:15 10/04/19 20:35

10/04/19 10:15 10/04/19 20:35

10/04/19 10:15 10/04/19 20:35

1

1

1

20

20

20

10

10

14 ug/L

13 ug/L

2.0 ug/L

1.3 ug/L

0.69 ug/L

14 U

13 U

2.0 U

1.3 U

0.69 U

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105B-LS

Lab Sample ID: 460-192721-3 Data Callected: 10/01/19 15:35

Matrix: Water

w	ate	Conecteu:	10/0.11.12	10:30
D	ate	Received:	10/01/19	20:00

Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	1.3		10		ug/L			10/04/19 20:35	
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L			10/04/19 20:35	
Hexachloroethane	1.2		2.0		ug/L			10/04/19 20:35	
Nitrobenzene	0.57	_	1.0		ug/L			10/04/19 20:35	
Isophorone	0.80		10	0.80	_			10/04/19 20:35	
Bis(2-chloroethoxy)methane	0.24		10		ug/L		10/04/19 10:15	10/04/19 20:35	
1,2,4-Trichlorobenzene	1.3		2.0		ug/L		10/04/19 10:15	10/04/19 20:35	
Naphthalene		U	10		ug/L		10/04/19 10:15	10/04/19 20:35	
4-Chloroaniline	1.9	U	10		ug/L		10/04/19 10:15	10/04/19 20:35	
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/04/19 10:15	10/04/19 20:35	
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/04/19 10:15	10/04/19 20:35	
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/04/19 10:15	10/04/19 20:35	
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/04/19 10:15	10/04/19 20:35	
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/04/19 10:15	10/04/19 20:35	
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/04/19 10:15	10/04/19 20:35	
Acenaphthylene	0.82	U	10	0.82	ug/L		10/04/19 10:15	10/04/19 20:35	
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/04/19 10:15	10/04/19 20:35	
3-Nitroaniline	0.96	U	10	0.96	-		10/04/19 10:15	10/04/19 20:35	
Acenaphthene	1.1	U	10		ug/L		10/04/19 10:15	10/04/19 20:35	
Dibenzofuran		U	10		ug/L			10/04/19 20:35	
2.4-Dinitrotoluene	1.0		2.0		ug/L			10/04/19 20:35	
Diethyl phthalate	0.98		10	0.98				10/04/19 20:35	
I-Chlorophenyl phenyl ether	1.3		10		ug/L			10/04/19 20:35	
Fluorene	0.91		10	0.91				10/04/19 20:35	
I-Nitroaniline	0.54		10	0.54	-			10/04/19 20:35	
N-Nitrosodiphenylamine	0.89		10		ug/L			10/04/19 20:35	
I-Bromophenyl phenyl ether	0.75		10	0.75	-			10/04/19 20:35	
Phenanthrene	0.73			0.73	-			10/04/19 20:35	
			10		-				
Anthracene	0.63		10	0.63	_			10/04/19 20:35	
Carbazole	0.68		10		ug/L			10/04/19 20:35	
Di-n-butyl phthalate	0.84		10	0.84	_			10/04/19 20:35	
- - -	0.84		10		ug/L			10/04/19 20:35	
Pyrene	1.6		10		ug/L			10/04/19 20:35	
Butyl benzyl phthalate	0.85		10	0.85	-			10/04/19 20:35	
3,3'-Dichlorobenzidine	1.4		10		ug/L			10/04/19 20:35	
Chrysene	0.91	U	2.0		ug/L		10/04/19 10:15	10/04/19 20:35	
Bis(2-ethylhexyl) phthalate	20		2.0	1.7	ug/L		10/04/19 10:15	10/04/19 20:35	
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/04/19 10:15	10/04/19 20:35	
3enzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/04/19 10:15	10/04/19 20:35	
ndeno[1,2,3-cd]pyrene	1.3	U	2.0	1.3	ug/L		10/04/19 10:15	10/04/19 20:35	
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/04/19 10:15	10/04/19 20:35	
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/04/19 10:15	10/04/19 20:35	
Diphenyl ether	1.2	U	10	1.2	ug/L		10/04/19 10:15	10/04/19 20:35	
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/04/19 20:35	
- Caprolactam	0.68		10		ug/L			10/04/19 20:35	
ois (2-chloroisopropyl) ether	0.63		10		ug/L			10/04/19 20:35	
Bisphenol-A	9.9		10		ug/L			10/04/19 20:35	
N-Methylaniline	0.48		5.0		ug/L			10/04/19 20:35	

Eurofins TestAmerica, Edison 11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105B-LS

Lab Sample ID: 460-192721-3 Date Collected: 10/01/19 15:35

Matrix: Water

Date Received: 10/01/19 20:00

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L				10/04/19 10:15	10/04/19 20:35	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	65		51 - 108				10/04/19 10:15	10/04/19 20:35	
Phenol-d5 (Surr)	34		14 - 39				10/04/19 10:15	10/04/19 20:35	
Terphenyl-d14 (Surr)	52		40 - 148				10/04/19 10:15	10/04/19 20:35	
2,4,6-Tribromophenol (Surr)	74		26 - 139				10/04/19 10:15	10/04/19 20:35	
2-Fluorophenol (Surr)	44		25 - 58				10/04/19 10:15	10/04/19 20:35	
2-Fluorobiphenyl (Surr)	60		45 - 107				10/04/19 10:15	10/04/19 20:35	
Method: 300.0 - Anions, Ion C	hromatogra	vhq							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	42.5		1.92	0.22	mg/L			10/02/19 14:49	10
Nitrate as N	1.37		0.10	0.056	mg/L			10/02/19 14:04	
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/02/19 14:04	
Sulfate	17.4		0.60	0.35	mg/L			10/02/19 14:04	
Method: 200.8 - Metals (ICP/N	IS) - Total R	ecoverab	e						
Method: 200.8 - Metals (ICP/N Analyte		ecoverabi Qualifier	e RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
•					Unit ug/L	<u>D</u>	<u> </u>	Analyzed 10/03/19 18:36	
Analyte	Result		RL	233		<u>D</u>	10/03/19 09:36		
Analyte Calcium	Result 31000		250	233 73.5	ug/L	<u>D</u>	10/03/19 09:36 10/03/19 09:36	10/03/19 18:36	
Analyte Calcium Potassium	Result 31000 4220		250 250	233 73.5 24.8	ug/L ug/L	<u> </u>	10/03/19 09:36 10/03/19 09:36 10/03/19 09:36	10/03/19 18:36 10/03/19 18:36	Dil Fa
Analyte Calcium Potassium Magnesium Sodium	Result 31000 4220 3380 34500	Qualifier	250 250 250 250	233 73.5 24.8	ug/L ug/L ug/L	<u>D</u>	10/03/19 09:36 10/03/19 09:36 10/03/19 09:36	10/03/19 18:36 10/03/19 18:36 10/03/19 18:36	
Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP)	Result 31000 4220 3380 34500 - Dissolved	Qualifier	250 250 250 250	233 73.5 24.8 66.8	ug/L ug/L ug/L	<u>D</u>	10/03/19 09:36 10/03/19 09:36 10/03/19 09:36	10/03/19 18:36 10/03/19 18:36 10/03/19 18:36	
Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte	Result 31000 4220 3380 34500 - Dissolved	Qualifier Qualifier	RL 250 250 250 250	233 73.5 24.8 66.8	ug/L ug/L ug/L ug/L		10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 10/03/19 09:36	10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 10/03/19 18:36	Dil Fa
Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved	Result 31000 4220 3380 34500 - Dissolved Result	Qualifier Qualifier	250 250 250 250 250	233 73.5 24.8 66.8 MDL	ug/L ug/L ug/L ug/L		10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 Prepared	10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 Analyzed	Dil Fa
Analyte Calcium Potassium Magnesium	Result 31000 4220 3380 34500 - Dissolved Result 1.7	Qualifier Qualifier	RL 250 250 250 250 250	233 73.5 24.8 66.8 MDL 1.7 34.2	ug/L ug/L ug/L ug/L		10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 Prepared 10/07/19 08:20 10/07/19 08:20	10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 Analyzed 10/07/19 19:25	Dil Fa
Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved	Result 31000 4220 3380 34500 - Dissolved Result 1.7 926	Qualifier Qualifier	RL 250 250 250 250 250 RL 50.0	233 73.5 24.8 66.8 MDL 1.7 34.2	ug/L ug/L ug/L ug/L Unit ug/L		10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 Prepared 10/07/19 08:20 10/07/19 08:20	10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 Analyzed 10/07/19 19:25 10/07/19 19:25	Dil Fa
Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved	Result 31000 4220 3380 34500 - Dissolved Result 1.7 926 145	Qualifier Qualifier	RL 250 250 250 250 250 RL 50.0	233 73.5 24.8 66.8 MDL 1.7 34.2 0.99	ug/L ug/L ug/L ug/L Unit ug/L		10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 Prepared 10/07/19 08:20 10/07/19 08:20	10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 Analyzed 10/07/19 19:25 10/07/19 19:25	
Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry	Result 31000 4220 3380 34500 - Dissolved Result 1.7 926 145	Qualifier Qualifier U	RL 250 250 250 250 250 RL 50.0 150	233 73.5 24.8 66.8 MDL 1.7 34.2 0.99	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 Prepared 10/07/19 08:20 10/07/19 08:20	10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 Analyzed 10/07/19 19:25 10/07/19 19:25	Dil Fa
Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	Result 31000 4220 3380 34500 - Dissolved Result 1.7 926 145 Result	Qualifier Qualifier U	RL 250 250 250 250 250 150 15.0 RL	233 73.5 24.8 66.8 MDL 1.7 34.2 0.99 MDL 0.068	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 Prepared 10/07/19 08:20 10/07/19 08:20	10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 Analyzed 10/07/19 19:25 10/07/19 19:25 10/07/19 19:25	Dil Fa
Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	Result 31000 4220 3380 34500 - Dissolved Result 1.7 926 145 Result 0.20	Qualifier U Qualifier	RL 250 250 250 250 250 150 15.0 RL 0.10	233 73.5 24.8 66.8 MDL 1.7 34.2 0.99 MDL 0.068 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 10/03/19 09:36 Prepared 10/07/19 08:20 10/07/19 08:20	10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 10/03/19 18:36 Analyzed 10/07/19 19:25 10/07/19 19:25 10/07/19 19:25	Dil Fa

Client Sample ID: UPA-104-L5

Date Collected: 10/01/19 14:55

Date Received: 10/01/19 20:00

Bromomethane

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	40		0.40	0.20	ug/L			10/04/19 11:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	91		72 - 133					10/04/19 11:56	1
 Method: 8260C - Volatile	Organic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	a	Prepared	Analyzed	Dil Fac
Analyte	itoodit	a,aaiiiio.				_		,	

1.0

0.55 ug/L

Eurofins TestAmerica, Edison

10/04/19 17:05

11/01/2019

0.55 U

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-104-LS

Lab Sample ID: 460-192721-4 Date Collected: 10/01/19 14:55

Matrix: Water

Method: 8260C - Volatile Orga						_			
Analyte		Qualifier	- RL		Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.17		1.0		ug/L			10/04/19 17:05	
Chloroethane	0.32		1.0		ug/L			10/04/19 17:05	•
Methylene Chloride	0.32		1.0		ug/L			10/04/19 17:05	1
Acetone	4.4	U	5.0		ug/L			10/04/19 17:05	
Carbon disulfide	1.2		1.0		ug/L			10/04/19 17:05	1
1,1-Dichloroethene	0.26		1.0		ug/L			10/04/19 17:05	1
1,1-Dichloroethane	0.26		1.0		ug/L			10/04/19 17:05	1
trans-1,2-Dichloroethene	0.24		1.0		ug/L			10/04/19 17:05	1
cis-1,2-Dichloroethene	0.22		1.0		ug/L			10/04/19 17:05	1
Chloroform	0.33		1.0		ug/L			10/04/19 17:05	
1,2-Dichloroethane	0.43	U	1.0		ug/L			10/04/19 17:05	1
2-Butanone (MEK)	17		5.0	1.9	ug/L			10/04/19 17:05	1
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/04/19 17:05	
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/04/19 17:05	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/04/19 17:05	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/04/19 17:05	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/04/19 17:05	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/04/19 17:05	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/04/19 17:05	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/04/19 17:05	1
Benzene	0.40	J	1.0	0.20	ug/L			10/04/19 17:05	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/04/19 17:05	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/04/19 17:05	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/04/19 17:05	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/04/19 17:05	1
Tetrachloroethene	0.25	U	1.0		ug/L			10/04/19 17:05	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0		ug/L			10/04/19 17:05	1
Toluene	0.38	U	1.0		ug/L			10/04/19 17:05	1
Chlorobenzene	8.4		1.0		ug/L			10/04/19 17:05	1
Ethylbenzene	0.30	U	1.0		ug/L			10/04/19 17:05	1
Styrene	0.42	U	1.0		ug/L			10/04/19 17:05	1
Xylenes, Total	0.65		2.0		ug/L			10/04/19 17:05	
Diethyl ether	4.0		1.0		ug/L			10/04/19 17:05	1
MTBE	2.3		1.0		ug/L			10/04/19 17:05	1
Tetrahydrofuran	3.3		2.0		ug/L			10/04/19 17:05	1
Cyclohexane	0.32	U	1.0		ug/L			10/04/19 17:05	1
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/04/19 17:05	1
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/04/19 17:05	
Isopropylbenzene	0.34		1.0		ug/L			10/04/19 17:05	1
N-Propylbenzene	0.32		1.0		ug/L			10/04/19 17:05	
Methylcyclohexane	0.26		1.0		ug/L			10/04/19 17:05	
Indane	0.25		1.0		ug/L			10/04/19 17:05	1
Dichlorofluoromethane	0.33		1.0		ug/L ug/L			10/04/19 17:05	1
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/04/19 17:05	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	_				10/04/19 17:05	1
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery	Qualifier	Limits 74 - 132				Prepared	Analyzed 10/04/19 17:05	Dil Fac

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-104-LS

Lab Sample ID: 460-192721-4 Date Collected: 10/01/19 14:55

Matrix: Water

Date Received: 10/01/19 20:00

Method: 8260C - Volatile Or	ganic Compo	unds by G	C/MS (Continued	d)		
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		80 - 120		10/04/19 17:05	1
4-Bromofluorobenzene	96		77 - 124		10/04/19 17:05	1
Dibromofluoromethane (Surr)	96		72 - 131		10/04/19 17:05	1

Method: 8270D SIM - Sen	nivolatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/04/19 10:15	10/05/19 01:54	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/04/19 10:15	10/05/19 01:54	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/04/19 10:15	10/05/19 01:54	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/04/19 10:15	10/05/19 01:54	1
Pentachlorophenol	0.15	U	0.20	0.15	ug/L		10/04/19 10:15	10/05/19 01:54	1
Bis(2-chloroethyl)ether	7.5		0.030	0.026	ug/L		10/04/19 10:15	10/05/19 01:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/04/19 10:15	10/04/19 20:56	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/04/19 10:15	10/04/19 20:56	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/04/19 10:15	10/04/19 20:56	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/04/19 10:15	10/04/19 20:56	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/04/19 10:15	10/04/19 20:56	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/04/19 10:15	10/04/19 20:56	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/04/19 10:15	10/04/19 20:56	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/04/19 10:15	10/04/19 20:56	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/04/19 10:15	10/04/19 20:56	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/04/19 10:15	10/04/19 20:56	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/04/19 10:15	10/04/19 20:56	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/04/19 10:15	10/04/19 20:56	1
4,6-Dinitro-2-methylphenol	13	U	20	13			10/04/19 10:15	10/04/19 20:56	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/04/19 10:15	10/04/19 20:56	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/04/19 10:15	10/04/19 20:56	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/04/19 10:15	10/04/19 20:56	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/04/19 10:15	10/04/19 20:56	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/04/19 10:15	10/04/19 20:56	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/04/19 10:15	10/04/19 20:56	1
Isophorone	0.80	U	10	0.80			10/04/19 10:15	10/04/19 20:56	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/04/19 10:15	10/04/19 20:56	1
1,2,4-Trichlorobenzene	1.3	. U	2.0	1.3	ug/L		10/04/19 10:15	10/04/19 20:56	1
Naphthalene	1.1	U	10	1.1	ug/L		10/04/19 10:15	10/04/19 20:56	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/04/19 10:15	10/04/19 20:56	1
Hexachlorobutadiene	0.78	. U	1.0	0.78	ug/L		10/04/19 10:15	10/04/19 20:56	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/04/19 10:15	10/04/19 20:56	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/04/19 10:15	10/04/19 20:56	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/04/19 10:15	10/04/19 20:56	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/04/19 10:15	10/04/19 20:56	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/04/19 10:15	10/04/19 20:56	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/04/19 10:15	10/04/19 20:56	
2,6-Dinitrotoluene	0.39	U	2.0		ug/L		10/04/19 10:15	10/04/19 20:56	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/04/19 10:15	10/04/19 20:56	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/04/19 10:15	10/04/19 20:56	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-104-LS

Date Received: 10/01/19 20:00

Lab Sample ID: 460-192721-4 Date Collected: 10/01/19 14:55

Matrix: Water

Method: 8270D - Semivolatile Analyte		Qualifier	ŘĹ		MDL	Unit	0	Prepared	Analyzed	Dil Fa
Dibenzofuran	1.1	U			1.1	ug/L		•	10/04/19 20:56	
2.4-Dinitrotoluene	1.0	U	2.0			ug/L		10/04/19 10:15	10/04/19 20:56	
Diethyl phthalate	0.98		10			ug/L			10/04/19 20:56	
4-Chlorophenyl phenyl ether	1.3		10			ug/L		10/04/19 10:15	10/04/19 20:56	
Fluorene	0.91		10		0.91				10/04/19 20:56	
4-Nitroaniline	0.54	U	10		0.54			10/04/19 10:15	10/04/19 20:56	
N-Nitrosodiphenylamine	0.89	U	10			ug/L		10/04/19 10:15	10/04/19 20:56	
4-Bromophenyl phenyl ether	0.75	U	10		0.75			10/04/19 10:15	10/04/19 20:56	
Phenanthrene	0.58	U	10			ug/L		10/04/19 10:15	10/04/19 20:56	
Anthracene	0.63	U	10			ug/L		10/04/19 10:15	10/04/19 20:56	
Carbazole	0.68	U	10		0.68	_		10/04/19 10:15	10/04/19 20:56	
Di-n-butyl phthalate	0.84	U	10		0.84			10/04/19 10:15	10/04/19 20:56	
Fluoranthene	0.84	U	10		0.84	-		10/04/19 10:15	10/04/19 20:56	
Pyrene	1.6	U	10			ug/L		10/04/19 10:15	10/04/19 20:56	
Butyl benzyl phthalate	0.85		10		0.85				10/04/19 20:56	
3,3'-Dichlorobenzidine	1.4		10			ug/L			10/04/19 20:56	
Chrysene	0.91	U	2.0		0.91				10/04/19 20:56	
Bis(2-ethylhexyl) phthalate	1.7		2.0			ug/L			10/04/19 20:56	
Di-n-octyl phthalate	4.8		10			ug/L			10/04/19 20:56	
Benzo[k]fluoranthene	0.67	U	1.0		0.67				10/04/19 20:56	
Indeno[1,2,3-cd]pyrene	1.3		2.0			ug/L			10/04/19 20:56	
Dibenz(a,h)anthracene	0.72		1.0		0.72	-		10/04/19 10:15	10/04/19 20:56	
Benzo[g,h,i]perylene	1.4		10			ug/L		10/04/19 10:15	10/04/19 20:56	
Diphenyl ether	4.1		10			ug/L			10/04/19 20:56	
n,n'-Dimethylaniline	0.91		1.0			ug/L			10/04/19 20:56	
Caprolactam	0.68		10			ug/L			10/04/19 20:56	
bis (2-chloroisopropyl) ether	0.63		10		0.63				10/04/19 20:56	
Bisphenol-A	9.9	U	10			ug/L		10/04/19 10:15	10/04/19 20:56	
N-Methylaniline	0.48	U	5.0		0.48			10/04/19 10:15	10/04/19 20:56	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No	Prepared	Analyzed	Dil Fa
1-Hexanol, 2-ethyl-	7.4	JN	ug/L		4.	44	104-76-7	10/04/19 10:15	10/04/19 20:56	
Unknown	6.9	J	ug/L		7.	01		10/04/19 10:15	10/04/19 20:56	
Unknown	20	J	ug/L		9.	86		10/04/19 10:15	10/04/19 20:56	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	91		51 - 108					10/04/19 10:15	10/04/19 20:56	
Phenol-d5 (Surr)	28		14 - 39					10/04/19 10:15	10/04/19 20:56	
Terphenyl-d14 (Surr)	66		40 - 148					10/04/19 10:15	10/04/19 20:56	
2,4,6-Tribromophenol (Surr)	104		26 - 139					10/04/19 10:15	10/04/19 20:56	
2-Fluorophenol (Surr)	43		25 ₋ 58					10/04/19 10:15	10/04/19 20:56	
2-Fluorobiphenyl (Surr)	85		45 - 107					10/04/19 10:15	10/04/19 20:56	
· Method: 300.0 - Anions, Ion (Chromatogra	phy								
Analyte	Result	Qualifier	RL		MDL		0	Prepared	Analyzed	Dil Fa
Chloride	38.8		1.80		0.21	mg/L			10/02/19 15:04	1
Nitrate as N	0.056	U	0.10	C	0.056	mg/L			10/02/19 14:19	
Nitrite as N	0.076	U	0.12	C	0.076	mg/L			10/02/19 14:19	
Sulfate	8.54		0.60		0.35	mg/L			10/02/19 14:19	

Eurofins TestAmerica, Edison 11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-104-LS

Lab Sample ID: 460-192721-4

Date Collected: 10/01/19 14:55 Matrix: Water

Date Recen	ved: 1	0/01/	19	20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	21400		250	233	ug/L		10/03/19 09:36	10/03/19 18:38	5
Potassium	15200		250	73.5	ug/L		10/03/19 09:36	10/03/19 18:38	5
Magnesium	10200		250	24.8	ug/L		10/03/19 09:36	10/03/19 18:38	5
Sodium	39600		250	66.8	ug/L		10/03/19 09:36	10/03/19 18:38	5
- Method: 6010D - Metals (ICP) - I	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	13.4	J	50.0	1.7	ug/L		10/07/19 08:20	10/07/19 19:29	1
Iron, Dissolved	39200		150	34.2	ug/L		10/07/19 08:20	10/07/19 19:29	1
Manganese, Dissolved	2840		15.0	0.99	ug/L		10/07/19 08:20	10/07/19 19:29	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.76		0.10	0.068	mg/L			10/03/19 11:35	1
Bicarbonate Alkalinity as CaCO3	140		5.0	5.0	mg/L			10/03/19 11:51	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/03/19 11:51	1
Sulfide	0.58		1.0	0.58	mg/L			10/03/19 15:48	1

Client Sample ID: TBGW_100119

Date Collected: 10/01/19 00:00

Date Received: 10/01/19 20:00

Lab Sample ID: 460-192721-9

Matrix: Water

Method: 8260C SIM - Vola	atile Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/04/19 08:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		72 - 133			-		10/04/19 08:33	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/04/19 15:52	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/04/19 15:52	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/04/19 15:52	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/04/19 15:52	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/04/19 15:52	1
Acetone	12		5.0	4.4	ug/L			10/04/19 15:52	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/04/19 15:52	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/04/19 15:52	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/04/19 15:52	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/04/19 15:52	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/04/19 15:52	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/04/19 15:52	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/04/19 15:52	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/04/19 15:52	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/04/19 15:52	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/04/19 15:52	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/04/19 15:52	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/04/19 15:52	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/04/19 15:52	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/04/19 15:52	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_100119

Lab Sample ID: 460-192721-9 Date Collected: 10/01/19 00:00

Matrix: Water

Date Received: 10/01/19 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/04/19 15:52	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/04/19 15:52	1
Benzene	0.20	U	1.0	0.20	ug/L			10/04/19 15:52	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/04/19 15:52	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/04/19 15:52	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/04/19 15:52	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/04/19 15:52	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/04/19 15:52	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/04/19 15:52	1
Toluene	0.38	U	1.0	0.38	ug/L			10/04/19 15:52	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/04/19 15:52	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/04/19 15:52	1
Styrene	0.42	U	1.0	0.42	ug/L			10/04/19 15:52	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/04/19 15:52	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/04/19 15:52	1
MTBE	0.47	U	1.0	0.47	ug/L			10/04/19 15:52	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/04/19 15:52	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/04/19 15:52	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/04/19 15:52	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/04/19 15:52	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/04/19 15:52	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/04/19 15:52	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/04/19 15:52	1
Indane	0.35	U	1.0	0.35	ug/L			10/04/19 15:52	1
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/04/19 15:52	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/04/19 15:52	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	-	ug/L	_				10/04/19 15:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		74 - 132					10/04/19 15:52	1
Toluene-d8 (Surr)	106		80 - 120					10/04/19 15:52	1
4-Bromofluorobenzene	98		77 - 124					10/04/19 15:52	1
Dibromofluoromethane (Surr)	95		72 - 131					10/04/19 15:52	

Client Sample ID: UPA-104-US

Date Collected: 10/02/19 11:20

Lab Sample ID: 460-192902-1 Matrix: Water Date Received: 10/02/19 21:20

Method: 8260C - Volatile									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/06/19 23:04	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/06/19 23:04	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/06/19 23:04	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/06/19 23:04	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/06/19 23:04	1
Acetone	5.1	U	5:0 5.1	4.4	ug/L			10/06/19 23:04	1
Carbon disulfide	0.82	WF1 UJ	1.0	0.82	ug/L			10/06/19 23:04	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/06/19 23:04	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-104-US

Lab Sample ID: 460-192902-1 Date Collected: 10/02/19 11:20

Matrix: Water

Date Received: 10/02/19 21:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/06/19 23:04	
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/06/19 23:04	
cis-1,2-Dichloroethene	0.22	U	1.0		ug/L			10/06/19 23:04	
Chloroform	0.33	U	1.0	0.33	ug/L			10/06/19 23:04	
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/06/19 23:04	
2-Butanone (MEK)	1.9	U	5.0		ug/L			10/06/19 23:04	
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/06/19 23:04	
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/06/19 23:04	
Bromodichloromethane	0.34	U	1.0		ug/L			10/06/19 23:04	
1,2-Dichloropropane	0.35	U	1.0		ug/L			10/06/19 23:04	
cis-1,3-Dichloropropene	0.22	U	1.0		ug/L			10/06/19 23:04	
Trichloroethene	0.31	U	1.0		ug/L			10/06/19 23:04	
Dibromochloromethane	0.28	U	1.0		ug/L			10/06/19 23:04	
1,1,2-Trichloroethane	0.43	U	1.0		ug/L			10/06/19 23:04	
Benzene		E1 J-	1.0		ug/L			10/06/19 23:04	
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/06/19 23:04	
Bromoform	0.54	U	1.0		ug/L			10/06/19 23:04	
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			10/06/19 23:04	
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/06/19 23:04	
Tetrachloroethene	0.62	J	1.0	0.25	ug/L			10/06/19 23:04	
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/06/19 23:04	
Toluene	0.38	U	1.0		ug/L			10/06/19 23:04	
Chlorobenzene	3.4		1.0		ug/L			10/06/19 23:04	
Ethylbenzene	0.30	U	1.0		ug/L			10/06/19 23:04	
Styrene	0.42	U	1.0		ug/L			10/06/19 23:04	
Xylenes, Total	0.65	U	2.0		ug/L			10/06/19 23:04	
Diethyl ether	2.0		1.0		ug/L			10/06/19 23:04	
MTBE	0.62	J	1.0		ug/L			10/06/19 23:04	
Tetrahydrofuran	1.3		2.0		ug/L			10/06/19 23:04	
Cyclohexane	0.32		1.0		ug/L			10/06/19 23:04	
1,4-Dioxane	170		50		ug/L			10/06/19 23:04	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/06/19 23:04	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/06/19 23:04	
Isopropylbenzene	1.5	_	1.0		ug/L			10/06/19 23:04	
N-Propylbenzene	0.52		1.0		ug/L			10/06/19 23:04	
Methylcyclohexane	0.26	U	1.0		ug/L			10/06/19 23:04	
Indane	0.46		1.0		ug/L			10/06/19 23:04	
Dichlorofluoromethane	1.7		1.0		ug/L			10/06/19 23:04	
1,2,3-Trimethylbenzene	0.36	U	1.0		ug/L			10/06/19 23:04	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L	_				10/06/19 23:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	97		74 - 132					10/06/19 23:04	
Toluene-d8 (Surr)	95		80 - 120					10/06/19 23:04	
4-Bromofluorobenzene	82		77 - 124					10/06/19 23:04	

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-104-US

Lab Sample ID: 460-192902-1 Date Collected: 10/02/19 11:20

Matrix: Water

Date Received: 10/02/19 21:20	W 01 1 W			
	Date	Received:	10/02/19	21:20

Method: 8270D SIM - Semiv	olatile Organi	c Compoun	ids (GC/MS	SIM)					
Analyte	-	Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.11	J	0.25	0.078	ug/L		10/04/19 09:28	10/07/19 06:45	5
Benzo[a]pyrene	0.11	⊎ UJ	0.25	0.11	ug/L		10/04/19 09:28	10/07/19 06:45	5
Benzo[b]fluoranthene	0.12	U	0.25	0.12	ug/L		10/04/19 09:28	10/07/19 06:45	5
Hexachlorobenzene	0.066	U	0.10	0.066	ug/L		10/04/19 09:28	10/07/19 06:45	5
Pentachlorophenol	0.77	U	1.0	0.77	ug/L		10/04/19 09:28	10/07/19 06:45	5
Bis(2-chloroethyl)ether	29		0.15	0.13	ug/L		10/04/19 09:28	10/07/19 06:45	5
Method: 8270D - Semivolati	le Organic Co	mpounds (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	2.6	J	10	0.29	ug/L		10/04/19 09:28	10/04/19 20:43	1

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Phenol	2.6	J	10	0.29	ug/L		10/04/19 09:28	10/04/19 20:43	
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/04/19 09:28	10/04/19 20:43	
2-Methylphenol	0.26	U	10	0.26	ug/L		10/04/19 09:28	10/04/19 20:43	
4-Methylphenol	0.24	U	10	0.24	ug/L		10/04/19 09:28	10/04/19 20:43	
2-Nitrophenol	0.75	₩± UJ	10	0.75	ug/L		10/04/19 09:28	10/04/19 20:43	
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/04/19 09:28	10/04/19 20:43	
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/04/19 09:28	10/04/19 20:43	
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/04/19 09:28	10/04/19 20:43	
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/04/19 09:28	10/04/19 20:43	
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/04/19 09:28	10/04/19 20:43	
2,4-Dinitrophenol	14	⊎≛ UJ	20	14	ug/L		10/04/19 09:28	10/04/19 20:43	
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/04/19 09:28	10/04/19 20:43	
4,6-Dinitro-2-methylphenol	13	₩≛ UJ	20	13	ug/L		10/04/19 09:28	10/04/19 20:43	
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/04/19 09:28	10/04/19 20:43	
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/04/19 09:28	10/04/19 20:43	
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/04/19 09:28	10/04/19 20:43	
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43				10/04/19 20:43	
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/04/19 09:28	10/04/19 20:43	
Nitrobenzene	0.57	U	1.0		ug/L		10/04/19 09:28	10/04/19 20:43	
Isophorone	0.80	U	10	0.80	ug/L		10/04/19 09:28	10/04/19 20:43	
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/04/19 09:28	10/04/19 20:43	
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/04/19 09:28	10/04/19 20:43	
Naphthalene	1.1	U	10	1.1	ug/L		10/04/19 09:28	10/04/19 20:43	
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/04/19 09:28	10/04/19 20:43	
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/04/19 09:28	10/04/19 20:43	
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/04/19 09:28	10/04/19 20:43	
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/04/19 09:28	10/04/19 20:43	
2-Chloronaphthalene	1.2	U	10		ug/L		10/04/19 09:28	10/04/19 20:43	
2-Nitroaniline	0.47	U	10		ug/L		10/04/19 09:28	10/04/19 20:43	
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/04/19 09:28	10/04/19 20:43	
Acenaphthylene	0.82	U	10	0.82	ug/L		10/04/19 09:28	10/04/19 20:43	
2,6-Dinitrotoluene	0.39	U	2.0		_		10/04/19 09:28	10/04/19 20:43	
3-Nitroaniline	0.96	U	10		ug/L		10/04/19 09:28	10/04/19 20:43	
Acenaphthene	1.1	U	10	1.1	ug/L			10/04/19 20:43	
Dibenzofuran	1.1	U	10	1.1	ug/L			10/04/19 20:43	
2,4-Dinitrotoluene	1.0	U≛F1 UJ	2.0		ug/L		10/04/19 09:28	10/04/19 20:43	
Diethyl phthalate	0.98		10		ug/L			10/04/19 20:43	
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/04/19 20:43	
Fluorene	0.91		10		ug/L			10/04/19 20:43	
4-Nitroaniline	0.54		10		ug/L			10/04/19 20:43	
N-Nitrosodiphenylamine	0.89		10	0.89				10/04/19 20:43	

Eurofins TestAmerica, Edison

11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-104-US

Lab Sample ID: 460-192902-1 Date Collected: 10/02/19 11:20

Matrix: Water

Date Received: 10/02/19 21:20

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
				-				
				-				
0.84	U	10		-		10/04/19 09:28	10/04/19 20:43	
		10	0.84	ug/L		10/04/19 09:28	10/04/19 20:43	
		10						
		10	0.85	ug/L		10/04/19 09:28	10/04/19 20:43	
1.4	W-F1 ()J	10	1.4	ug/L		10/04/19 09:28	10/04/19 20:43	
0.91	U	2.0	0.91	ug/L		10/04/19 09:28	10/04/19 20:43	
1.7	U	2.0	1.7	ug/L		10/04/19 09:28	10/04/19 20:43	
4.8	U	10	4.8	ug/L		10/04/19 09:28	10/04/19 20:43	
0.67	U	1.0	0.67	ug/L		10/04/19 09:28	10/04/19 20:43	
1.3	U	2.0	1.3	ug/L		10/04/19 09:28	10/04/19 20:43	
0.72	U	1.0	0.72	ug/L		10/04/19 09:28	10/04/19 20:43	,
1.4	U	10	1.4	ug/L		10/04/19 09:28	10/04/19 20:43	
1.2	U	10	1.2	ug/L		10/04/19 09:28	10/04/19 20:43	
0.91	U-F1-F2 UJ	1.0	0.91	ug/L		10/04/19 09:28	10/04/19 20:43	
0.68	U	10	0.68	ug/L		10/04/19 09:28	10/04/19 20:43	
0.63	U	10	0.63	ug/L		10/04/19 09:28	10/04/19 20:43	
9.9	U *	10	9.9	ug/L		10/04/19 09:28	10/04/19 20:43	
0.48	U-F1 UJ	5.0	0.48	ug/L		10/04/19 09:28	10/04/19 20:43	
Est. Result	Qualifier	Unit	D .	RT	CAS No.	Prepared	Analyzed	Dil Fa
46	F1	ug/L		.65	123-91-1	10/04/19 09:28	10/04/19 20:43	
16	J	ug/L	6.	.85		10/04/19 09:28	10/04/19 20:43	
%Recovery		ug/L Limits	6.	.85		Prepared	Analyzed	Dil Fa
		-	6.	.85			Analyzed 10/04/19 20:43	Dil Fa
%Recovery		Limits	6.	.85		Prepared	Analyzed	Dil Fa
%Recovery 88		Limits 51 - 108	6.	.85		Prepared 10/04/19 09:28 10/04/19 09:28	Analyzed 10/04/19 20:43	
%Recovery 88 30		Limits 51 - 108 14 - 39	6.	.85		Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/04/19 20:43 10/04/19 20:43	Dil Fa
%Recovery 88 30 92		Limits 51 - 108 14 - 39 40 - 148	6.	. 85		Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43	Dil Fa
%Recovery 88 30 92		Limits 51 - 108 14 - 39 40 - 148 26 - 139	6.			Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43	DII Fa
%Recovery 88 30 92 90 46	Qualifier	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58 45 - 107	6.			Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43	Dil Fa
%Recovery 88 30 92 90 46 86 Chromatogra Result	<i>Qualifier</i> phy Qualifier	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58		85 Unit		Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43	Dil Fa
%Recovery 88 30 92 90 46 86	<i>Qualifier</i> phy Qualifier	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58 45 - 107		Unit	D	Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43	Dil Fa
%Recovery 88 30 92 90 46 86 Chromatogra Result 0.056	<i>Qualifier</i> phy Qualifier	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58 45 - 107	MDL	Unit mg/L	D	Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43	Dil Fa
%Recovery 88 30 92 90 46 86 Chromatogra Result 0.056 0.076	Qualifier phy Qualifier ∪ F1	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58 45 - 107 RL 0.10	MDL 0.056 0.076	Unit mg/L	D	Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43	Dil Fa
%Recovery 88 30 92 90 46 86 Chromatogra Result 0.056 0.076 7.78 Chromatogra	Qualifier Qualifier U F1 U F1 U J E1 J+	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58 45 - 107 RL 0.10 0.12 0.60	MDL 0.056 0.076 0.35	Unit mg/L mg/L mg/L		Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 Analyzed 10/03/19 21:32 10/03/19 21:32 10/03/19 21:32	Dil Fa
%Recovery 88 30 92 90 46 86 Chromatogra Result 0.056 0.076 7.78 Chromatogra	Qualifier Qualifier U F1 U-F1 UJ F1 J+	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58 45 - 107 RL 0.10 0.12	MDL 0.056 0.076 0.35 MDL	Unit mg/L mg/L mg/L		Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/03/19 21:32 10/03/19 21:32	Dil Fa
%Recovery 88 30 92 90 46 86 Chromatogra Result 0.056 0.076 7.78 Chromatogra Result	Qualifier Qualifier U F1 U F1 U J E1 J+	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58 45 - 107 RL 0.10 0.12 0.60	MDL 0.056 0.076 0.35 MDL	Unit mg/L mg/L mg/L		Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 Analyzed 10/03/19 21:32 10/03/19 21:32 10/03/19 21:32	Dil Fa
%Recovery 88 30 92 90 46 86 Chromatogra Result 0.056 0.076 7.78 Chromatogra Result 41.1	Qualifier Qualifier UF1 UF1 U E1 J+ uphy - DL Qualifier D-F1 J-	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58 45 - 107 RL 0.10 0.12 0.60 RL 1.80	MDL 0.056 0.076 0.35 MDL 0.21	Unit mg/L mg/L mg/L	D	Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 Prepared Prepared	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 Analyzed 10/03/19 21:32 10/03/19 21:32 10/03/19 21:32 Analyzed 10/03/19 21:32	Dil Fa
%Recovery 88 30 92 90 46 86 Chromatogra Result 0.056 0.076 7.78 Chromatogra Result 41.1 ##\$ A Total Result Result	Qualifier Qualifier U F1 U F1 U J F1 J+ Aphy - DL Qualifier D F1 J-	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58 45 - 107 RL 0.10 0.12 0.60 RL 1.80	MDL 0.056 0.076 0.35 MDL 0.21	Unit mg/L mg/L mg/L Unit mg/L		Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 Prepared Prepared	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 Analyzed 10/03/19 21:32 10/03/19 21:32 10/03/19 21:32 Analyzed 10/04/19 03:15 Analyzed	Dil Fa Dil Fa Dil Fa
%Recovery 88 30 92 90 46 86 Chromatogra Result 0.056 0.076 7.78 Chromatogra Result 41.1 //S) - Total Result Result 22100	Qualifier Qualifier UF1 UF1 U E1 J+ uphy - DL Qualifier D-F1 J-	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58 45 - 107 RL 0.10 0.12 0.60 RL 1.80 RL 250	MDL 0.056 0.076 0.35 MDL 0.21	Unit mg/L mg/L mg/L Unit mg/L	D	Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 Prepared Prepared 10/07/19 08:22	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/03/19 21:32 10/03/19 21:32 10/03/19 21:32 Analyzed 10/04/19 03:15 Analyzed 10/04/19 03:15	Dil Fa
%Recovery 88 30 92 90 46 86 Chromatogra Result 0.056 0.076 7.78 Chromatogra Result 41.1 //S) - Total Result 22100 2480	Qualifier Qualifier UF1 UF1 U E1 J+ uphy - DL Qualifier D-F1 J-	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58 45 - 107 RL 0.10 0.12 0.60 RL 1.80 RL 250 250	MDL 0.056 0.076 0.35 MDL 0.21 MDL 233 73.5	Unit mg/L mg/L Unit mg/L Unit ug/L ug/L	D	Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 Prepared Prepared 10/07/19 08:22 10/07/19 08:22	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/03/19 21:32 10/03/19 21:32 10/03/19 21:32 10/03/19 21:32 Analyzed 10/04/19 03:15 Analyzed 10/04/19 03:54	Dil Fa
%Recovery 88 30 92 90 46 86 Chromatogra Result 0.056 0.076 7.78 Chromatogra Result 41.1 //S) - Total Result Result 22100	Qualifier Qualifier UF1 UF1 U E1 J+ uphy - DL Qualifier D-F1 J-	Limits 51 - 108 14 - 39 40 - 148 26 - 139 25 - 58 45 - 107 RL 0.10 0.12 0.60 RL 1.80 RL 250	MDL 0.056 0.076 0.35 MDL 0.21 MDL 233 73.5 24.8	Unit mg/L mg/L mg/L Unit mg/L	D	Prepared 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 Prepared Prepared 10/07/19 08:22 10/07/19 08:22 10/07/19 08:22	Analyzed 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/04/19 20:43 10/03/19 21:32 10/03/19 21:32 10/03/19 21:32 Analyzed 10/04/19 03:15 Analyzed 10/04/19 03:15	Dil Fa
	Result 0.75 0.58 0.63 0.68 0.84 0.85 1.4 0.91 1.7 4.8 0.67 1.3 0.72 1.4 1.2 0.91 0.68 0.63 9.9 0.48 Est. Result	Result Qualifier 0.75 U 0.58 U 0.63 U 0.68 U 0.84 U 0.85 U 1.4 U-F1 UJ 0.91 U 1.7 U 4.8 U 0.67 U 1.3 U 0.72 U 1.4 U 1.2 U 0.91 U-F1-F2 UJ 0.68 U 0.63 U 9.9 U± 0.48 U-F1 UJ Est. Result Qualifier 46 F1	Result Qualifier RL 0.75 U 10 0.58 U 10 0.63 U 10 0.68 U 10 0.84 U 10 0.84 U 10 0.85 U 10 1.4 U-F1 U 10 0.91 U 2.0 4.8 U 10 0.67 U 1.0 1.3 U 2.0 0.72 U 1.0 1.4 U 10 0.91 U-F1-F2 U 10 0.63 U 10 0.48 U-F1-F1 U 5.0 Est. Result Qualifier Unit	Result Qualifier RL MDL 0.75 U 10 0.75 0.58 U 10 0.58 0.63 U 10 0.63 0.68 U 10 0.84 0.84 U 10 0.84 1.6 U 10 1.6 0.85 U 10 0.85 1.4 U-F4 UJ 10 1.4 0.91 U 2.0 0.91 1.7 U 2.0 1.7 4.8 U 10 4.8 0.67 U 1.0 0.67 1.3 U 2.0 1.3 0.72 U 1.0 0.72 1.4 U 10 1.4 1.2 U 10 1.2 0.91 U-F1-F2 UJ 1.0 0.91 0.68 U 10 0.63 9.9 U.* 10	0.75 U 10 0.75 ug/L 0.58 U 10 0.58 ug/L 0.63 U 10 0.63 ug/L 0.68 U 10 0.68 ug/L 0.84 U 10 0.84 ug/L 0.84 U 10 0.84 ug/L 0.85 U 10 0.85 ug/L 1.4 U-F1 UJ 10 1.4 ug/L 0.91 U 2.0 0.91 ug/L 1.3 U 2.0 1.7 ug/L 1.4 U 10 4.8 ug/L 0.67 U 1.0 0.67 ug/L 1.4 U 10 1.4 ug/L 0.72 U 1.0 0.72 ug/L 1.4 U 10 1.4 ug/L 0.91 U 10 1.4 ug/L 0.72 U 1.0 0.72 ug/L 1.4 U 10 1.4 ug/L 0.91 U 10 0.63 ug/L 0.99 U 10 0.63 ug/L 0.68 U 10 0.63 ug/L 0.69 U 10 0.63 ug/L 0.68 U 10 0.63 ug/L 0.69 U 10 0.63 ug/L 0.69 U 10 0.63 ug/L 0.69 U 10 0.68 ug/L 0.69 U 10 0.68 ug/L 0.69 U 10 0.68 ug/L 0.69 U 5.0 0.48 ug/L	Result Qualifier RL MDL Unit D	Result Qualifier RL MDL Unit D Prepared 0.75 U 10 0.75 ug/L 10/04/19 09:28 0.58 U 10 0.58 ug/L 10/04/19 09:28 0.63 U 10 0.63 ug/L 10/04/19 09:28 0.68 U 10 0.68 ug/L 10/04/19 09:28 0.84 U 10 0.84 ug/L 10/04/19 09:28 0.84 U 10 0.84 ug/L 10/04/19 09:28 1.6 U 10 1.6 ug/L 10/04/19 09:28 0.85 U 10 0.85 ug/L 10/04/19 09:28 0.85 U 10 0.85 ug/L 10/04/19 09:28 1.4 U-F1-UJ 10 1.4 ug/L 10/04/19 09:28 1.7 U 2.0 0.91 ug/L 10/04/19 09:28 1.7 U 2.0 1.7 ug/L 10/04/19 09:28	Result Qualifier RL MDL Unit D Prepared Analyzed 0.75 U 10 0.75 ug/L 10/04/19 09:28 10/04/19 20:43 0.58 U 10 0.58 ug/L 10/04/19 09:28 10/04/19 20:43 0.63 U 10 0.63 ug/L 10/04/19 09:28 10/04/19 20:43 0.68 U 10 0.68 ug/L 10/04/19 09:28 10/04/19 20:43 0.68 U 10 0.68 ug/L 10/04/19 09:28 10/04/19 20:43 0.84 U 10 0.84 ug/L 10/04/19 09:28 10/04/19 20:43 0.84 U 10 0.84 ug/L 10/04/19 09:28 10/04/19 20:43 0.85 U 10 0.85 ug/L 10/04/19 09:28 10/04/19 20:43 0.85 U 10 0.85 ug/L 10/04/19 09:28 10/04/19 20:43 0.85 U 10 0.85 ug/L 10/04/19 09:28 10/04/19 20:43 0.91 U 2.0 0.91 ug/L 10/04/19 09:28 10/04/19 20:43 0.91 U 2.0 0.91 ug/L 10/04/19 09:28 10/04/19 20:43 0.91 U 2.0 0.91 ug/L 10/04/19 09:28 10/04/19 20:43 0.91 U 2.0 1.7 ug/L 10/04/19 09:28 10/04/19 20:43 0.91 U 2.0 1.3 ug/L 10/04/19 09:28 10/04/19 20:43 0.91 U 1.0 0.67 ug/L 10/04/19 09:28 10/04/19 20:43 0.91 U 1.0 0.72 ug/L 10/04/19 09:28 10/04/19 20:43 0.91 U FI FI U 10 1.4 ug/L 10/04/19 09:28 10/04/19 20:43 0.91 U FI FI U 10 0.68 ug/L 10/04/19 09:28 10/04/19 20:43 0.91 U FI FI U 10 0.68 ug/L 10/04/19 09:28 10/04/19 20:43 0.91 U FI FI U 10 0.68 ug/L 10/04/19 09:28 10/04/19 20:43 0.99 U 10 0.63 ug/L 10/04/19 09:28 10/04/19 20:43 0.99 U 10 0.63 ug/L 10/04/19 09:28 10/04/19 20:43 0.99 ug/L 10/04/19 09:28 10/04/19 20:43 0.99 U 10 0.63 ug/L 10/04/19 09:28 10/04/19 20:43 0.99 ug/L 10/04/19 09:28 10/04/19 20:43 0.99 ug/L 10/04/19 09:28 10/04/19 20:43 0.94 U EI U U U U U U U U U

Eurofins TestAmerica, Edison

Page 42 of 1976 11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-104-US

Lab Sample ID: 460-192902-1

Date Received: 10/02/19 21:20

Date Collected: 10/02/19 11:20 Matrix: Water

Method: 6010D - Metals (ICP) -	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	32.8	J	50.0	1.7	ug/L		10/04/19 08:13	10/04/19 15:21	1
Iron, Dissolved	14300		150	34.2	ug/L		10/04/19 08:13	10/04/19 15:21	1
Manganese, Dissolved	4510		15.0	0.99	ug/L		10/04/19 08:13	10/04/19 15:21	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.31		0.10	0.068	mg/L			10/04/19 14:10	1
Bicarbonate Alkalinity as CaCO3	79.9		5.0	5.0	mg/L			10/04/19 11:17	1

Client Sample ID: UPA-107-US Lab Sample ID: 460-192902-2

5.0

1.0

5.0 mg/L

0.58 mg/L

5.0 U

0.58 U

95

Date Collected: 10/02/19 11:30 Date Received: 10/02/19 21:20

4-Bromofluorobenzene

Carbonate Alkalinity as CaCO3

Sulfide

Method: 8260C SIM - Volatile Organic Compounds (GC/MS) Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac 0.40 0.20 ug/L 10/05/19 06:26 1,4-Dioxane Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

72 - 133

Method: 8260C - Volatile Organalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/06/19 23:27	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/06/19 23:27	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/06/19 23:27	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/06/19 23:27	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/06/19 23:27	1
Acetone	4.4	U	5.0	4.4	ug/L			10/06/19 23:27	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/06/19 23:27	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/06/19 23:27	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/06/19 23:27	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/06/19 23:27	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/06/19 23:27	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/06/19 23:27	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/06/19 23:27	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/06/19 23:27	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/06/19 23:27	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/06/19 23:27	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/06/19 23:27	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/06/19 23:27	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/06/19 23:27	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/06/19 23:27	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/06/19 23:27	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/06/19 23:27	1
Benzene	0.20	U	1.0	0.20	ug/L			10/06/19 23:27	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/06/19 23:27	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/06/19 23:27	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/06/19 23:27	1
2-Hexanone	1.1	11	5.0	1.1	ug/L			10/06/19 23:27	1

Eurofins TestAmerica, Edison

10/04/19 11:17

10/04/19 14:25

10/05/19 06:26

1

Matrix: Water

11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-107-US

Lab Sample ID: 460-192902-2

Date Collected: 10/02/19 11:30 Matrix: Water Date Received: 10/02/19 21:20

Analyte	anic Compo Result	Qualifier	` RL	МDL	Unit	D	Prepared	Analyzed	Dil Fa
etrachloroethene	0.25	U	1.0	0.25	ug/L			10/06/19 23:27	
,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/06/19 23:27	
oluene	0.38	U	1.0	0.38	ug/L			10/06/19 23:27	
Chlorobenzene	6.6		1.0	0.38	ug/L			10/06/19 23:27	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/06/19 23:27	
Styrene	0.42	U	1.0	0.42	ug/L			10/06/19 23:27	
(ylenes, Total	0.65	U	2.0	0.65	-			10/06/19 23:27	
Diethyl ether	11		1.0	0.21	-			10/06/19 23:27	
MTBE	0.47	U	1.0	0.47	-			10/06/19 23:27	
etrahydrofuran	1.0	U	2.0		ug/L			10/06/19 23:27	
Cyclohexane	0.32		1.0	0.32	-			10/06/19 23:27	
,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/06/19 23:27	
,3,5-Trimethylbenzene	0.33		1.0	0.33	-			10/06/19 23:27	
sopropylbenzene	0.34		1.0	0.34	•			10/06/19 23:27	
I-Propylbenzene	0.32		1.0	0.32	-			10/06/19 23:27	
Methylcyclohexane	0.32		1.0		ug/L			10/06/19 23:27	
ndane	0.35		1.0	0.35	_			10/06/19 23:27	
Dichlorofluoromethane	0.34		1.0		ug/L			10/06/19 23:27	
,2,3-Trimethylbenzene	0.34		1.0		ug/L			10/06/19 23:27	
,2,0° minetryibenzene	0.50	U	1.0	0.50	ug/L			10/00/19 25.27	
entatively Identified Compound	Est. Result	Qualifier	Unit	D i	RT	CAS No.	Prepared	Analyzed	Dil Fa
entatively Identified Compound	None		ug/L					10/06/19 23:27	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
,2-Dichloroethane-d4 (Surr)	101	-	74 - 132					10/06/19 23:27	-
oluene-d8 (Surr)	94		80 - 120					10/06/19 23:27	
oluelle-uo (Sull)									
' '	86		77 - 124					10/06/19 23:27	
-Bromofluorobenzene	86 92		77 - 124 72 - 131						
-Bromofluorobenzene ibromofluoromethane (Surr)	92		72 - 131	~ ~12 <i>8</i>)				10/06/19 23:27	
-Bromofluorobenzene bibromofluoromethane (Surr) Method: 8270D SIM - Semivo	92 <mark>latile Organ</mark> i		72 - 131 unds (GC/M	•	Unit	D	Prepared	10/06/19 23:27 10/06/19 23:27	Dil F
-Bromofluorobenzene hibromofluoromethane (Surr) flethod: 8270D SIM - Semivo nalyte	92 Iatile Organi Result	Qualifier	72 - 131 unds (GC/MS RL	MDL		D	Prepared 10/04/19 09:28	10/06/19 23:27 10/06/19 23:27 Analyzed	Dil Fa
-Bromofluorobenzene hibromofluoromethane (Surr) Method: 8270D SIM - Semivo nalyte enzo[a]anthracene	92 latile Organi Result 0.016	Qualifier U	72 - 131 unds (GC/MS RL 0.050	MD L 0.016	ug/L	<u>D</u>	10/04/19 09:28	10/06/19 23:27 10/06/19 23:27 Analyzed 10/05/19 05:31	Dil Fa
-Bromofluorobenzene hibromofluoromethane (Surr) Method: 8270D SIM - Semivo nalyte enzo[a]anthracene henzo[a]pyrene	92 latile Organi Result 0.016 0.022	Qualifier U	72 - 131 unds (GC/MS RL 0.050 0.050	MDL 0.016 0.022	ug/L ug/L	<u>D</u>	10/04/19 09:28 10/04/19 09:28	10/06/19 23:27 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31	Dil Fa
Bromofluorobenzene ibromofluoromethane (Surr) lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene	92 latile Organi Result 0.016 0.022 0.024	Qualifier U U U U U U	72 - 131 unds (GC/MS RL 0.050 0.050 0.050	MDL 0.016 0.022 0.024	ug/L ug/L ug/L	D	10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/06/19 23:27 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31	Dil Fa
-Bromofluorobenzene hibromofluoromethane (Surr) flethod: 8270D SIM - Semivo nalyte enzo[a]anthracene henzo[a]pyrene henzo[b]fluoranthene lexachlorobenzene	92 latile Organi Result 0.016 0.022 0.024 0.013	Qualifier U U UJ U	72 - 131 unds (GC/Ms RL 0.050 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L	D	10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/06/19 23:27 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31	Dil Fa
Bromofluorobenzene ibromofluoromethane (Surr) lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol	92 latile Organi Result 0.016 0.022 0.024	Qualifier U U UJ U	72 - 131 unds (GC/MS RL 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/06/19 23:27 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31	Dil F
Bromofluorobenzene ibromofluoromethane (Surr) lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol iis(2-chloroethyl)ether	92 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.091	Qualifier U U U U U U U	72 - 131 unds (GC/Ms RL 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	D	10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/06/19 23:27 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31	Dil F
-Bromofluorobenzene hibromofluoromethane (Surr) flethod: 8270D SIM - Semivo nalyte enzo[a]anthracene henzo[a]pyrene henzo[b]fluoranthene lexachlorobenzene entachlorophenol his(2-chloroethyl)ether	92 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.091 e Organic Co	Qualifier U U U U U U O mpounds	72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.20 0.20 0.030 6 (GC/MS)	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/06/19 23:27 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31	
-Bromofluorobenzene hibromofluoromethane (Surr) Method: 8270D SIM - Semivo nalyte enzo[a]anthracene henzo[a]pyrene henzo[b]fluoranthene lexachlorobenzene hentachlorophenol his(2-chloroethyl)ether Method: 8270D - Semivolatile nalyte	92 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.091 e Organic Co	Qualifier U U U U U C O O O O O O O O O O O O O	72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.20 0.030 6 (GC/MS) RL	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 Prepared	10/06/19 23:27 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31	
-Bromofluorobenzene hibromofluoromethane (Surr) Method: 8270D SIM - Semivo nalyte enzo[a]anthracene henzo[a]pyrene henzo[b]fluoranthene hexachlorobenzene hentachlorophenol his(2-chloroethyl)ether Method: 8270D - Semivolatile nalyte henol	92 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.091 e Organic Core Result 0.29	Qualifier U U U U U Compounds Qualifier U	72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.020 0.030 6 (GC/MS) RL 10	0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 Prepared 10/04/19 09:28	Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31	
-Bromofluorobenzene bibromofluoromethane (Surr) Method: 8270D SIM - Semivo unalyte enzo[a]anthracene denzo[b]fluoranthene dexachlorobenzene rentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile unalyte denol -Chlorophenol	92 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.091 e Organic Co Result 0.29 0.38	Qualifier U U U U U C C C C C C C C C C C C C C	72 - 131 unds (GC/MS) RL 0.050 0.050 0.050 0.020 0.20 0.030 6 (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 Prepared 10/04/19 09:28 10/04/19 09:28	Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31	
-Bromofluorobenzene hibromofluoromethane (Surr) Method: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene lenzo[b]fluoranthene lexachlorobenzene entachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol	92 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.091 e Organic Co Result 0.29 0.38 0.26	Qualifier U U U U U Compounds Qualifier U U U	72 - 131 unds (GC/MS) RL 0.050 0.050 0.050 0.020 0.20 0.30 6 (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 Analyzed 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46	
-Bromofluorobenzene ibromofluoromethane (Surr) Ilethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene lexachlorobenzene entachlorophenol iis(2-chloroethyl)ether Ilethod: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol	92 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.091 e Organic Co Result 0.29 0.38 0.26 0.24	Qualifier U U U U U Compounds Qualifier U U U	72 - 131 unds (GC/MS) RL 0.050 0.050 0.050 0.020 0.20 0.030 6 (GC/MS) RL 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	Analyzed 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 Analyzed 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46	
Bromofluorobenzene ibromofluoromethane (Surr) lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol iis(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol	92 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.091 e Organic Co Result 0.29 0.38 0.26 0.24 0.75	Qualifier U U U U U C C C C C C C C C C C C C C	72 - 131 unds (GC/MS) RL 0.050 0.050 0.050 0.020 0.20 0.030 6 (GC/MS) RL 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	Analyzed 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 21:46 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46	
-Bromofluorobenzene hibromofluoromethane (Surr) Method: 8270D SIM - Semivo nalyte enzo[a]anthracene henzo[a]pyrene henzo[b]fluoranthene lexachlorobenzene rentachlorophenol dis(2-chloroethyl)ether Method: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol -Nitrophenol ,4-Dimethylphenol	92 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.091 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24	Qualifier U U U U U U U U U U U U U U U U U U	72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.020 0.030 6 (GC/MS) RL 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	Analyzed 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 21:46 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46	
-Bromofluorobenzene hibromofluoromethane (Surr) flethod: 8270D SIM - Semivo nalyte enzo[a]anthracene henzo[a]pyrene enzo[b]fluoranthene lexachlorobenzene hentachlorophenol sis(2-chloroethyl)ether flethod: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol -Nitrophenol ,4-Dimethylphenol ,4-Dimethylphenol	92 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.091 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42	Qualifier U U U U U U U U U U U U U U U U U U	72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.030 s (GC/MS) RL 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	Analyzed 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 Malyzed 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46	
### Application of the control of th	92 latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.091 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24	Qualifier U U U U U C C C C C C C C C C C C C C	72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.020 0.030 6 (GC/MS) RL 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	Analyzed 10/06/19 23:27 Analyzed 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 05:31 10/05/19 21:46 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46 10/04/19 21:46	Dil Fa

Eurofins TestAmerica, Edison

11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-107-US

Lab Sample ID: 460-192902-2 Date Collected: 10/02/19 11:30

Matrix: Water

Date Received: 10/02/19 21:20

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4-Dinitrophenol	14	U.* UJ	20	14	ug/L		10/04/19 09:28	10/04/19 21:46	
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/04/19 09:28	10/04/19 21:46	
4,6-Dinitro-2-methylphenol	13	⊎ .* UJ	20	13	ug/L		10/04/19 09:28	10/04/19 21:46	
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/04/19 09:28	10/04/19 21:46	
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/04/19 09:28	10/04/19 21:46	
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/04/19 09:28	10/04/19 21:46	
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/04/19 09:28	10/04/19 21:46	
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/04/19 09:28	10/04/19 21:46	
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/04/19 09:28	10/04/19 21:46	
Isophorone	0.80	U	10	0.80	ug/L		10/04/19 09:28	10/04/19 21:46	
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/04/19 09:28	10/04/19 21:46	
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/04/19 09:28	10/04/19 21:46	
Naphthalene	1.1	U	10	1.1	ug/L		10/04/19 09:28	10/04/19 21:46	
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/04/19 09:28	10/04/19 21:46	
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/04/19 09:28	10/04/19 21:46	
2-Methylnaphthalene	1.1		10	1.1	ug/L		10/04/19 09:28	10/04/19 21:46	
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/04/19 09:28	10/04/19 21:46	
2-Chloronaphthalene	1.2	. U	10	1.2	ug/L		10/04/19 09:28	10/04/19 21:46	
2-Nitroaniline	0.47		10	0.47	-		10/04/19 09:28	10/04/19 21:46	
Dimethyl phthalate	0.77	U	10	0.77	=		10/04/19 09:28	10/04/19 21:46	
Acenaphthylene	0.82	. U	10	0.82	-		10/04/19 09:28	10/04/19 21:46	
2,6-Dinitrotoluene	0.39		2.0	0.39	ug/L		10/04/19 09:28	10/04/19 21:46	
3-Nitroaniline	0.96		10	0.96	-		10/04/19 09:28	10/04/19 21:46	
Acenaphthene	1.1		10	1.1	ug/L		10/04/19 09:28	10/04/19 21:46	
Dibenzofuran	1.1		10	1.1	ug/L		10/04/19 09:28	10/04/19 21:46	
2.4-Dinitrotoluene		u.≛ UJ	2.0	1.0	ug/L		10/04/19 09:28	10/04/19 21:46	
Diethyl phthalate	0.98		10	0.98	ug/L		10/04/19 09:28	10/04/19 21:46	
4-Chlorophenyl phenyl ether	1.3		10		ug/L		10/04/19 09:28	10/04/19 21:46	
Fluorene	0.91		10	0.91	ug/L		10/04/19 09:28	10/04/19 21:46	
4-Nitroaniline	0.54		10	0.54			10/04/19 09:28	10/04/19 21:46	
N-Nitrosodiphenylamine	0.89		10		ug/L		10/04/19 09:28	10/04/19 21:46	
4-Bromophenyl phenyl ether	0.75		10	0.75	•		10/04/19 09:28	10/04/19 21:46	
Phenanthrene	0.58		10	0.58	-		10/04/19 09:28	10/04/19 21:46	
Anthracene	0.63		10	0.63	-			10/04/19 21:46	
Carbazole	0.68		10	0.68	-			10/04/19 21:46	
Di-n-butyl phthalate	0.84		10	0.84				10/04/19 21:46	
Fluoranthene	0.84		10	0.84	-		10/04/19 09:28		
Pyrene	1.6		10		ug/L			10/04/19 21:46	
Butyl benzyl phthalate	0.85		10	0.85	_		10/04/19 09:28		
3,3'-Dichlorobenzidine	1.4		10		ug/L		10/04/19 09:28		
Chrysene	0.91		2.0	0.91	-		10/04/19 09:28		
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L		10/04/19 09:28		
Di-n-octyl phthalate	4.8		10		ug/L		10/04/19 09:28	10/04/19 21:46	
Benzo[k]fluoranthene	0.67		1.0	0.67	-		10/04/19 09:28	10/04/19 21:46	
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L		10/04/19 09:28		
Dibenz(a,h)anthracene	0.72		1.0	0.72			10/04/19 09:28		
Benzo[g,h,i]perylene	1.4		1.0		ug/L ug/L		10/04/19 09:28		
	1.4		10		ug/L ug/L			10/04/19 21:46	
Diphenyl ether n,n'-Dimethylaniline	0.91		1.0		ug/L ug/L			10/04/19 21:46	

Page 45 of 1976

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-107-US

Lab Sample ID: 460-192902-2

Date Collected: 10/02/19 11:30 Matrix: Water Date Received: 10/02/19 21:20

Method: 8270D - Semivolatile Analyte		Qualifier	ŘĹ		Unit	D	Prepared	Analyzed	Dil Fa
Caprolactam	0.68	U	10	0.68	ug/L		10/04/19 09:28	10/04/19 21:46	-
bis (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/04/19 09:28	10/04/19 21:46	
Bisphenol-A	9.9	U *	10	9.9	ug/L		10/04/19 09:28	10/04/19 21:46	
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/04/19 09:28	10/04/19 21:46	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L				10/04/19 09:28	10/04/19 21:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	91		51 - 108				10/04/19 09:28	10/04/19 21:46	
Phenol-d5 (Surr)	31		14 _ 39				10/04/19 09:28	10/04/19 21:46	
Terphenyl-d14 (Surr)	87		40 - 148				10/04/19 09:28	10/04/19 21:46	
2,4,6-Tribromophenol (Surr)	96		26 - 139				10/04/19 09:28	10/04/19 21:46	
2-Fluorophenol (Surr)	46		25 - 58				10/04/19 09:28	10/04/19 21:46	
2-Fluorobiphenyl (Surr)	86		45 - 107				10/04/19 09:28	10/04/19 21:46	
Method: 300.0 - Anions, Ion C	₩								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Nitrate as N	0.056		0.10		mg/L			10/03/19 23:11	
Nitrite as N	0.076	U	0.12		mg/L			10/03/19 23:11	
Sulfate	16.2		0.60	0.35	mg/L			10/03/19 23:11	
Method: 300.0 - Anions, Ion C									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	49.5	D	2.52	0.29	mg/L			10/04/19 04:14	2
Method: 200.8 - Metals (ICP/M									
Analyte	Result	Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Calcium	29300		250		ug/L		10/07/19 08:22	10/08/19 21:45	
Potassium	8670		250	73.5	ug/L		10/07/19 08:22	10/08/19 21:45	
Magnesium	12300		250	24.8	ug/L		10/07/19 08:22	10/08/19 21:45	
Sodium	32000		250	66.8	ug/L		10/07/19 08:22	10/08/19 21:45	
Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Cobalt, Dissolved	20.9	J	50.0		ug/L			10/05/19 15:26	
Iron, Dissolved	9150		150		ug/L			10/05/19 15:26	
Manganese, Dissolved	3400		15.0	0.99	ug/L		10/04/19 10:03	10/05/19 15:26	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Ammonia (as N)	10.3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.10		mg/L			10/04/19 14:28	
Bicarbonate Alkalinity as CaCO3	149		5.0		mg/L			10/04/19 11:55	
Carbonate Alkalinity as CaCO3	5.0	U	5.0		mg/L			10/04/19 11:55	
Sulfide	0.58		1.0	0.59	mg/L			10/04/19 14:25	

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-104-TZ

Lab Sample ID: 460-192902-3

Matrix: Water

Date Collected: 10/02/19 15:10 Date Received: 10/02/19 21:20

Analyte	anic Compo Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	0.40	U	1.0	0.40	ug/L			10/06/19 23:50	-
Bromomethane	0.55	U	1.0	0.55	ug/L			10/06/19 23:50	
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/06/19 23:50	
Chloroethane	0.32	U	1.0		ug/L			10/06/19 23:50	
Methylene Chloride	0.32	U	1.0		ug/L			10/06/19 23:50	
Acetone	4.4	U	5.0		ug/L			10/06/19 23:50	
Carbon disulfide	0.82	U	1.0		ug/L			10/06/19 23:50	
1,1-Dichloroethene	0.26	U	1.0		ug/L			10/06/19 23:50	
1,1-Dichloroethane	0.26	U	1.0		ug/L			10/06/19 23:50	
trans-1,2-Dichloroethene	0.24	U	1.0		ug/L			10/06/19 23:50	
cis-1,2-Dichloroethene	0.24	J	1.0		ug/L			10/06/19 23:50	
Chloroform	0.33		1.0		ug/L			10/06/19 23:50	
1,2-Dichloroethane	1.2	_	1.0		ug/L			10/06/19 23:50	
2-Butanone (MEK)	1.9	U	5.0		ug/L			10/06/19 23:50	
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/06/19 23:50	
Carbon tetrachloride	0.21		1.0		ug/L			10/06/19 23:50	
Bromodichloromethane	0.34		1.0		ug/L			10/06/19 23:50	
1,2-Dichloropropane	0.35		1.0		ug/L			10/06/19 23:50	
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/06/19 23:50	
Trichloroethene	0.22		1.0		ug/L			10/06/19 23:50	
Dibromochloromethane	0.28		1.0		ug/L			10/06/19 23:50	
1,1,2-Trichloroethane	0.43		1.0		ug/L ug/L			10/06/19 23:50	
Benzene	36	U	1.0		ug/L			10/06/19 23:50	
trans-1,3-Dichloropropene	0.49	11	1.0		ug/L ug/L			10/06/19 23:50	
Bromoform	0.49		1.0		ug/L ug/L			10/06/19 23:50	
4-Methyl-2-pentanone	1.3		5.0		ug/L ug/L			10/06/19 23:50	
2-Hexanone	1.1		5.0					10/06/19 23:50	
	0.25				ug/L			10/06/19 23:50	
Tetrachloroethene			1.0		ug/L				
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/06/19 23:50	
Toluene	0.38		1.0		ug/L			10/06/19 23:50	
Chlorobenzene	0.38		1.0		ug/L			10/06/19 23:50	
Ethylbenzene	0.30		1.0		ug/L			10/06/19 23:50	
Styrene	0.42		1.0		ug/L			10/06/19 23:50	
Xylenes, Total	0.65		2.0		ug/L			10/06/19 23:50	,
Diethyl ether	0.92	_	1.0		ug/L			10/06/19 23:50	
MTBE	0.47		1.0		ug/L			10/06/19 23:50	
Tetrahydrofuran	1.0		2.0		ug/L			10/06/19 23:50	
Cyclohexane	0.46	J	1.0		ug/L			10/06/19 23:50	
1,4-Dioxane	69		50		ug/L			10/06/19 23:50	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/06/19 23:50	•
1,3,5-Trimethylbenzene	0.33	U	1.0		ug/L			10/06/19 23:50	•
Isopropylbenzene	0.64	J	1.0		ug/L			10/06/19 23:50	
N-Propylbenzene	0.32		1.0		ug/L			10/06/19 23:50	
Methylcyclohexane	0.26	U	1.0		ug/L			10/06/19 23:50	
Indane	0.35	U	1.0		ug/L			10/06/19 23:50	
Dichlorofluoromethane	4.3		1.0	0.34	ug/L			10/06/19 23:50	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/06/19 23:50	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None	-	ug/L	_				10/06/19 23:50	

Eurofins TestAmerica, Edison

11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-104-TZ

Lab Sample ID: 460-192902-3 Data Callected: 10/02/19 15:10

Matrix: Water

Date	Received:	10/02/19	21:20
nate	conectea:	10/07/12	10:10

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	74 - 132		10/06/19 23:50	1
Toluene-d8 (Surr)	92	80 - 120		10/06/19 23:50	1
4-Bromofluorobenzene	84	77 - 124		10/06/19 23:50	1
Dibromofluoromethane (Surr)	91	72 - 131		10/06/19 23:50	1

Method: 8270D SIM - Semiv	olatile Organi	c Compour	ids (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.040	J	0.10	0.031	ug/L		10/04/19 09:28	10/07/19 07:06	2
Benzo[a]pyrene	0.043	₩IJ	0.10	0.043	ug/L		10/04/19 09:28	10/07/19 07:06	2
Benzo[b]fluoranthene	0.048	U	0.10	0.048	ug/L		10/04/19 09:28	10/07/19 07:06	2
Hexachlorobenzene	0.026	U	0.040	0.026	ug/L		10/04/19 09:28	10/07/19 07:06	2
Pentachlorophenol	0.31	U	0.40	0.31	ug/L		10/04/19 09:28	10/07/19 07:06	2
Bis(2-chloroethyl)ether	12		0.060	0.052	ug/L		10/04/19 09:28	10/07/19 07:06	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/04/19 09:28	10/04/19 22:07	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/04/19 09:28	10/04/19 22:07	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/04/19 09:28	10/04/19 22:07	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/04/19 09:28	10/04/19 22:07	1
2-Nitrophenol	0.75	₩* UJ	10	0.75	ug/L		10/04/19 09:28	10/04/19 22:07	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/04/19 09:28	10/04/19 22:07	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/04/19 09:28	10/04/19 22:07	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/04/19 09:28	10/04/19 22:07	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/04/19 09:28	10/04/19 22:07	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/04/19 09:28	10/04/19 22:07	1
2,4-Dinitrophenol	14	₩ UJ	20	14	ug/L		10/04/19 09:28	10/04/19 22:07	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/04/19 09:28	10/04/19 22:07	1
4,6-Dinitro-2-methylphenol	13	U * ∪J	20	13	ug/L		10/04/19 09:28	10/04/19 22:07	1
1,3-Dichlorobenzene	2.0		10	2.0	ug/L		10/04/19 09:28	10/04/19 22:07	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/04/19 09:28	10/04/19 22:07	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/04/19 09:28	10/04/19 22:07	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/04/19 09:28	10/04/19 22:07	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/04/19 09:28	10/04/19 22:07	1
Nitrobenzene	0.57	. U	1.0	0.57	ug/L		10/04/19 09:28	10/04/19 22:07	1
Isophorone	0.80	U	10	0.80	ug/L		10/04/19 09:28	10/04/19 22:07	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/04/19 09:28	10/04/19 22:07	1
1,2,4-Trichlorobenzene	1.3	. U	2.0	1.3	ug/L		10/04/19 09:28	10/04/19 22:07	1
Naphthalene	1.1	U	10	1.1	ug/L		10/04/19 09:28	10/04/19 22:07	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/04/19 09:28	10/04/19 22:07	1
Hexachlorobutadiene	0.78	. U	1.0	0.78	ug/L		10/04/19 09:28	10/04/19 22:07	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/04/19 09:28	10/04/19 22:07	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/04/19 09:28	10/04/19 22:07	1
2-Chloronaphthalene	1.2	. U	10	1.2	ug/L		10/04/19 09:28	10/04/19 22:07	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/04/19 09:28	10/04/19 22:07	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/04/19 09:28	10/04/19 22:07	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/04/19 09:28	10/04/19 22:07	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/04/19 09:28	10/04/19 22:07	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/04/19 09:28	10/04/19 22:07	1
Acenaphthene	1.1	U	10		ug/L		10/04/19 09:28	10/04/19 22:07	1

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-104-TZ

Date Received: 10/02/19 21:20

Lab Sample ID: 460-192902-3 Date Collected: 10/02/19 15:10

Matrix: Water

Method: 8270D - Semivolatile ^{Analyte}		Qualifier	` ŔĹ		Unit	D	Prepared	Analyzed	Dil Fa
Dibenzofuran	1.1	U	10	1.1	ug/L		10/04/19 09:28	10/04/19 22:07	
2,4-Dinitrotoluene	1.0	⊎ .* UJ	2.0	1.0	ug/L		10/04/19 09:28	10/04/19 22:07	
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/04/19 09:28	10/04/19 22:07	
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/04/19 09:28	10/04/19 22:07	
Fluorene	0.91	U	10	0.91	ug/L		10/04/19 09:28	10/04/19 22:07	
4-Nitroaniline	0.54	U	10		ug/L		10/04/19 09:28	10/04/19 22:07	
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/04/19 09:28	10/04/19 22:07	
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/04/19 09:28	10/04/19 22:07	
Phenanthrene	0.58	U	10	0.58	ug/L		10/04/19 09:28	10/04/19 22:07	
Anthracene	0.63	U	10		ug/L		10/04/19 09:28	10/04/19 22:07	
Carbazole	0.68	U	10		ug/L		10/04/19 09:28	10/04/19 22:07	
Di-n-butyl phthalate	0.84		10		ug/L		10/04/19 09:28	10/04/19 22:07	
Fluoranthene	0.84		10		ug/L		10/04/19 09:28	10/04/19 22:07	
Pyrene	1.6		10		ug/L		10/04/19 09:28	10/04/19 22:07	
Butyl benzyl phthalate	0.85		10		ug/L		10/04/19 09:28	10/04/19 22:07	
3,3'-Dichlorobenzidine	1.4		10		ug/L		10/04/19 09:28	10/04/19 22:07	
Chrysene	0.91	-	2.0		ug/L		10/04/19 09:28	10/04/19 22:07	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L		10/04/19 09:28	10/04/19 22:07	
Di-n-octyl phthalate	4.8		10		ug/L		10/04/19 09:28	10/04/19 22:07	
Benzo[k]fluoranthene	0.67		1.0		ug/L			10/04/19 22:07	
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/04/19 22:07	
Dibenz(a,h)anthracene	0.72		1.0		ug/L ug/L			10/04/19 22:07	
Benzo[g,h,i]perylene	1.4		1.0		ug/L ug/L			10/04/19 22:07	
	1.4		10		ug/L ug/L			10/04/19 22:07	
Diphenyl ether	0.91		1.0		-		10/04/19 09:28	10/04/19 22:07	
n,n'-Dimethylaniline	0.91		1.0		ug/L				
Caprolactam					ug/L			10/04/19 22:07	
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/04/19 22:07	
Bisphenol-A		U *	10		ug/L			10/04/19 22:07	
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/04/19 09:28	10/04/19 22:07	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	17	J	ug/L		6.00		10/04/19 09:28	10/04/19 22:07	
Benzylamine	8.2	JN	ug/L	7	7.14	100-46-9	10/04/19 09:28	10/04/19 22:07	
Unknown	10	J	ug/L	9	9.66		10/04/19 09:28	10/04/19 22:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	99		51 - 108				10/04/19 09:28	10/04/19 22:07	
Phenol-d5 (Surr)	34		14 - 39					10/04/19 22:07	
Terphenyl-d14 (Surr)	107		40 - 148					10/04/19 22:07	
2,4,6-Tribromophenol (Surr)	107		26 - 139					10/04/19 22:07	
2-Fluorophenol (Surr)	51		25 - 58					10/04/19 22:07	
2-Fluorobiphenyl (Surr)	96		45 - 107					10/04/19 22:07	
Blashadi 200 0 Antono 10 C	·								
Method: 300.0 - Anions, Ion C ^{Analyte}		phy Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
· · · · · · · · · · · · · · · · · · ·			_				opuiou		
Nitrate as N	0.056	u	(1.10)	UUnn	[[10]/			10/05/19 25:25	
Nitrate as N Nitrite as N	0.056 0.076		0.10 0.12		mg/L mg/L			10/03/19 23:26 10/03/19 23:26	

Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

Lab Sample ID: 460-192902-3 Client Sample ID: UPA-104-TZ

Date Collected: 10/02/19 15:10 Date Received: 10/02/19 21:20

Matrix: Water

Job ID: 460-192645-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	21.2	D	0.96	0.11	mg/L			10/04/19 04:29	3
Method: 200.8 - Metals (ICP/MS) - Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	12000		250	233	ug/L		10/07/19 08:22	10/08/19 21:48	
Potassium	4110		250	73.5	ug/L		10/07/19 08:22	10/08/19 21:48	5
Magnesium	3230		250	24.8	ug/L		10/07/19 08:22	10/08/19 21:48	Ę
Sodium	13600		250	66.8	ug/L		10/07/19 08:22	10/08/19 21:48	
Method: 6010D - Metals (ICP) -	Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	16.5		50.0	1.7	ug/L		10/04/19 10:03	10/05/19 15:30	1
Iron, Dissolved	6650		150	34.2	ug/L		10/04/19 10:03	10/05/19 15:30	1
Manganese, Dissolved	352		15.0	0.99	ug/L		10/04/19 10:03	10/05/19 15:30	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			10/04/19 14:29	1
Bicarbonate Alkalinity as CaCO3	44.1		5.0	5.0	mg/L			10/04/19 12:01	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/04/19 12:01	1
Sulfide	0.58	. , ,	1.0		mg/L			10/04/19 14:25	

Client Sample ID: UPA-107-TZ

Date Collected: 10/02/19 15:00

Date Received: 10/02/19 21:20

Lab Sample ID: 460-192902-4 Matrix: Water

Method: 8260C SIM - Volatile	Method: 8260C SIM - Volatile Organic Compounds (GC/MS)													
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac					
1,4-Dioxane	25		0.40	0.20	ug/L			10/04/19 14:03	1					
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac					
4-Bromofluorobenzene	93		72 - 133			-		10/04/19 14:03	1					

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/07/19 00:14	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/07/19 00:14	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/07/19 00:14	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/07/19 00:14	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/07/19 00:14	1
Acetone	4.4	U	5.0	4.4	ug/L			10/07/19 00:14	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/07/19 00:14	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/07/19 00:14	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/07/19 00:14	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/07/19 00:14	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/07/19 00:14	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/07/19 00:14	1
1,2-Dichloroethane	3.0		1.0	0.43	ug/L			10/07/19 00:14	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/07/19 00:14	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/07/19 00:14	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/07/19 00:14	1

Eurofins TestAmerica, Edison

11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-107-TZ

Lab Sample ID: 460-192902-4

Matrix: Water

Date Collected: 10/02/19 15:00 Date Received: 10/02/19 21:20

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Bromodichloromethane	0.34	U	1.0		ug/L			10/07/19 00:14	
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/07/19 00:14	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/07/19 00:14	
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/07/19 00:14	
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/07/19 00:14	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/07/19 00:14	
Benzene	0.88	J	1.0	0.20	ug/L			10/07/19 00:14	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/07/19 00:14	
Bromoform	0.54	U	1.0	0.54	ug/L			10/07/19 00:14	
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/07/19 00:14	
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/07/19 00:14	
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/07/19 00:14	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/07/19 00:14	
Toluene	0.38	U	1.0	0.38	ug/L			10/07/19 00:14	
Chlorobenzene	0.98	J	1.0	0.38	ug/L			10/07/19 00:14	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/07/19 00:14	
Styrene	0.42	U	1.0	0.42	ug/L			10/07/19 00:14	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/07/19 00:14	
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/07/19 00:14	
MTBE	0.47	U	1.0	0.47	ug/L			10/07/19 00:14	
Tetrahydrofuran	4.7		2.0	1.0	ug/L			10/07/19 00:14	
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/07/19 00:14	
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/07/19 00:14	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/07/19 00:14	
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/07/19 00:14	
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/07/19 00:14	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/07/19 00:14	
Indane	0.35	U	1.0	0.35	ug/L			10/07/19 00:14	
Dichlorofluoromethane	1.3		1.0	0.34	ug/L			10/07/19 00:14	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/07/19 00:14	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/07/19 00:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	107		74 - 132			•		10/07/19 00:14	
Toluene-d8 (Surr)	103		80 - 120					10/07/19 00:14	
4-Bromofluorobenzene	92		77 - 124					10/07/19 00:14	

Method: 8270D SIM - Semivo	olatile Organic	Compoun	ds (GC/MS	SIM)					
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	J	0.050	0.016	ug/L		10/04/19 09:28	10/05/19 06:13	1
Benzo[a]pyrene	0.022 ↓	J ())	0.050	0.022	ug/L		10/04/19 09:28	10/05/19 06:13	1
Benzo[b]fluoranthene	0.024 l	J	0.050	0.024	ug/L		10/04/19 09:28	10/05/19 06:13	1
Hexachlorobenzene	0.020		0.020	0.013	ug/L		10/04/19 09:28	10/05/19 06:13	1
Pentachlorophenol	0.15 l	J	0.20	0.15	ug/L		10/04/19 09:28	10/05/19 06:13	1
Bis(2-chloroethyl)ether	2.8		0.030	0.026	ug/L		10/04/19 09:28	10/05/19 06:13	1

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-107-TZ

Lab Sample ID: 460-192902-4 Date Collected: 10/02/19 15:00

Matrix: Water

Method: 8270D - Semivolatil	***	. ,	∋C/MS)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29		10		ug/L		10/04/19 09:28		1
2-Chlorophenol	0.38	U	10	0.38	ug/L			10/04/19 22:28	•
2-Methylphenol	0.26	U	10	0.26	ug/L		10/04/19 09:28	10/04/19 22:28	1
4-Methylphenol	0.24		10	0.24	ug/L		10/04/19 09:28	10/04/19 22:28	1
2-Nitrophenol	0.75	₩. Mî	10	0.75	ug/L		10/04/19 09:28	10/04/19 22:28	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/04/19 09:28	10/04/19 22:28	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/04/19 09:28	10/04/19 22:28	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/04/19 09:28	10/04/19 22:28	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/04/19 09:28	10/04/19 22:28	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/04/19 09:28	10/04/19 22:28	1
2,4-Dinitrophenol	14	U≛ UJ	20	14	ug/L		10/04/19 09:28	10/04/19 22:28	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/04/19 09:28	10/04/19 22:28	1
4,6-Dinitro-2-methylphenol	13	₩* UJ	20		ug/L			10/04/19 22:28	1
1,3-Dichlorobenzene	2.0		10		ug/L		10/04/19 09:28	10/04/19 22:28	1
1,4-Dichlorobenzene	1.3		10		ug/L			10/04/19 22:28	1
1,2-Dichlorobenzene	1.3		10		ug/L			10/04/19 22:28	
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L			10/04/19 22:28	1
Hexachloroethane	1.2		2.0		ug/L			10/04/19 22:28	1
Nitrobenzene	0.57		1.0		ug/L			10/04/19 22:28	
Isophorone	0.80		10		ug/L			10/04/19 22:28	1
Bis(2-chloroethoxy)methane	0.24		10		ug/L			10/04/19 22:28	1
1,2,4-Trichlorobenzene	1.3		2.0		ug/L			10/04/19 22:28	
Naphthalene	1.1		10	1.1	-			10/04/19 22:28	1
4-Chloroaniline	1.9		10					10/04/19 22:28	
Hexachlorobutadiene	0.78		1.0		ug/L ug/L			10/04/19 22:28	
					-				
2-Methylnaphthalene	1.1		10	1.1				10/04/19 22:28	1
Hexachlorocyclopentadiene	1.7		10		ug/L			10/04/19 22:28	
2-Chloronaphthalene	1.2		10		ug/L			10/04/19 22:28	1
2-Nitroaniline	0.47		10	0.47	-			10/04/19 22:28	1
Dimethyl phthalate	0.77		10		ug/L			10/04/19 22:28	
Acenaphthylene	0.82		10		ug/L			10/04/19 22:28	1
2,6-Dinitrotoluene	0.39		2.0		•			10/04/19 22:28	1
3-Nitroaniline	0.96				ug/L			10/04/19 22:28	
Acenaphthene	1.1		10		ug/L			10/04/19 22:28	1
Dibenzofuran	1.1		10		ug/L			10/04/19 22:28	1
2,4-Dinitrotoluene		₩±UJ	2.0	1.0	ug/L			10/04/19 22:28	1
Diethyl phthalate	0.98	U	10		ug/L		10/04/19 09:28	10/04/19 22:28	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/04/19 09:28	10/04/19 22:28	1
Fluorene	0.91	U	10	0.91	ug/L		10/04/19 09:28	10/04/19 22:28	1
4-Nitroaniline	0.54	U	10	0.54	ug/L		10/04/19 09:28	10/04/19 22:28	1
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/04/19 09:28	10/04/19 22:28	1
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/04/19 09:28	10/04/19 22:28	1
Phenanthrene	0.58	U	10	0.58	ug/L		10/04/19 09:28	10/04/19 22:28	
Anthracene	0.63	U	10		ug/L		10/04/19 09:28	10/04/19 22:28	1
Carbazole	0.68	U	10		ug/L		10/04/19 09:28	10/04/19 22:28	1
Di-n-butyl phthalate	0.84		10		ug/L			10/04/19 22:28	1
Fluoranthene	0.84		10		ug/L			10/04/19 22:28	1
Pyrene	1.6		10		ug/L			10/04/19 22:28	1
Butyl benzyl phthalate	0.85		10		ug/L			10/04/19 22:28	1

Eurofins TestAmerica, Edison

Page 52 of 1976 11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-107-TZ

Date Received: 10/02/19 21:20

Lab Sample ID: 460-192902-4 Date Collected: 10/02/19 15:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/04/19 09:28	10/04/19 22:28	-
Chrysene	0.91	U	2.0	0.91	ug/L		10/04/19 09:28	10/04/19 22:28	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/04/19 09:28	10/04/19 22:28	
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/04/19 09:28	10/04/19 22:28	
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/04/19 09:28	10/04/19 22:28	
ndeno[1,2,3-cd]pyrene	1.3	U	2.0	1.3	ug/L		10/04/19 09:28	10/04/19 22:28	
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/04/19 09:28	10/04/19 22:28	
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/04/19 09:28	10/04/19 22:28	
Diphenyl ether	1.2	U	10	1.2	ug/L		10/04/19 09:28	10/04/19 22:28	
n,n'-Dimethylaniline	0.91	U	1.0	0.91	ug/L		10/04/19 09:28	10/04/19 22:28	
Caprolactam	0.68	U	10	0.68	ug/L		10/04/19 09:28	10/04/19 22:28	
ois (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/04/19 09:28	10/04/19 22:28	
Bisphenol-A	9.9	U ≛	10	9.9	ug/L		10/04/19 09:28	10/04/19 22:28	
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/04/19 09:28	10/04/19 22:28	
Fentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L	***************************************			10/04/19 09:28	10/04/19 22:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
litrobenzene-d5 (Surr)	99		51 - 108				10/04/19 09:28	10/04/19 22:28	
Phenol-d5 (Surr)	35		14 - 39				10/04/19 09:28	10/04/19 22:28	
Terphenyl-d14 (Surr)	104		40 - 148				10/04/19 09:28	10/04/19 22:28	
2,4,6-Tribromophenol (Surr)	104		26 - 139				10/04/19 09:28	10/04/19 22:28	
2-Fluorophenol (Surr)	52		25 - 58				10/04/19 09:28	10/04/19 22:28	
2-Fluorobiphenyl (Surr)	96		45 - 107				10/04/19 09:28	10/04/19 22:28	
Method: 300.0 - Anions, Ion C			D.	MDI	l lmiá	5	Drawarad	Amalımad	Dile
Analyte Nitrate as N	0.056	Qualifier	RL 0.10		Unit mg/L	D	Prepared	Analyzed 10/03/19 23:41	Dil Fa
Nitrite as N	0.036		0.10		mg/L			10/03/19 23:41	
		U	0.12		-			10/03/19 23:41	
Sulfate	19.4		0.60	0.35	mg/L			10/03/19 23:41	
Method: 300.0 - Anions, Ion C ^{Analyte}		phy - DL Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	34.8		1.56		mg/L			10/04/19 04:44	1
Method: 200.8 - Metals (ICP/N	IS) - Total R	ocovershi	a						
Analyte	*	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium	27100		250		ug/L			10/08/19 21:50	
Potassium	4060		250		ug/L			10/08/19 21:50	
Vagnesium	3240		250		ug/L			10/08/19 21:50	
Sodium	21900		250		ug/L			10/08/19 21:50	
Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cobalt, Dissolved	6.7	J	50.0		ug/L		10/04/19 10:03	10/05/19 20:41	
					-				
Iron, Dissolved	754		150	34.2	ug/L		10/04/19 10:03	10/05/19 20:41	

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-107-TZ

Lab Sample ID: 460-192902-4 Date Collected: 10/02/19 15:00

Matrix: Water

Date Received: 10/02/19 21:20

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Ammonia (as N)	0.075		0.10	0.068		<u> </u>	,	10/04/19 14:31	1
Bicarbonate Alkalinity as CaCO3	57.6		5.0	5.0	mg/L			10/04/19 12:09	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/04/19 12:09	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/04/19 14:25	1

Client Sample ID: FDGW_100219 Lab Sample ID: 460-192902-5

Date Collected: 10/02/19 00:00 Matrix: Water

Date Received: 10/02/19 21:20

Method: 8260C SIM - Volatile C Analyte 1,4-Dioxane	•	mpounds (Qualifier	(GC/MS) RL 0.40	MD L 0.20	 <u>D</u>	Prepared	Analyzed 10/04/19 14:29	Dil Fac
Surrogate 4-Bromofluorobenzene	%Recovery	Qualifier	Limits 72 - 133			Prepared	Analyzed 10/04/19 14:29	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/07/19 00:38	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/07/19 00:38	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/07/19 00:38	1
Chloroethane	0.32	Ŋ	1.0	0.32	ug/L			10/07/19 00:38	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/07/19 00:38	1
Acetone	4.4	U	5.0	4.4	ug/L			10/07/19 00:38	1
Carbon disulfide	0.82	Ŋ	1.0	0.82	ug/L			10/07/19 00:38	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/07/19 00:38	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/07/19 00:38	1
trans-1,2-Dichloroethene	0.24	Ŋ	1.0	0.24	ug/L			10/07/19 00:38	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/07/19 00:38	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/07/19 00:38	1
1,2-Dichloroethane	0.43	Ŋ	1.0	0.43	ug/L			10/07/19 00:38	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/07/19 00:38	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/07/19 00:38	1
Carbon tetrachloride	0.21	Ú	1.0	0.21	ug/L			10/07/19 00:38	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/07/19 00:38	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/07/19 00:38	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/07/19 00:38	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/07/19 00:38	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/07/19 00:38	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/07/19 00:38	1
Benzene	0.20	U	1.0	0.20	ug/L			10/07/19 00:38	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/07/19 00:38	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/07/19 00:38	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/07/19 00:38	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/07/19 00:38	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/07/19 00:38	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/07/19 00:38	1
Toluene	0.38	U	1.0	0.38	ug/L			10/07/19 00:38	1
Chlorobenzene	7.1		1.0	0.38				10/07/19 00:38	1
Ethylbenzene	0.30	U	1.0	0.30	-			10/07/19 00:38	1

Eurofins TestAmerica, Edison

11/01/2019

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: FDGW_100219 Lab Sample ID: 460-192902-5

Matrix: Water

Date Collected: 10/02/19 00:00 Date Received: 10/02/19 21:20

1,4-Dichlorobenzene

Method: 8260C - Volatile Org Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Styrene	0.42		1.0		ug/L		riepaieu	10/07/19 00:38	1
Xylenes, Total	0.42		2.0		ug/L			10/07/19 00:38	
Diethyl ether	11	Ü	1.0		ug/L			10/07/19 00:38	1
MTBE	0.47	П	1.0		ug/L			10/07/19 00:38	. 1
Tetrahydrofuran	1.0		2.0		ug/L			10/07/19 00:38	
Cyclohexane	0.32		1.0		ug/L			10/07/19 00:38	1
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/07/19 00:38	1
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/07/19 00:38	
Isopropylbenzene	0.34		1.0		ug/L			10/07/19 00:38	1
N-Propylbenzene	0.32		1.0		ug/L			10/07/19 00:38	1
Methylcyclohexane	0.32		1.0		ug/L			10/07/19 00:38	
Indane	0.20		1.0		ug/L ug/L			10/07/19 00:38	1
Dichlorofluoromethane	0.33		1.0		ug/L ug/L			10/07/19 00:38	1
					-				
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/07/19 00:38	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				*	10/07/19 00:38	1
,			J						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		74 - 132					10/07/19 00:38	1
Toluene-d8 (Surr)	96		80 - 120					10/07/19 00:38	1
4-Bromofluorobenzene	82		77 - 124					10/07/19 00:38	1
Dibromofluoromethane (Surr)	90		72 - 131					10/07/19 00:38	1
•									
			•	•		_			
Analyte	Result	Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Benzo[a]anthracene	0.016	Qualifier U	RL 0.050	MDL 0.016	ug/L	<u>D</u>	10/04/19 09:28	10/05/19 06:34	1
Analyte Benzo[a]anthracene Benzo[a]pyrene	0.016 0.022	Qualifier U	0.050 0.050	0.016 0.022	ug/L ug/L	<u>D</u>	10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34	1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	Result 0.016 0.022 0.024	Qualifier U U U	RL 0.050 0.050 0.050	0.016 0.022 0.024	ug/L ug/L ug/L	<u>D</u>	10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34	1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene	Result 0.016 0.022 0.024 0.013	Qualifier U U U U	RL 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L	<u>D</u>	10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34	1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene	Result 0.016 0.022 0.024 0.013 0.15	Qualifier U U U U	RL 0.050 0.050 0.050 0.020 0.20	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34	1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol	Result 0.016 0.022 0.024 0.013	Qualifier U U U U	RL 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L ug/L	<u> </u>	10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34	1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether	0.016 0.022 0.024 0.013 0.15 0.092	Qualifier U U U U U U	RL 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34	1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile	Result 0.016 0.022 0.024 0.013 0.15 0.092	Qualifier U U U U U U mpounds	RL 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34	1 1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte	Result 0.016 0.022 0.024 0.013 0.15 0.092 Corganic Corgan	Qualifier U U U U U U Qualifier	RL 0.050 0.050 0.050 0.020 0.20 0.030 6 (GC/MS) RL	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34	1 1 1 1 1 1 Dil Fac
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte	Result 0.016 0.022 0.024 0.013 0.15 0.092 Corganic Corgan	Qualifier U U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.20 0.030 6 (GC/MS) RL 10	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 Prepared 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol	Result 0.016 0.022 0.024 0.013 0.15 0.092 c Organic Co Result 0.29 0.38	Qualifier U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.20 0.030 6 (GC/MS) RL 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 Prepared 10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 Analyzed 10/04/19 22:49 10/04/19 22:49	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol	Result 0.016 0.022 0.024 0.013 0.15 0.092 c Organic Co Result 0.29 0.38 0.26	Qualifier U U U U U Compounds Qualifier U U U	RL 0.050 0.050 0.050 0.020 0.20 0.030 (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 Analyzed 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49	1 1 1 1 1 1 Dil Fac
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol	Result 0.016 0.022 0.024 0.013 0.15 0.092 e Organic Co Result 0.29 0.38 0.26 0.24	Qualifier U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol	Result 0.016 0.022 0.024 0.013 0.15 0.092 Per Organic Consequence 0.29 0.38 0.26 0.24 0.75	Qualifier U U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 6 (GC/MS) RL 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 06:34 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49	11 11 11 11 11 11 11 11 11 11 11 11 11
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol	Result 0.016 0.022 0.024 0.013 0.15 0.092 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24	Qualifier U U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 06:34 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49	Dil Fac
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol	Result 0.016 0.022 0.024 0.013 0.15 0.092 c Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42	Qualifier U U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49	Dil Fac
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitrophenol 2,4-Diichlorophenol 4-Chloro-3-methylphenol	Result 0.016 0.022 0.024 0.013 0.15 0.092 Corganic Corgan	Qualifier U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49	Dil Fac
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitrophenol 2,4-Diichlorophenol 4-Chloro-3-methylphenol	Result 0.016 0.022 0.024 0.013 0.15 0.092 0.092 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	Qualifier U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49	Dil Fac
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dimethylphenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol	Result 0.016 0.022 0.024 0.013 0.15 0.092 Corganic Corgan	Qualifier U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49	Dil Fac
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitrophenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	Result 0.016 0.022 0.024 0.013 0.15 0.092 0.092 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28	Qualifier U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49	Dil Fac
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dimethylphenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol	Result 0.016 0.022 0.024 0.013 0.15 0.092 0.092 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28	Qualifier U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49 10/04/19 22:49	1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dimethylphenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol	Result 0.016 0.022 0.024 0.013 0.15 0.092 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	Qualifier U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/04/19 22:49 10/04/19 22:49	Dil Fac
Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol 4,4-Dinitrophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4-Nitrophenol 4-Nitrophenol 4-Dinitro-2-methylphenol 1,3-Dichlorobenzene	Result 0.016 0.022 0.024 0.013 0.15 0.092 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	Qualifier U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10 10 10 10 10 20 20 20	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/04/19 09:28 10/04/19 09:28	10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/05/19 06:34 10/04/19 22:49 10/04/19 22:49	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10

1.3 ug/L

1.3 U

Eurofins TestAmerica, Edison

10/04/19 09:28 10/04/19 22:49

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: FDGW_100219

Lab Sample ID: 460-192902-5 Date Collected: 10/02/19 00:00

Matrix: Water

Date Received: 10/02/19 21:20

Method: 8270D - Semivolatilo Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil F
1.2-Dichlorobenzene	1.3		10		ug/L		10/04/19 09:28	10/04/19 22:49	
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L		10/04/19 09:28	10/04/19 22:49	
Hexachloroethane	1.2		2.0		ug/L		10/04/19 09:28	10/04/19 22:49	
Nitrobenzene	0.57		1.0		ug/L		10/04/19 09:28	10/04/19 22:49	
sophorone	0.80		1.0		ug/L ug/L		10/04/19 09:28	10/04/19 22:49	
Bis(2-chloroethoxy)methane	0.30		10		ug/L		10/04/19 09:28	10/04/19 22:49	
` ,					-				
1,2,4-Trichlorobenzene	1.3		2.0		ug/L		10/04/19 09:28	10/04/19 22:49	
Naphthalene	1.1		10		ug/L		10/04/19 09:28	10/04/19 22:49	
1-Chloroaniline	1.9		10		ug/L		10/04/19 09:28	10/04/19 22:49	
Hexachlorobutadiene	0.78		1.0		ug/L			10/04/19 22:49	
2-Methylnaphthalene	1.1		10		ug/L		10/04/19 09:28	10/04/19 22:49	
Hexachlorocyclopentadiene	1.7		10		ug/L			10/04/19 22:49	
2-Chloronaphthalene	1.2		10	1.2	ug/L		10/04/19 09:28	10/04/19 22:49	
2-Nitroaniline	0.47		10	0.47	ug/L		10/04/19 09:28	10/04/19 22:49	
Dimethyl phthalate	0.77		10		ug/L		10/04/19 09:28	10/04/19 22:49	
Acenaphthylene	0.82	U	10	0.82	ug/L		10/04/19 09:28	10/04/19 22:49	
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/04/19 09:28	10/04/19 22:49	
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/04/19 09:28	10/04/19 22:49	
Acenaphthene	1.1	U	10	1.1	ug/L		10/04/19 09:28	10/04/19 22:49	
Dibenzofuran	1.1	U	10	1.1	ug/L		10/04/19 09:28	10/04/19 22:49	
2,4-Dinitrotoluene	1.0	U *	2.0	1.0	ug/L		10/04/19 09:28	10/04/19 22:49	
Diethyl phthalate	0.98	U	10		ug/L		10/04/19 09:28	10/04/19 22:49	
I-Chlorophenyl phenyl ether	1.3	U	10		ug/L		10/04/19 09:28	10/04/19 22:49	
Fluorene	0.91	U	10		ug/L		10/04/19 09:28	10/04/19 22:49	
l-Nitroaniline	0.54	. U	10		ug/L		10/04/19 09:28	10/04/19 22:49	
N-Nitrosodiphenylamine	0.89		10		ug/L		10/04/19 09:28	10/04/19 22:49	
1-Bromophenyl phenyl ether	0.75		10		ug/L			10/04/19 22:49	
Phenanthrene	0.58		10		ug/L			10/04/19 22:49	
Anthracene	0.63		10		ug/L			10/04/19 22:49	
Carbazole	0.68		10		ug/L			10/04/19 22:49	
Di-n-butyl phthalate	0.84		10		ug/L			10/04/19 22:49	
Fluoranthene	0.84		10		ug/L			10/04/19 22:49	
Pyrene	1.6		10		ug/L			10/04/19 22:49	
	0.85		10		ug/L			10/04/19 22:49	
Butyl benzyl phthalate	1.4				-				
3,3'-Dichlorobenzidine			10		ug/L			10/04/19 22:49	
Chrysene	0.91		2.0		ug/L			10/04/19 22:49	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/04/19 22:49	
Di-n-octyl phthalate	4.8		10		ug/L			10/04/19 22:49	
Benzo[k]fluoranthene	0.67		1.0		ug/L			10/04/19 22:49	
ndeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/04/19 22:49	
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/04/19 09:28	10/04/19 22:49	
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/04/19 09:28	10/04/19 22:49	
Diphenyl ether	1.2	U	10	1.2	ug/L		10/04/19 09:28	10/04/19 22:49	
n'-Dimethylaniline,	0.91	U	1.0	0.91	ug/L		10/04/19 09:28	10/04/19 22:49	
Caprolactam	0.68	U	10	0.68	ug/L		10/04/19 09:28	10/04/19 22:49	
ois (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/04/19 09:28	10/04/19 22:49	
Bisphenol-A		U *	10		ug/L		10/04/19 09:28	10/04/19 22:49	
N-Methylaniline	0.48		5.0		ug/L			10/04/19 22:49	

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: FDGW_100219

Lab Sample ID: 460-192902-5 Date Collected: 10/02/19 00:00

Matrix: Water

Date Received: 10/02/19 21:20

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L				10/04/19 09:28	10/04/19 22:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Nitrobenzene-d5 (Surr)	98		51 - 108				10/04/19 09:28	10/04/19 22:49	
Phenol-d5 (Surr)	36		14 - 39				10/04/19 09:28	10/04/19 22:49	
Terphenyl-d14 (Surr)	103		40 - 148				10/04/19 09:28	10/04/19 22:49	
2,4,6-Tribromophenol (Surr)	105		26 - 139				10/04/19 09:28	10/04/19 22:49	
2-Fluorophenol (Surr)	53		25 ₋ 58				10/04/19 09:28	10/04/19 22:49	
2-Fluorobiphenyl (Surr)	94		45 - 107				10/04/19 09:28	10/04/19 22:49	
Method: 300.0 - Anions, Ion C	:hromatogra	iphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/03/19 21:17	
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/03/19 21:17	
Sulfate	16.6		0.60	0.35	mg/L			10/03/19 21:17	
Method: 300.0 - Anions, Ion C	hromatogra	iphy - DL							
•	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	Nesun	acadimo:	11						
Analyte Chloride	51.4	·	2.28	0.27	mg/L			10/04/19 03:01	-
	51.4	D	2.28	0.27	mg/L			10/04/19 03:01	
Chloride	51.4 IS) - Total R	D	2.28		mg/L Unit	D	Prepared	10/04/19 03:01 Analyzed	
Chloride Method: 200.8 - Metals (ICP/N Analyte	51.4 IS) - Total R	D ecoverabl	2.28 e	MDL		<u>D</u>	<u> </u>		
Chloride Method: 200.8 - Metals (ICP/N	51.4 IS) - Total R Result	D ecoverabl	2.28 e RL	MDL 233	Unit	<u>D</u>	10/07/19 08:22	Analyzed	
Chloride Method: 200.8 - Metals (ICP/N Analyte Calcium Potassium	51.4 IS) - Total Result 28100	D ecoverabl	2.28 e RL 250	MDL 233 73.5	Unit ug/L	D	10/07/19 08:22 10/07/19 08:22	Analyzed 10/08/19 21:53	
Chloride Method: 200.8 - Metals (ICP/N Analyte Calcium	51.4 IS) - Total Result 28100 8990	D ecoverabl	2.28 e RL 250 250	MDL 233 73.5 24.8	Unit ug/L ug/L	D	10/07/19 08:22 10/07/19 08:22 10/07/19 08:22	Analyzed 10/08/19 21:53 10/08/19 21:53	Dil Fa
Chloride Method: 200.8 - Metals (ICP/N Analyte Calcium Potassium Magnesium	51.4 IS) - Total Result 28100 8990 13200 32400	D ecoverabl Qualifier	2.28 e RL 250 250 250	MDL 233 73.5 24.8	Unit ug/L ug/L ug/L	D	10/07/19 08:22 10/07/19 08:22 10/07/19 08:22	Analyzed 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53	
Chloride Method: 200.8 - Metals (ICP/N Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP)	51.4 IS) - Total Result 28100 8990 13200 32400 - Dissolved	D ecoverabl Qualifier	2.28 e RL 250 250 250	MDL 233 73.5 24.8 66.8	Unit ug/L ug/L ug/L		10/07/19 08:22 10/07/19 08:22 10/07/19 08:22	Analyzed 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53	Dil Fa
Chloride Method: 200.8 - Metals (ICP/N Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte	51.4 IS) - Total Result 28100 8990 13200 32400 - Dissolved	D ecoverabl Qualifier Qualifier	2.28 e RL 250 250 250 250	MDL 233 73.5 24.8 66.8 MDL	Unit ug/L ug/L ug/L ug/L		10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 10/07/19 08:22	Analyzed 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53	Dil Fa
Chloride Method: 200.8 - Metals (ICP/N Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved	51.4 IS) - Total Result 28100 8990 13200 32400 - Dissolved Result	D ecoverabl Qualifier Qualifier	2.28 e RL 250 250 250 250 250 RL	MDL 233 73.5 24.8 66.8 MDL	Unit ug/L ug/L ug/L ug/L		10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 Prepared 10/04/19 10:03	Analyzed 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 Analyzed	Dil Fa
Chloride Method: 200.8 - Metals (ICP/N Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved	51.4 IS) - Total Result 28100 8990 13200 32400 - Dissolved Result 18.9	D ecoverabl Qualifier Qualifier	2.28 e RL 250 250 250 250 250 RL 50.0	MDL 233 73.5 24.8 66.8 MDL 1.7 34.2	Unit ug/L ug/L ug/L ug/L ug/L		10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 Prepared 10/04/19 10:03 10/04/19 10:03	Analyzed 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 Analyzed 10/05/19 20:45	Dil Fa
Chloride Method: 200.8 - Metals (ICP/N Analyte Calcium Potassium Magnesium Sodium	51.4 IS) - Total Result 28100 8990 13200 32400 - Dissolved Result 18.9 7630	D ecoverabl Qualifier Qualifier	2.28 e RL 250 250 250 250 RL 50.0 150	MDL 233 73.5 24.8 66.8 MDL 1.7 34.2	Unit ug/L ug/L ug/L ug/L ug/L ug/L		10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 Prepared 10/04/19 10:03 10/04/19 10:03	Analyzed 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 Analyzed 10/05/19 20:45 10/05/19 20:45	Dil Fa
Chloride Method: 200.8 - Metals (ICP/NAnalyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry	51.4 IS) - Total Result 28100 8990 13200 32400 - Dissolved Result 18.9 7630 3310	D ecoverabl Qualifier Qualifier	2.28 e RL 250 250 250 250 70 RL 50.0 150 15.0 RL	MDL 233 73.5 24.8 66.8 MDL 1.7 34.2 0.99	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 Prepared 10/04/19 10:03 10/04/19 10:03	Analyzed 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 Analyzed 10/05/19 20:45 10/05/19 20:45 10/05/19 20:45 Analyzed	
Chloride Method: 200.8 - Metals (ICP/N Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	51.4 IS) - Total Result 28100 8990 13200 32400 - Dissolved Result 18.9 7630 3310	D ecoverabl Qualifier Qualifier J	2.28 e RL 250 250 250 250 150 15.0 RL 0.10	MDL 233 73.5 24.8 66.8 MDL 1.7 34.2 0.99	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 10/07/19 10:03 10/04/19 10:03 10/04/19 10:03	Analyzed 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 Analyzed 10/05/19 20:45 10/05/19 20:45 10/05/19 20:45	Dil Fa
Chloride Method: 200.8 - Metals (ICP/N Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	51.4 IS) - Total Result 28100 8990 13200 32400 - Dissolved Result 18.9 7630 3310 Result	D ecoverabl Qualifier Qualifier J	2.28 e RL 250 250 250 250 70 RL 50.0 150 15.0 RL	MDL 233 73.5 24.8 66.8 MDL 1.7 34.2 0.99 MDL 0.068 5.0	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 10/07/19 10:03 10/04/19 10:03 10/04/19 10:03	Analyzed 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 Analyzed 10/05/19 20:45 10/05/19 20:45 10/05/19 20:45 Analyzed	Dil Fa
Chloride Method: 200.8 - Metals (ICP/N Analyte Calcium Potassium Magnesium Sodium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved	51.4 IS) - Total Result 28100 8990 13200 32400 - Dissolved Result 18.9 7630 3310 Result 10.4	ecoverabl Qualifier Qualifier J	2.28 e RL 250 250 250 250 150 15.0 RL 0.10	MDL 233 73.5 24.8 66.8 MDL 1.7 34.2 0.99 MDL 0.068 5.0	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 10/07/19 08:22 10/07/19 10:03 10/04/19 10:03 10/04/19 10:03	Analyzed 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 10/08/19 21:53 Analyzed 10/05/19 20:45 10/05/19 20:45 10/05/19 20:45	Dil Fa

Date Collected: 10/02/19 00:00 Matrix: Water

Date Received: 10/02/19 21:20

Method: 8260C SIM - Vola	tile Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/04/19 08:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		72 - 133			-		10/04/19 08:59	1

Client: Golder Associates Inc. Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_100219

Lab Sample ID: 460-192902-6 Date Collected: 10/02/19 00:00

Matrix: Water

Date Received: 10/02/19 21:20

Method: 8260C - Volatile Orga				B 41 500. 7	11	-	D	A 1 '	P.:
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Chloromethane	0.40	-	1.0		ug/L			10/06/19 20:20	
Bromomethane	0.55		1.0		ug/L			10/06/19 20:20	
Vinyl chloride	0.17		1.0		ug/L			10/06/19 20:20	
Chloroethane	0.32		1.0		ug/L			10/06/19 20:20	
Methylene Chloride	0.32	U	1.0		ug/L			10/06/19 20:20	
Acetone	9.4		5.0		ug/L			10/06/19 20:20	
Carbon disulfide	0.82	U	1.0		ug/L			10/06/19 20:20	
1,1-Dichloroethene	0.26	U	1.0		ug/L			10/06/19 20:20	
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/06/19 20:20	
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/06/19 20:20	
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/06/19 20:20	
Chloroform	0.33	U	1.0	0.33	ug/L			10/06/19 20:20	
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/06/19 20:20	
2-Butanone (MEK)	1.9	U	5.0		ug/L			10/06/19 20:20	
1,1,1-Trichloroethane	0.24	U	1.0		ug/L			10/06/19 20:20	
Carbon tetrachloride	0.21	U	1.0		ug/L			10/06/19 20:20	
Bromodichloromethane	0.34	U	1.0		ug/L			10/06/19 20:20	
1,2-Dichloropropane	0.35	U	1.0		ug/L			10/06/19 20:20	
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/06/19 20:20	
Trichloroethene	0.31		1.0		ug/L			10/06/19 20:20	
Dibromochloromethane	0.28		1.0		ug/L			10/06/19 20:20	
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/06/19 20:20	
Benzene	0.20		1.0		ug/L			10/06/19 20:20	
rans-1,3-Dichloropropene	0.49		1.0		ug/L			10/06/19 20:20	
Bromoform	0.49		1.0		ug/L			10/06/19 20:20	
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/06/19 20:20	
2-Hexanone	1.1		5.0		-			10/06/19 20:20	
					ug/L				
Tetrachloroethene	0.25		1.0		ug/L			10/06/19 20:20	
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/06/19 20:20	
Toluene	0.38		1.0		ug/L			10/06/19 20:20	
Chlorobenzene	0.38		1.0		ug/L			10/06/19 20:20	
Ethylbenzene	0.30		1.0		ug/L			10/06/19 20:20	
Styrene	0.42		1.0		ug/L			10/06/19 20:20	
Xylenes, Total	0.65		2.0		ug/L			10/06/19 20:20	
Diethyl ether	0.21	U	1.0	0.21				10/06/19 20:20	
MTBE	0.47		1.0		ug/L			10/06/19 20:20	
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/06/19 20:20	
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/06/19 20:20	
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/06/19 20:20	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/06/19 20:20	
sopropylbenzene	0.34	U	1.0	0.34	ug/L			10/06/19 20:20	
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/06/19 20:20	
Methylcyclohexane	0.26	U	1.0		ug/L			10/06/19 20:20	
ndane	0.35		1.0		ug/L			10/06/19 20:20	
Dichlorofluoromethane	0.34		1.0		ug/L			10/06/19 20:20	
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/06/19 20:20	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa

Eurofins TestAmerica, Edison 11/01/2019

Page 58 of 1976

Client: Golder Associates Inc.

Job ID: 460-192645-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_100219 Lab Sample ID: 460-192902-6

Date Collected: 10/02/19 00:00 Matrix: Water

Date Received: 10/02/19 21:20

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	74 - 132		10/06/19 20:20	1
Toluene-d8 (Surr)	96	80 - 120		10/06/19 20:20	1
4-Bromofluorobenzene	86	77 - 124		10/06/19 20:20	1
Dibromofluoromethane (Surr)	93	72 - 131		10/06/19 20:20	1

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Lab Sample ID: 460-193027-1 Client Sample ID: P-5L

Date Collected: 10/03/19 10:05

Matrix: Water

Date Received: 10/03/19 20:20

N-Propylbenzene

Methylcyclohexane

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dioxane	14		0.40	0.20	ug/L			10/05/19 03:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	95		72 - 133			-		10/05/19 03:03	
88-41	.		0.1880						
Method: 8260C - Volatile (Analyte		unas by G Qualifier	C/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	0.40		1.0		ug/L	<u> </u>		10/09/19 15:32	
Bromomethane	0.55		1.0		ug/L			10/09/19 15:32	
Vinyl chloride	0.17		1.0		ug/L			10/09/19 15:32	
Chloroethane	0.32		1.0		ug/L			10/09/19 15:32	
Methylene Chloride	0.32		1.0		ug/L			10/09/19 15:32	
Acetone	4.4		5.0		ug/L			10/09/19 15:32	
Carbon disulfide	0.82		1.0		ug/L			10/09/19 15:32	
1,1-Dichloroethene	0.26		1.0		ug/L			10/09/19 15:32	
1,1-Dichloroethane	0.26		1.0		ug/L			10/09/19 15:32	
trans-1,2-Dichloroethene	0.24		1.0		ug/L ug/L			10/09/19 15:32	
cis-1,2-Dichloroethene	0.24		1.0		ug/L ug/L			10/09/19 15:32	
Chloroform	0.22		1.0		ug/L ug/L			10/09/19 15:32	
	0.33				ug/L ug/L				
1,2-Dichloroethane	0.43 1.9		1.0 5.0					10/09/19 15:32	
2-Butanone (MEK)					ug/L			10/09/19 15:32	
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/09/19 15:32	
Carbon tetrachloride	0.21		1.0		ug/L			10/09/19 15:32	
Bromodichloromethane	0.34		1.0		ug/L			10/09/19 15:32	
1,2-Dichloropropane	0.35		1.0		ug/L			10/09/19 15:32	
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/09/19 15:32	
Trichloroethene	0.31		1.0		ug/L			10/09/19 15:32	
Dibromochloromethane	0.28		1.0		ug/L			10/09/19 15:32	
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/09/19 15:32	
Benzene	0.20		1.0		ug/L			10/09/19 15:32	
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/09/19 15:32	
Bromoform	0.54		1.0		ug/L			10/09/19 15:32	
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			10/09/19 15:32	
2-Hexanone	1.1		5.0	1.1	•			10/09/19 15:32	
Tetrachloroethene	0.68		1.0		ug/L			10/09/19 15:32	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/09/19 15:32	
Toluene	0.38	U	1.0		ug/L			10/09/19 15:32	
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/09/19 15:32	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/09/19 15:32	
Styrene	0.42	U	1.0	0.42	ug/L			10/09/19 15:32	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/09/19 15:32	
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/09/19 15:32	
MTBE	0.47	U	1.0	0.47	ug/L			10/09/19 15:32	
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/09/19 15:32	
Cyclohexane	0.32	U	1.0		ug/L			10/09/19 15:32	
1,2,4-Trimethylbenzene	0.37	U	1.0		ug/L			10/09/19 15:32	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/09/19 15:32	
Isopropylbenzene	0.34		1.0		ug/L			10/09/19 15:32	
					-				

Eurofins TestAmerica, Edison

10/09/19 15:32

10/09/19 15:32

10/17/2019

1.0

1.0

0.32 ug/L

0.26 ug/L

0.32 U

0.26 U

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: P-5L Lab Sample ID: 460-193027-1

Date Collected: 10/03/19 10:05 Matrix: Water Date Received: 10/03/19 20:20

Analyte	Result	Qualifier	RL	N	IDL	Unit	D	Prepared	Analyzed	Dil Fac
Indane	0.35	U	1.0).35	ug/L			10/09/19 15:32	1
Dichlorofluoromethane	0.34	U	1.0	(.34	ug/L			10/09/19 15:32	1
1,2,3-Trimethylbenzene	0.36	U	1.0	C	36	ug/L			10/09/19 15:32	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						10/09/19 15:32	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109	***************************************	74 - 132						10/09/19 15:32	1
Toluene-d8 (Surr)	104		80 - 120						10/09/19 15:32	1
									10/00/10 15 00	- 4
4-Bromofluorobenzene	102		77 - 124						10/09/19 15:32	7

Method: 8270D SIM - Sei	nivolatile Organi	c Compour	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/06/19 08:46	10/07/19 00:39	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/06/19 08:46	10/07/19 00:39	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/06/19 08:46	10/07/19 00:39	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/06/19 08:46	10/07/19 00:39	1
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/06/19 08:46	10/07/19 00:39	1
Bis(2-chloroethyl)ether	0.037		0.030	0.026	ug/L		10/06/19 08:46	10/07/19 00:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/06/19 08:46	10/07/19 02:02	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/06/19 08:46	10/07/19 02:02	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/06/19 08:46	10/07/19 02:02	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/06/19 08:46	10/07/19 02:02	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/06/19 08:46	10/07/19 02:02	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/06/19 08:46	10/07/19 02:02	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/06/19 08:46	10/07/19 02:02	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/06/19 08:46	10/07/19 02:02	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/06/19 08:46	10/07/19 02:02	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/06/19 08:46	10/07/19 02:02	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/06/19 08:46	10/07/19 02:02	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/06/19 08:46	10/07/19 02:02	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/06/19 08:46	10/07/19 02:02	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/06/19 08:46	10/07/19 02:02	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/06/19 08:46	10/07/19 02:02	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/06/19 08:46	10/07/19 02:02	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/06/19 08:46	10/07/19 02:02	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/06/19 08:46	10/07/19 02:02	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/06/19 08:46	10/07/19 02:02	1
Isophorone	0.80	U	10	0.80	ug/L		10/06/19 08:46	10/07/19 02:02	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/06/19 08:46	10/07/19 02:02	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/06/19 08:46	10/07/19 02:02	1
Naphthalene	1.1	U	10	1.1	ug/L		10/06/19 08:46	10/07/19 02:02	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/06/19 08:46	10/07/19 02:02	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/06/19 08:46	10/07/19 02:02	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/06/19 08:46	10/07/19 02:02	1

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: P-5L Lab Sample ID: 460-193027-1

Date Collected: 10/03/19 10:05 Matrix: Water Date Received: 10/03/19 20:20

		ŘĹ		•	D	Prepared	Analyzed	Dil Fa
		10	1.7	ug/L		•	•	
1.2	U					10/06/19 08:46	10/07/19 02:02	
							10/07/19 02:02	
0.77	U	10		-			10/07/19 02:02	
0.82	U	10		-		10/06/19 08:46	10/07/19 02:02	
				-			10/07/19 02:02	
0.96	U	10		-		10/06/19 08:46	10/07/19 02:02	
1.1	U		1.1				10/07/19 02:02	
				-				
				_				
				-				
				-				
				_				
				-				
				-				
				-				
				_				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				_				
				_				
				_				
				-				
				-				
		5.0		-				
Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
None		ug/L				10/06/19 08:46	10/07/19 02:02	
	Qualifier	Limits				Prepared	Analyzed	Dil Fa
88		51 - 108						
29		14 - 39				10/06/19 08:46	10/07/19 02:02	
95		40 - 148				10/06/19 08:46	10/07/19 02:02	
108		26 - 139				10/06/19 08:46	10/07/19 02:02	
43		25 ₋ 58				40/00/40 00:40	40/07/40 00:00	
	Result	Result Qualifier 1.7 U 1.2 U 0.47 U 0.77 U 0.82 U 0.39 U 0.96 U 1.1 U 1.0 U 0.98 U 0.75 U 0.54 U 0.63 U 0.68 U 0.63 U 0.68 U 0.85 U 1.4 U 0.91 U 1.7 U 4.8 U 0.67 U 1.3 U 0.72 U 1.4 U 0.91 U 1.7 U 4.8 U 0.67 U 1.3 U 0.72 U 1.4 U 0.91 U 0.68 U 0.63 U 0.68 U 0.63 U 0.69 U 0.68 U 0.67 U 1.2 U 0.91 U 0.68 U 0.67 U 0.68 U 0.67 U 0.68 U 0.67 U 0.68 U 0.67 U 0.68 U 0.69 U 0.48 U 0.67 U 0.68 U 0.69 U 0.48 U 0.67 U 0.68 U 0.69 U 0.48 U 0.69 U 0.59 U 0.	Result Qualifier RL	1.7 U 10 1.7 1.2 U 10 10 1.2 0.47 U 10 0.47 0.77 U 10 0.82 0.39 U 2.0 0.39 0.96 U 10 0.96 1.1 U 10 1.1 1.1 U 10 1.1 1.1 U 10 1.1 1.0 U 2.0 1.0 0.98 U 10 0.98 1.3 U 10 0.98 1.3 U 10 0.91 0.54 U 10 0.54 0.89 U 10 0.89 0.75 U 10 0.54 0.89 U 10 0.63 0.68 U 10 0.68 0.63 U 10 0.63 0.68 U 10 0.68 0.84 U 10 0.84 1.6 U 10 0.84 1.6 U 10 0.84 1.7 U 2.0 1.7 4.8 U 10 0.85 1.4 U 10 0.84 1.6 U 10 0.84 1.6 U 10 0.85 1.4 U 10 0.84 1.6 U 10 0.85 1.4 U 10 0.84 1.6 U 10 0.66 0.85 U 10 0.85 1.4 U 10 0.66 0.85 U 10 0.66 0.67 U 1.0 0.67 1.3 U 2.0 1.7 4.8 U 10 0.68 0.67 U 1.0 0.67 1.3 U 2.0 1.3 0.72 U 1.0 0.72 1.4 U 10 1.4 1.2 U 10 10 1.4 1.2 U 10 10 0.68 0.63 U 10 0.68 0.64 0.65 U 10 0.68 0.65 U 10 0.68 0.66 U 10 0.68 0.67 U 1.0 0.69 0.68 U 10 0.68 0.69 U 10 0.69 0.68 U 10 0.68 0.69 U 10 0.69 0.68 U 10 0.68 0.69 U 10 0.69 0.69	1.7 U 10 10 1.7 ug/L 1.2 U 10 10 1.2 ug/L 0.47 U 10 0.47 ug/L 0.77 U 10 0.82 ug/L 0.39 U 2.0 0.39 ug/L 0.96 U 10 0.96 ug/L 1.1 U 10 1.1 ug/L 1.0 U 2.0 1.0 ug/L 0.98 U 10 0.98 ug/L 0.99 U 10 0.99 ug/L 0.99 U 10 0.99 ug/L 0.54 U 10 0.54 ug/L 0.89 U 10 0.54 ug/L 0.68 U 10 0.58 ug/L 0.68 U 10 0.68 ug/L 0.69 U 10 0.68 ug/L 0.75 U 10 0.75 ug/L 0.68 U 10 0.68 ug/L 0.69 U 10 0.68 ug/L 0.60 U 10 0.68 ug/L 0.61 U 10 0.62 ug/L 0.62 U 10 0.63 ug/L 0.63 U 10 0.63 ug/L 0.64 U 10 0.65 ug/L 0.65 U 10 0.67 ug/L 0.75 U 10 0.75 ug/L 0.89 U 10 0.89 ug/L 0.60 U 10 0.89 ug/L 0.61 U 10 0.89 ug/L 0.62 U 10 0.63 ug/L 0.63 U 10 0.63 ug/L 0.64 U 10 0.84 ug/L 0.65 U 10 0.85 ug/L 0.65 U 10 0.85 ug/L 0.66 U 10 0.85 ug/L 0.67 U 10 0.85 ug/L 0.69 U 10 0.85 ug/L 0.60 U 10 0.60 ug/L 0.60 U 1.0 0.67 ug/L 0.61 U 1.0 0.67 ug/L 0.62 U 1.0 0.72 ug/L 0.63 U 10 0.63 ug/L 0.64 U 10 0.68 ug/L 0.65 U 10 0.68 ug/L 0.67 U 1.0 0.72 ug/L 0.99 U 10 0.99 ug/L 0.68 U 10 0.68 ug/L 0.68 U 10 0.69 ug/L	Result Qualifier	Result Qualifier	Result Qualifier RL MDL Unit D Prepared 10/07/19 02/02

Client: Golder Associates Inc.

Date Received: 10/03/19 20:20

Project/Site: DS&G Semi-Annual Groundwater

SDG: 193027

Lab Sample ID: 460-193027-1 Client Sample ID: P-5L Date Collected: 10/03/19 10:05

Matrix: Water

Job ID: 460-193027-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.34		0.10	0.056	mg/L			10/05/19 04:00	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/05/19 04:00	1
Sulfate	3.65		0.60	0.35	mg/L			10/05/19 04:00	1
Method: 300.0 - Anions, Ion Ch	romatogra	phy - DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	27.4	D -	1.20	0.14	mg/L			10/05/19 06:14	10
Method: 200.8 - Metals (ICP/MS) - Total R	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	15500		250	233	ug/L		10/09/19 08:12	10/09/19 22:55	5
Magnesium	4830		250	24.8	ug/L		10/09/19 08:12	10/09/19 22:55	5
Potassium	3240		250	73.5	ug/L		10/09/19 08:12	10/09/19 22:55	5
Sodium	20700		250	66.8	ug/L		10/09/19 08:12	10/09/19 22:55	5
			250	66.8	ug/L		10/09/19 08:12	10/09/19 22:55	5
Sodium Method: 6010D - Metals (ICP) - Analyte	Dissolved	Qualifier	250 R L	66.8 MD L	-	D	10/09/19 08:12 Prepared	10/09/19 22:55 Analyzed	
Method: 6010D - Metals (ICP) -	Dissolved	Qualifier			-	D			Dil Fac
Method: 6010D - Metals (ICP) - Analyte	Dissolved Result	Qualifier	RL	MDL 1.7	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 6010D - Metals (ICP) - Analyte Cobalt, Dissolved	Dissolved Result 1.9	Qualifier	RL 50.0	MDL 1.7 34.2	Unit ug/L	<u>D</u>	Prepared 10/07/19 08:20	Analyzed 10/08/19 02:11	Dil Fac
Method: 6010D - Metals (ICP) - Analyte Cobalt, Dissolved Iron, Dissolved	Dissolved Result 1.9 138	Qualifier	RL 50.0 150	MDL 1.7 34.2	Unit ug/L ug/L	<u>D</u>	Prepared 10/07/19 08:20 10/07/19 08:20	Analyzed 10/08/19 02:11 10/08/19 02:11	Dil Fa c 1
Method: 6010D - Metals (ICP) - Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved	Dissolved Result 1.9 138 96.8	Qualifier	RL 50.0 150	MDL 1.7 34.2	Unit ug/L ug/L ug/L	<u>D</u>	Prepared 10/07/19 08:20 10/07/19 08:20	Analyzed 10/08/19 02:11 10/08/19 02:11	Dil Fac 1 1
Method: 6010D - Metals (ICP) - Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry	Dissolved Result 1.9 138 96.8	Qualifier J Qualifier	RL 50.0 150 15.0	MDL 1.7 34.2 0.99	Unit ug/L ug/L ug/L		Prepared 10/07/19 08:20 10/07/19 08:20 10/07/19 08:20	Analyzed 10/08/19 02:11 10/08/19 02:11 10/08/19 02:11	Dil Fac
Method: 6010D - Metals (ICP) - Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	Dissolved Result 1.9 138 96.8 Result	Qualifier J Qualifier	RL 50.0 150 15.0	MDL 1.7 34.2 0.99 MDL 0.068	Unit ug/L ug/L ug/L		Prepared 10/07/19 08:20 10/07/19 08:20 10/07/19 08:20	Analyzed 10/08/19 02:11 10/08/19 02:11 10/08/19 02:11 Analyzed	Dil Fa c 1
Method: 6010D - Metals (ICP) - Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	Dissolved	Qualifier J Qualifier U	RL 50.0 150 15.0 RL 0.10	MDL 1.7 34.2 0.99 MDL 0.068 5.0	Unit ug/L ug/L ug/L ug/L		Prepared 10/07/19 08:20 10/07/19 08:20 10/07/19 08:20	Analyzed 10/08/19 02:11 10/08/19 02:11 10/08/19 02:11 Analyzed 10/07/19 15:59	Dil Fac

Cilent Sample ID: P-5U

Date Collected: 10/03/19 10:50

Date Received: 10/03/19 20:20

Analyte

Ammonia (as N)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.38		0.10	0.056	mg/L			10/05/19 04:15	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/05/19 04:15	1
Sulfate	22.6		0.60	0.35	mg/L			10/05/19 04:15	1
Method: 300.0 - Anions, I	on Chromatogra	phy - DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	58.1	D -	2.76	0.32	mg/L			10/05/19 06:29	23
Method: 200.8 - Metals (Id	CP/MS) - Total R	ecoverable							
Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	18600		250	233	ug/L		10/09/19 08:12	10/09/19 23:00	5
Magnesium	8770		250	24.8	ug/L		10/09/19 08:12	10/09/19 23:00	5
Potassium	3480		250	73.5	ug/L		10/09/19 08:12	10/09/19 23:00	5
Sodium	32200		250	66.8	ug/L		10/09/19 08:12	10/09/19 23:00	5

Eurofins TestAmerica, Edison

Analyzed

10/07/19 16:10

Prepared

10/17/2019

Dil Fac

Matrix: Water

RL

0.10

MDL Unit

0.068 mg/L

Result Qualifier

0.068 U

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: P-5U

Result Qualifier

Lab Sample ID: 460-193027-2

Matrix: Water

Analyzed

Dil Fac

Date Collected: 10/03/19 10:50 Date Received: 10/03/19 20:20

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bicarbonate Alkalinity as CaCO3	39.4		5.0	5.0	mg/L			10/08/19 11:47	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/08/19 11:47	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/08/19 12:03	1

Client Sample ID: UPA-107-LS Lab Sample ID: 460-193027-3

Date Collected: 10/03/19 13:45 Matrix: Water

MDL Unit

D

Prepared

Date Received: 10/03/19 20:20

Analyte

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)

Allalyte	Nesun	Qualifier	111	MIDL			riepaieu	Analyzeu	Diriac
1,4-Dioxane	18		0.40	0.20	ug/L			10/05/19 04:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	89		72 - 133					10/05/19 04:44	1
Method: 8260C - Volatile (Organic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/09/19 16:25	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/09/19 16:25	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/09/19 16:25	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/09/19 16:25	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/09/19 16:25	1
Acetone	4.4	U	5.0	4.4	ug/L			10/09/19 16:25	1
Carbon disulfide	2.6		1.0	0.82	ug/L			10/09/19 16:25	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/09/19 16:25	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/09/19 16:25	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/09/19 16:25	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/09/19 16:25	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/09/19 16:25	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/09/19 16:25	1
2-Butanone (MEK)	16		5.0	1.9	ug/L			10/09/19 16:25	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/09/19 16:25	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/09/19 16:25	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/09/19 16:25	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/09/19 16:25	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/09/19 16:25	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/09/19 16:25	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/09/19 16:25	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/09/19 16:25	1
Benzene	0.20	U	1.0	0.20	ug/L			10/09/19 16:25	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/09/19 16:25	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/09/19 16:25	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/09/19 16:25	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/09/19 16:25	1
Tetrachloroethene	0.34	J	1.0	0.25				10/09/19 16:25	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/09/19 16:25	1
Toluene	0.38	U	1.0	0.38	ug/L			10/09/19 16:25	1
Chlorobenzene	3.7		1.0	0.38				10/09/19 16:25	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/09/19 16:25	1
Styrene	0.42	U	1.0	0.42	-			10/09/19 16:25	1

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-107-LS

Lab Sample ID: 460-193027-3

Matrix: Water

Date Collected: 10/03/19 13:45 Date Received: 10/03/19 20:20

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Method: 8260C - Volatile Org		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Analyte Kylenes, Total	0.65		2.0		ug/L		riepaieu	10/09/19 16:25	Direc
			1.0		ug/L ug/L			10/09/19 16:25	
Diethyl ether WTBE	3.0 1.6		1.0		ug/L ug/L			10/09/19 16:25	
	2.1		2.0		ug/L ug/L			10/09/19 16:25	
F etrahydrofuran Cyclohexane	0.32	11	1.0		ug/L ug/L			10/09/19 16:25	
1,2,4-Trimethylbenzene	0.32		1.0		ug/L ug/L			10/09/19 16:25	
	0.37		1.0		-			10/09/19 16:25	
1,3,5-Trimethylbenzene			1.0		ug/L				
sopropylbenzene N-Propylbenzene	0.34 0.32		1.0		ug/L ug/L			10/09/19 16:25	
. ,					•			10/09/19 16:25	
Methylcyclohexane	0.26		1.0		ug/L			10/09/19 16:25	
ndane	0.35		1.0		ug/L			10/09/19 16:25	
Dichlorofluoromethane	0.34		1.0		ug/L			10/09/19 16:25	
,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/09/19 16:25	•
entatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Propene	11	JN	ug/L		.86	115-07-1		10/09/19 16:25	
Inknown	6.7	J	ug/L	1	.01			10/09/19 16:25	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
,2-Dichloroethane-d4 (Surr)	108	-	74 - 132					10/09/19 16:25	-
oluene-d8 (Surr)	107		80 ₋ 120					10/09/19 16:25	
-Bromofluorobenzene	104		77 - 124					10/09/19 16:25	
	104		72 - 131					10/09/19 16:25	
Method: 8270D SIM - Semivo	olatile Organi		unds (GC/N		Unit	D	Prepared		
Method: 8270D SIM - Semivo	olatile Organi Result	Qualifier		MDL	Unit ug/L	<u>D</u>	Prepared 10/06/19 08:46	10/09/19 16:25 Analyzed 10/07/19 01:21	Dil Fac
Method: 8270D SIM - Semivo nalyte lenzo[a]anthracene	olatile Organi Result 0.016	Qualifier U	unds (GC/N RL 0.050	MDL 0.016	ug/L	<u>D</u>	10/06/19 08:46	Analyzed 10/07/19 01:21	Dil Fa
Method: 8270D SIM - Semivo analyte enzo[a]anthracene denzo[a]pyrene	Diatile Organi Result 0.016 0.022	Qualifier U	unds (GC/N RL 0.050 0.050	0.016 0.022	ug/L ug/L	<u>D</u>	10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21	Dil Fac
Method: 8270D SIM - Semivo nalyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	0.016 0.022 0.024	Qualifier U U U	unds (GC/N RL 0.050 0.050 0.050	0.016 0.022 0.024	ug/L ug/L ug/L	<u>D</u>	10/06/19 08:46 10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21	Dil Fac
Method: 8270D SIM - Semivo nalyte lenzo[a]anthracene lenzo[a]pyrene lenzo[b]fluoranthene lexachlorobenzene	Diatile Organi Result 0.016 0.022 0.024 0.013	Qualifier U U U U	unds (GC/N RL 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L	<u>D</u>	10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21	Dil Fa
Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether	0.016 0.022 0.024	Qualifier U U U U	unds (GC/N RL 0.050 0.050 0.050	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21	Dil Fac
Method: 8270D SIM - Semivo analyte enzo[a]anthracene denzo[a]pyrene denzo[b]fluoranthene dexachlorobenzene dentachlorophenol dis(2-chloroethyl)ether	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2	Qualifier U U U U U U	0.050 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21	Dil Fac
Method: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene lexachlorobenzene lentachlorophenol sis(2-chloroethyl)ether	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co	Qualifier U U U U U U	0.050 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21	Dil Fa
Method: 8270D SIM - Semivo analyte enzo[a]anthracene denzo[a]pyrene denzo[b]fluoranthene dexachlorobenzene dentachlorophenol dis(2-chloroethyl)ether Method: 8270D - Semivolatil analyte	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co	Qualifier U U U U ### Compounds U U U U U U U U U U U U U U U U U U U	unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21	Dil Fac
Method: 8270D SIM - Semivo nalyte lenzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene dexachlorobenzene Pentachlorophenol	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co	Qualifier U U U U ### Composition of the compo	unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 Prepared 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 Analyzed	Dil Fac
Method: 8270D SIM - Semivo snalyte enzo[a]anthracene denzo[a]pyrene denzo[b]fluoranthene dexachlorobenzene dentachlorophenol dis(2-chloroethyl)ether Method: 8270D - Semivolatil snalyte denol -Chlorophenol	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co Result 0.29 0.38	Qualifier U U U U ### Compounds Compounds	unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38	ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 Prepared 10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 Analyzed 10/07/19 02:44 10/07/19 02:44	Dil Fac
Method: 8270D SIM - Semivo analyte enzo[a]anthracene denzo[b]fluoranthene denzo[b]fluoranthene dentachlorobenzene dentachlorophenol dis(2-chloroethyl)ether Method: 8270D - Semivolatil analyte denol -Chlorophenol -Methylphenol	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co Result 0.29 0.38 0.26	Qualifier U U U U ### ### ### ### ### ###	unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 Analyzed 10/07/19 02:44	Dil Fa
Method: 8270D SIM - Semivoralyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene lexachlorobenzene rentachlorophenol sis(2-chloroethyl)ether Method: 8270D - Semivolatil nalyte henol -Chlorophenol -Methylphenol	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co Result 0.29 0.38 0.26 4.5	Qualifier U U U U ± empounds Qualifier U U U	unds (GC/N RL 0.050 0.050 0.020 0.030 6 (GC/MS) RL 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44	Dil Fac
Method: 8270D SIM - Semivo analyte enzo[a]anthracene denzo[a]pyrene denzo[b]fluoranthene dexachlorobenzene dentachlorophenol dis(2-chloroethyl)ether Method: 8270D - Semivolatil analyte denol -Chlorophenol -Methylphenol -Nitrophenol	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co Result 0.29 0.38 0.26 4.5 0.75	Qualifier U U U U ### ### ### ### ### ###	unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 0/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44	Dil Fa
Method: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene lenzo[b]fluoranthene lexachlorobenzene entachlorophenol sis(2-chloroethyl)ether Method: 8270D - Semivolatil nalyte henol -Chlorophenol -Methylphenol -Nitrophenol ,4-Dimethylphenol	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co Result 0.29 0.38 0.26 4.5 0.75 0.24	Qualifier U U U U ### ### ### ### ### ###	unds (GC/N RL 0.050 0.050 0.020 0.030 s (GC/MS) RL 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44	Dil Fa
Method: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene lenzo[b]fluoranthene lexachlorobenzene entachlorophenol dis(2-chloroethyl)ether Method: 8270D - Semivolatil nalyte henol -Chlorophenol -Methylphenol -Nitrophenol ,4-Dimethylphenol ,4-Dimethylphenol	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co Result 0.29 0.38 0.26 4.5 0.75 0.24 0.42	Qualifier U U U U ± mpounds Qualifier U U U U U U U U U U U U U U U U U U U	unds (GC/N RL 0.050 0.050 0.050 0.020 0.030 s (GC/MS) RL 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44	Dil Fa
lethod: 8270D SIM - Semivoralyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene lexachlorobenzene entachlorophenol dis(2-chloroethyl)ether lethod: 8270D - Semivolatil nalyte henol -Chlorophenol -Methylphenol -Nitrophenol -Nitrophenol -4-Dimethylphenol -4-Dimethylphenol -Chloro-3-methylphenol	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co Result 0.29 0.38 0.26 4.5 0.75 0.24 0.42 0.58	Qualifier U U U U ± mpounds Qualifier U U U U U U U U U U U U U U U U U U U	unds (GC/N RL 0.050 0.050 0.050 0.020 0.030 s (GC/MS) RL 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 Analyzed 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44	Dil Fa
Method: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene lexachlorobenzene entachlorophenol dis(2-chloroethyl)ether Method: 8270D - Semivolatil nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol ,4-Dimethylphenol ,4-Dichlorophenol -Chloro-3-methylphenol ,4,6-Trichlorophenol	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co Result 0.29 0.38 0.26 4.5 0.75 0.24 0.42 0.58 0.30	Qualifier U U U U ### ### ### ### ### ###	unds (GC/N RL 0.050 0.050 0.050 0.020 0.030 s (GC/MS) RL 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 Analyzed 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44	Dil Fa
Method: 8270D SIM - Semivo analyte enzo[a]anthracene denzo[a]pyrene denzo[b]fluoranthene dexachlorobenzene dentachlorophenol dethod: 8270D - Semivolatil analyte denol -Chlorophenol -Methylphenol -Nitrophenol ,4-Dimethylphenol ,4-Dimethylphenol -Chloro-3-methylphenol ,4,6-Trichlorophenol ,4,5-Trichlorophenol	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co Result 0.29 0.38 0.26 4.5 0.75 0.24 0.42 0.58 0.30 0.28	Qualifier U U U U ± mpounds Qualifier U U U U U U U U U U U U U U U U U U U	unds (GC/N RL 0.050 0.050 0.050 0.020 0.030 6 (GC/MS) RL 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44	Dil Fa
Method: 8270D SIM - Semivolaniyte denzo[a]anthracene denzo[a]pyrene denzo[b]fluoranthene dexachlorobenzene dentachlorophenol dis(2-chloroethyl)ether Method: 8270D - Semivolatil denalyte denol	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co Result 0.29 0.38 0.26 4.5 0.75 0.24 0.42 0.58 0.30 0.28 14	Qualifier U U U U ± mpounds Qualifier U U U U U U U U U U U U U U U U U U U	unds (GC/N RL 0.050 0.050 0.050 0.020 0.030 s (GC/MS) RL 10 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 Analyzed 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44	Dil Fa
Method: 8270D SIM - Semivo analyte enzo[a]anthracene denzo[a]pyrene denzo[b]fluoranthene dexachlorobenzene dentachlorophenol dethod: 8270D - Semivolatil analyte denol -Chlorophenol -Methylphenol -Nitrophenol ,4-Dimethylphenol ,4-Dimethylphenol -Chloro-3-methylphenol ,4,6-Trichlorophenol ,4,5-Trichlorophenol	Diatile Organi Result 0.016 0.022 0.024 0.013 0.15 1.2 e Organic Co Result 0.29 0.38 0.26 4.5 0.75 0.24 0.42 0.58 0.30 0.28	Qualifier U U U U ### Compounds #	unds (GC/N RL 0.050 0.050 0.050 0.020 0.030 6 (GC/MS) RL 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46	Analyzed 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 01:21 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44 10/07/19 02:44	Dil Fa

Eurofins TestAmerica, Edison 10/17/2019

1

10/06/19 08:46 10/07/19 02:44

10/06/19 08:46 10/07/19 02:44

10

10

2.0 ug/L

1.3 ug/L

2.0 U

1.3 U

Client: Golder Associates Inc.

Date Received: 10/03/19 20:20

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Lab Sample ID: 460-193027-3 Client Sample ID: UPA-107-LS

Date Collected: 10/03/19 13:45

Matrix: Water

Method: 8270D - Semivolatile Analyte		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fa
.2-Dichlorobenzene	1.3		10		ug/L		10/06/19 08:46	10/07/19 02:44	
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L		10/06/19 08:46	10/07/19 02:44	
Hexachloroethane	1.2		2.0		ug/L		10/06/19 08:46	10/07/19 02:44	
Nitrobenzene	0.57		1.0		ug/L		10/06/19 08:46	10/07/19 02:44	
sophorone	0.80		10		ug/L		10/06/19 08:46	10/07/19 02:44	
Bis(2-chloroethoxy)methane	0.24		10		ug/L			10/07/19 02:44	
1.2.4-Trichlorobenzene	1.3		2.0		ug/L			10/07/19 02:44	
Naphthalene	1.1	U	10		ug/L			10/07/19 02:44	
1-Chloroaniline	1.9	U	10		-			10/07/19 02:44	
	0.78		1.0		ug/L				
					ug/L			10/07/19 02:44	
2-Methylnaphthalene	1.1		10		ug/L			10/07/19 02:44	
Hexachlorocyclopentadiene	1.7		10		ug/L			10/07/19 02:44	
2-Chloronaphthalene	1.2		10		ug/L			10/07/19 02:44	
2-Nitroaniline	0.47		10		ug/L			10/07/19 02:44	
Dimethyl phthalate	0.77		10		ug/L			10/07/19 02:44	
Acenaphthylene	0.82		10		ug/L			10/07/19 02:44	
2,6-Dinitrotoluene	0.39		2.0		ug/L			10/07/19 02:44	
3-Nitroaniline	0.96		10		ug/L			10/07/19 02:44	
Acenaphthene	1.1		10	1.1	ug/L		10/06/19 08:46	10/07/19 02:44	
Dibenzofuran	1.1	U	10	1.1	ug/L		10/06/19 08:46	10/07/19 02:44	
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/06/19 08:46	10/07/19 02:44	
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/06/19 08:46	10/07/19 02:44	
1-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/06/19 08:46	10/07/19 02:44	
Fluorene	0.91	U	10	0.91	ug/L		10/06/19 08:46	10/07/19 02:44	
1-Nitroaniline	0.54	U	10	0.54	ug/L		10/06/19 08:46	10/07/19 02:44	
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/06/19 08:46	10/07/19 02:44	
1-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/06/19 08:46	10/07/19 02:44	
Phenanthrene	0.58	U	10	0.58	ug/L		10/06/19 08:46	10/07/19 02:44	
Anthracene	0.63	U	10		ug/L		10/06/19 08:46	10/07/19 02:44	
Carbazole	0.68	U	10		ug/L		10/06/19 08:46	10/07/19 02:44	
Di-n-butyl phthalate	0.84		10	0.84	ug/L		10/06/19 08:46	10/07/19 02:44	
Fluoranthene	0.84	U	10		ug/L		10/06/19 08:46	10/07/19 02:44	
Pyrene	1.6		10		ug/L			10/07/19 02:44	
Butyl benzyl phthalate	0.85		10		ug/L			10/07/19 02:44	
3,3'-Dichlorobenzidine	1.4		10		ug/L			10/07/19 02:44	
Chrysene	0.91		2.0		ug/L			10/07/19 02:44	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/07/19 02:44	
Di-n-octyl phthalate	4.8		10		ug/L			10/07/19 02:44	
Benzo[k]fluoranthene	0.67		1.0		ug/L			10/07/19 02:44	
ndeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/07/19 02:44	
	0.72		1.0					10/07/19 02:44	
Dibenz(a,h)anthracene	1.4		1.0		ug/L				
Benzo[g,h,i]perylene					ug/L			10/07/19 02:44	
Diphenyl ether	1.2		10		ug/L			10/07/19 02:44	
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/07/19 02:44	
Caprolactam	0.68		10		ug/L			10/07/19 02:44	
ois (2-chloroisopropyl) ether	0.63		10		ug/L			10/07/19 02:44	
3isphenol-A	9.9	U U	10 5.0	9.9 0.48	ug/L		10/06/19 08:46	10/07/19 02:44 10/07/19 02:44	

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-107-LS

Lab Sample ID: 460-193027-3 Date Collected: 10/03/19 13:45

Matrix: Water

Date Received: 10/03/19 20:20

Tentatively Identified Compound	Est. Result	-	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Cyclic octaatomic sulfur	7.5	JN	ug/L		9.	.81	10544-50-0	10/06/19 08:46	10/07/19 02:44	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	91		51 - 108					10/06/19 08:46	10/07/19 02:44	
Phenol-d5 (Surr)	33		14 - 39					10/06/19 08:46	10/07/19 02:44	
Terphenyl-d14 (Surr)	84		40 - 148					10/06/19 08:46	10/07/19 02:44	
2,4,6-Tribromophenol (Surr)	107		26 - 139					10/06/19 08:46	10/07/19 02:44	
2-Fluorophenol (Surr)	46		25 - 58					10/06/19 08:46	10/07/19 02:44	
2-Fluorobiphenyl (Surr)	79		45 - 107					10/06/19 08:46	10/07/19 02:44	
Method: 300.0 - Anions, Ion	-						_			
Analyte		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil F
Nitrate as N	0.056	_	0.10		0.056	U			10/05/19 04:30	
Nitrite as N	0.076	U	0.12		0.076	-			10/05/19 04:30	
Sulfate	2.29		0.60		0.35	mg/L			10/05/19 04:30	
Method: 300.0 - Anions, Ion	-	phy - DL Qualifier	RL		BADI	Unit	D	Drongrad	Amaharad	Dil F
Analyte Chloride	40.5	•	1.80			mg/L	_	Prepared	Analyzed 10/05/19 06:44	חוו ר
Method: 200.8 - Metals (ICP/I	MC) Total D	00010rah	la.							
Metriou. 200.0 - Metais (ICP/I Analyte		Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil F
Calcium	27300		250		233	ug/L		10/09/19 08:12	10/09/19 23:07	-
Magnesium	10400		250		24.8	ug/L		10/09/19 08:12	10/09/19 23:07	
Potassium	8460		250		73.5	ug/L		10/09/19 08:12	10/09/19 23:07	
Sodium	39600		250		66.8	ug/L		10/09/19 08:12	10/09/19 23:07	
Method: 6010D - Metals (ICP) - Dissolved									
Analyte		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil F
Cobalt, Dissolved	1.7	U	50.0		1.7	ug/L		10/07/19 08:20	10/08/19 02:19	
Iron, Dissolved	21800		150		34.2	ug/L		10/07/19 08:20	10/08/19 02:19	
Manganese, Dissolved	1790		15.0		0.99	ug/L		10/07/19 08:20	10/08/19 02:19	
General Chemistry										
Analyte		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil F
Ammonia (as N)	0.068	U	0.10		0.068	mg/L		A 1000 1000 1000 1000 1000 1000 1000 10	10/07/19 16:11	
Bicarbonate Alkalinity as CaCO3	127		5.0		5.0	mg/L			10/08/19 11:54	
Carbonate Alkalinity as CaCO3	5.0	U	5.0			mg/L			10/08/19 11:54	
Sulfide	0.58	U	1.0		0.58	mg/L			10/08/19 12:03	
lient Sample ID: UPA-10	06-USA						L	ab Sample	ID: 460-193	3074
oate Collected: 10/04/19 11:25	Š								Matrix	: Wat
ate Received: 10/04/19 20:15										

Method: 8260C SIM - Vol	atile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	3.7		0.40	0.20	ug/L			10/09/19 17:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	86		72 - 133			-		10/09/19 17:10	1

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-USA

Lab Sample ID: 460-193074-1 Date Collected: 10/04/19 11:25

Matrix: Water

Date Received: 10/04/19 20:15

Chloromethane Bromomethane Vinyl chloride Chloroethane Methylene Chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	0.40 0.55 0.17 0.32 0.59 4.4 0.82 0.26 0.26 0.24 0.22 2.1 0.43 1.9 0.24 0.21 0.56	U U U U U U U U U U U U U U U U U U U	1.0 1.0 1.0 1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0	0.55 0.17 0.32 0.32 4.4 0.82 0.26 0.26 0.24 0.22 0.33 0.43	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared	Analyzed 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32	
Vinyl chloride Chloroethane Methylene Chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	0.17 0.32 0.59 4.4 0.82 0.26 0.26 0.24 0.22 2.1 0.43 1.9 0.24 0.21 0.56	U J U U U U U U	1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0	0.55 0.17 0.32 0.32 4.4 0.82 0.26 0.26 0.24 0.22 0.33 0.43	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32	
Chloroethane Methylene Chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	0.32 0.59 4.4 0.82 0.26 0.24 0.22 2.1 0.43 1.9 0.24 0.21 0.56	U J U U U U U U U	1.0 1.0 5.0 1.0 1.0 1.0 1.0 1.0	0.17 0.32 0.32 4.4 0.82 0.26 0.26 0.24 0.22 0.33	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32	
Chloroethane Methylene Chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	0.59 4.4 0.82 0.26 0.24 0.22 2.1 0.43 1.9 0.24 0.21 0.56	J U U U U U U U	1.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0	0.32 4.4 0.82 0.26 0.26 0.24 0.22 0.33 0.43	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32	
Acetone Carbon disulfide 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	4.4 0.82 0.26 0.26 0.24 0.22 2.1 0.43 1.9 0.24 0.21 0.56	U U U U U U U	5.0 1.0 1.0 1.0 1.0 1.0 1.0 5.0	0.32 4.4 0.82 0.26 0.26 0.24 0.22 0.33 0.43	ug/L ug/L ug/L ug/L ug/L ug/L ug/L			10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32	
Acetone Carbon disulfide 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	0.82 0.26 0.26 0.24 0.22 2.1 0.43 1.9 0.24 0.21 0.56	U U U U U U	1.0 1.0 1.0 1.0 1.0 1.0 5.0	4.4 0.82 0.26 0.26 0.24 0.22 0.33 0.43	ug/L ug/L ug/L ug/L ug/L ug/L			10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32	
1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	0.26 0.26 0.24 0.22 2.1 0.43 1.9 0.24 0.21	U U U U U	1.0 1.0 1.0 1.0 1.0 1.0	0.82 0.26 0.26 0.24 0.22 0.33 0.43	ug/L ug/L ug/L ug/L ug/L			10/10/19 13:32 10/10/19 13:32 10/10/19 13:32 10/10/19 13:32	
1,1-Dichloroethane trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	0.26 0.24 0.22 2.1 0.43 1.9 0.24 0.21	U U U U	1.0 1.0 1.0 1.0 1.0 5.0	0.26 0.24 0.22 0.33 0.43	ug/L ug/L ug/L ug/L ug/L			10/10/19 13:32 10/10/19 13:32 10/10/19 13:32	
trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	0.24 0.22 2.1 0.43 1.9 0.24 0.21	U U U U	1.0 1.0 1.0 1.0 5.0	0.26 0.24 0.22 0.33 0.43	ug/L ug/L ug/L ug/L			10/10/19 13:32 10/10/19 13:32	
cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	0.22 2.1 0.43 1.9 0.24 0.21 0.56	U U U U	1.0 1.0 1.0 1.0 5.0	0.24 0.22 0.33 0.43	ug/L ug/L ug/L			10/10/19 13:32	
Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	2.1 0.43 1.9 0.24 0.21 0.56	U U U	1.0 1.0 5.0	0.22 0.33 0.43	ug/L ug/L				
Chloroform 1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	2.1 0.43 1.9 0.24 0.21 0.56	U U U	1.0 1.0 5.0	0.33 0.43	ug/L			10/10/19 13:32	
1,2-Dichloroethane 2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	0.43 1.9 0.24 0.21 0.56	U U	1.0 5.0	0.43					
2-Butanone (MEK) 1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	1.9 0.24 0.21 0.56	U U	5.0		- 9			10/10/19 13:32	
1,1,1-Trichloroethane Carbon tetrachloride Bromodichloromethane	0.24 0.21 0.56	U			ug/L			10/10/19 13:32	
Carbon tetrachloride Bromodichloromethane	0.21 0.56		1.0		ug/L			10/10/19 13:32	
Bromodichloromethane	0.56	_	1.0		ug/L			10/10/19 13:32	
		.1	1.0		ug/L			10/10/19 13:32	
1,2-Dichloropropane			1.0		ug/L			10/10/19 13:32	
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/10/19 13:32	
Trichloroethene	0.22		1.0		ug/L			10/10/19 13:32	
Dibromochloromethane	0.28		1.0		ug/L			10/10/19 13:32	
1,1,2-Trichloroethane	0.43		1.0		ug/L ug/L			10/10/19 13:32	
Benzene	0.43		1.0		ug/L			10/10/19 13:32	
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/10/19 13:32	
Bromoform	0.49		1.0		ug/L ug/L			10/10/19 13:32	
4-Methyl-2-pentanone	1.3		5.0		ug/L ug/L			10/10/19 13:32	
2-Hexanone	1.1		5.0		ug/L			10/10/19 13:32	
Tetrachloroethene	0.25		1.0		ug/L ug/L			10/10/19 13:32	
1,1,2,2-Tetrachloroethane	0.23		1.0		ug/L ug/L			10/10/19 13:32	
Toluene	0.37		1.0		_				
			1.0		ug/L			10/10/19 13:32	
Chlorobenzene	0.49				ug/L				
Ethylbenzene	0.30		1.0		ug/L			10/10/19 13:32	
Styrene	0.42		1.0		ug/L			10/10/19 13:32	
Xylenes, Total	0.65		2.0		ug/L			10/10/19 13:32	
Diethyl ether	0.56		1.0		ug/L			10/10/19 13:32	
MTBE	0.47		1.0		ug/L			10/10/19 13:32	
Tetrahydrofuran	1.0		2.0		ug/L			10/10/19 13:32	
Cyclohexane	0.32		1.0		ug/L			10/10/19 13:32	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/10/19 13:32	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/10/19 13:32	
Isopropylbenzene	0.34		1.0		ug/L			10/10/19 13:32	
N-Propylbenzene	0.32		1.0		ug/L			10/10/19 13:32	
Methylcyclohexane	0.26		1.0		ug/L			10/10/19 13:32	
Indane	0.35		1.0		ug/L			10/10/19 13:32	
Dichlorofluoromethane	0.34		1.0		ug/L			10/10/19 13:32	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/10/19 13:32	•
Tentatively Identified Compound Tentatively Identified Compound	Est. Result None	Qualifier	Unit ug/L	D	RT	CAS No.	Prepared	Analyzed 10/10/19 13:32	Dil Fa

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-USA

Lab Sample ID: 460-193074-1

Matrix: Water

Date Collected: 10/04/19 11:25 Date Received: 10/04/19 20:15

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	74 - 132		10/10/19 13:32	
Toluene-d8 (Surr)	98	80 - 120		10/10/19 13:32	1
4-Bromofluorobenzene	94	77 - 124		10/10/19 13:32	1
Dibromofluoromethane (Surr)	92	72 - 131		10/10/19 13:32	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)											
Analyte	Result	Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/06/19 08:46	10/07/19 02:24	1		
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/06/19 08:46	10/07/19 02:24	1		
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/06/19 08:46	10/07/19 02:24	1		
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/06/19 08:46	10/07/19 02:24	1		
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/06/19 08:46	10/07/19 02:24	1		
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026	ug/L		10/06/19 08:46	10/07/19 02:24	1		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/06/19 08:46	10/07/19 04:51	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/06/19 08:46	10/07/19 04:51	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/06/19 08:46	10/07/19 04:51	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/06/19 08:46	10/07/19 04:51	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/06/19 08:46	10/07/19 04:51	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/06/19 08:46	10/07/19 04:51	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/06/19 08:46	10/07/19 04:51	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/06/19 08:46	10/07/19 04:51	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/06/19 08:46	10/07/19 04:51	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/06/19 08:46	10/07/19 04:51	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/06/19 08:46	10/07/19 04:51	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/06/19 08:46	10/07/19 04:51	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/06/19 08:46	10/07/19 04:51	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/06/19 08:46	10/07/19 04:51	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/06/19 08:46	10/07/19 04:51	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/06/19 08:46	10/07/19 04:51	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/06/19 08:46	10/07/19 04:51	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/06/19 08:46	10/07/19 04:51	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/06/19 08:46	10/07/19 04:51	
Isophorone	0.80	U	10	0.80	ug/L		10/06/19 08:46	10/07/19 04:51	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/06/19 08:46	10/07/19 04:51	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/06/19 08:46	10/07/19 04:51	1
Naphthalene	1.1	U	10	1.1	ug/L		10/06/19 08:46	10/07/19 04:51	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/06/19 08:46	10/07/19 04:51	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/06/19 08:46	10/07/19 04:51	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/06/19 08:46	10/07/19 04:51	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/06/19 08:46	10/07/19 04:51	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/06/19 08:46	10/07/19 04:51	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/06/19 08:46	10/07/19 04:51	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/06/19 08:46	10/07/19 04:51	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/06/19 08:46	10/07/19 04:51	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/06/19 08:46	10/07/19 04:51	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/06/19 08:46	10/07/19 04:51	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/06/19 08:46	10/07/19 04:51	1

Eurofins TestAmerica, Edison 10/17/2019

Page 30 of 2332

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-USA

Lab Sample ID: 460-193074-1 Date Collected: 10/04/19 11:25

Matrix: Water

Date Received: 10/04/19 20:15

Analyte	Result	Qualifier	RL	M	IDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenzofuran	1.1		10		1.1	ug/L	=	10/06/19 08:46	10/07/19 04:51	
2,4-Dinitrotoluene	1.0	U	2.0		1.0	ug/L		10/06/19 08:46	10/07/19 04:51	
Diethyl phthalate	0.98	U	10		.98	ug/L		10/06/19 08:46	10/07/19 04:51	
4-Chlorophenyl phenyl ether	1.3	U	10			ug/L		10/06/19 08:46	10/07/19 04:51	
Fluorene	0.91	U	10			ug/L		10/06/19 08:46	10/07/19 04:51	
4-Nitroaniline	0.54	U	10			ug/L		10/06/19 08:46	10/07/19 04:51	
N-Nitrosodiphenylamine	0.89	U	10		.89	ug/L		10/06/19 08:46	10/07/19 04:51	
4-Bromophenyl phenyl ether	0.75	U	10	0).75	ug/L		10/06/19 08:46	10/07/19 04:51	
Phenanthrene	0.58	U	10		.58	ug/L		10/06/19 08:46	10/07/19 04:51	
Anthracene	0.63	U	10	0	.63	ug/L		10/06/19 08:46	10/07/19 04:51	
Carbazole	0.68	U	10	0		-		10/06/19 08:46	10/07/19 04:51	
Di-n-butyl phthalate	0.84	U	10			ug/L		10/06/19 08:46	10/07/19 04:51	
Fluoranthene	0.84	U	10					10/06/19 08:46	10/07/19 04:51	
Pyrene	1.6	U	10			-		10/06/19 08:46	10/07/19 04:51	
Butyl benzyl phthalate	0.85	U	10			ug/L		10/06/19 08:46	10/07/19 04:51	
3.3'-Dichlorobenzidine	1.4		10			ug/L		10/06/19 08:46	10/07/19 04:51	
Chrysene	0.91	U	2.0			ug/L		10/06/19 08:46	10/07/19 04:51	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0		1.7	ug/L		10/06/19 08:46	10/07/19 04:51	
Di-n-octyl phthalate	4.8		10		4.8	ug/L		10/06/19 08:46	10/07/19 04:51	
Benzo[k]fluoranthene	0.67	U	1.0			ug/L		10/06/19 08:46	10/07/19 04:51	
Indeno[1,2,3-cd]pyrene	1.3	U	2.0		1.3	ug/L		10/06/19 08:46	10/07/19 04:51	
Dibenz(a,h)anthracene	0.72	U	1.0			-		10/06/19 08:46	10/07/19 04:51	
Benzo[g,h,i]perylene	1.4	U	10			ug/L		10/06/19 08:46	10/07/19 04:51	
Diphenyl ether	1.2	U	10			ug/L		10/06/19 08:46	10/07/19 04:51	
n,n'-Dimethylaniline	0.91	U	1.0			-		10/06/19 08:46	10/07/19 04:51	
Caprolactam	0.68	U	10	0	.68	ug/L		10/06/19 08:46	10/07/19 04:51	
bis (2-chloroisopropyl) ether	0.63	U	10	0	63	ug/L		10/06/19 08:46	10/07/19 04:51	
Bisphenol-A	9.9	U	10		9.9	ug/L		10/06/19 08:46	10/07/19 04:51	
N-Methylaniline	0.48	U	5.0	0	.48	ug/L		10/06/19 08:46	10/07/19 04:51	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/06/19 08:46	10/07/19 04:51	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	112	X	51 - 108					10/06/19 08:46	10/07/19 04:51	
Phenol-d5 (Surr)	41	X	14 - 39					10/06/19 08:46	10/07/19 04:51	
Terphenyl-d14 (Surr)	95		40 - 148					10/06/19 08:46	10/07/19 04:51	
2,4,6-Tribromophenol (Surr)	132		26 - 139					10/06/19 08:46	10/07/19 04:51	
2-Fluorophenol (Surr)	58		25 - 58					10/06/19 08:46	10/07/19 04:51	
2-Fluorobiphenyl (Surr)	101		45 - 107					10/06/19 08:46	10/07/19 04:51	
Method: 300.0 - Anions, Ion (
Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fa
Chloride	56.6		2.64			mg/L			10/05/19 18:57	2
Nitrate as N	0.76		0.10			mg/L			10/05/19 15:57	
Nitrite as N	0.076	U	0.12			mg/L			10/05/19 15:57	
Sulfate	29.6		0.60	0	35	mg/L			10/05/19 15:57	•

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-USA

Lab Sample ID: 460-193074-1 Date Collected: 10/04/19 11:25

Matrix: Water

Date Received: 10/04/19 20:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	23000		250	233	ug/L		10/08/19 09:29	10/09/19 02:14	5
Potassium	5610		250	73.5	ug/L		10/08/19 09:29	10/09/19 02:14	5
Magnesium	9370		250	24.8	ug/L		10/08/19 09:29	10/09/19 02:14	5
Sodium	43300		250	66.8	ug/L		10/08/19 09:29	10/09/19 02:14	5
Method: 6010D - Metals (ICP) - [Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	8.9	J	50.0	1.7	ug/L		10/09/19 08:11	10/09/19 21:23	1
Iron, Dissolved	1430		150	34.2	ug/L		10/09/19 08:11	10/09/19 21:23	1
Manganese, Dissolved	1750		15.0	0.99	ug/L		10/09/19 08:11	10/09/19 21:23	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			10/09/19 09:58	1
Bicarbonate Alkalinity as CaCO3	80.9		5.0	5.0	mg/L			10/08/19 12:56	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/08/19 12:56	1
Sulfide	0.58	. U	1.0	0.58	mg/L			10/08/19 12:03	1

Client Sample ID: UPA-103-TZ

Date Collected: 10/04/19 12:50

Date Received: 10/04/19 20:15

Lab Sample ID: 460-193074-2

Matrix: Water

Method: 8260C SIM - Vola	itile Organic Com	npounds (GC/MS)					
Analyte	Result (Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.8		0.40	0.20 ug/L			10/09/19 17:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	82		72 - 133				10/09/19 17:36	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/10/19 13:08	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/10/19 13:08	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/10/19 13:08	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/10/19 13:08	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/10/19 13:08	1
Acetone	4.4	U	5.0	4.4	ug/L			10/10/19 13:08	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/10/19 13:08	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/10/19 13:08	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/10/19 13:08	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/10/19 13:08	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/10/19 13:08	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/10/19 13:08	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/10/19 13:08	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/10/19 13:08	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/10/19 13:08	1
Carbon tetrachloride	0.21		1.0	0.21	ug/L			10/10/19 13:08	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/10/19 13:08	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/10/19 13:08	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/10/19 13:08	1
Trichloroethene	0.43	J	1.0	0.31	ug/L			10/10/19 13:08	1

Eurofins TestAmerica, Edison

10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-103-TZ

Lab Sample ID: 460-193074-2

Matrix: Water

Date Collected: 10/04/19 12:50 Date Received: 10/04/19 20:15

Method: 8260C - Volatile Org			•				_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dibromochloromethane	0.28		1.0		ug/L			10/10/19 13:08	1
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/10/19 13:08	1
Benzene	0.20	_	1.0		ug/L			10/10/19 13:08	1
trans-1,3-Dichloropropene	0.49	U	1.0		ug/L			10/10/19 13:08	1
Bromoform	0.54		1.0		ug/L			10/10/19 13:08	1
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			10/10/19 13:08	1
2-Hexanone	1.1	U	5.0		ug/L			10/10/19 13:08	1
Tetrachloroethene	0.25		1.0		ug/L			10/10/19 13:08	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/10/19 13:08	1
Toluene	0.38	U	1.0	0.38	ug/L			10/10/19 13:08	1
Chlorobenzene	0.43	J	1.0	0.38	ug/L			10/10/19 13:08	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/10/19 13:08	1
Styrene	0.42	U	1.0	0.42	ug/L			10/10/19 13:08	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/10/19 13:08	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/10/19 13:08	1
MTBE	0.47	U	1.0	0.47	ug/L			10/10/19 13:08	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/10/19 13:08	1
Cyclohexane	0.32	U	1.0		ug/L			10/10/19 13:08	1
1,2,4-Trimethylbenzene	0.37	U	1.0		ug/L			10/10/19 13:08	1
1,3,5-Trimethylbenzene	0.33	U	1.0		ug/L			10/10/19 13:08	1
Isopropylbenzene	0.34	U	1.0		ug/L			10/10/19 13:08	1
N-Propylbenzene	0.32		1.0		ug/L			10/10/19 13:08	1
Methylcyclohexane	0.26		1.0		ug/L			10/10/19 13:08	1
Indane	0.35		1.0		ug/L			10/10/19 13:08	1
Dichlorofluoromethane	0.34		1.0		ug/L			10/10/19 13:08	1
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/10/19 13:08	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit E	,	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/10/19 13:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		74 - 132					10/10/19 13:08	1
Toluene-d8 (Surr)	96		80 - 120					10/10/19 13:08	1
4-Bromofluorobenzene	94		77 - 124					10/10/19 13:08	1
Dibromofluoromethane (Surr)	92		72 - 131					10/10/19 13:08	1
Method: 8270D SIM - Semivo	latile Organi	c Compo	unds (GC/MS	SIM)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
		H	0.050	0.016	ug/L		10/06/19 08:46	10/07/19 02:45	1
	0.016	U							
Benzo[a]anthracene	0.016 0.022		0.050	0.022	ug/L		10/06/19 08:46	10/07/19 02:45	1
Benzo[a]anthracene Benzo[a]pyrene		U		0.022	•			10/07/19 02:45 10/07/19 02:45	1
Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	0.022 0.024	U U	0.050 0.050	0.022 0.024	ug/L		10/06/19 08:46	10/07/19 02:45	
Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene	0.022 0.024 0.013	U U	0.050 0.050 0.020	0.022 0.024 0.013	ug/L ug/L		10/06/19 08:46 10/06/19 08:46	10/07/19 02:45 10/07/19 02:45	1
Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol	0.022 0.024	U U U *	0.050 0.050	0.022 0.024 0.013	ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46 10/06/19 08:46	10/07/19 02:45	1
Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether	0.022 0.024 0.013 0.15 0.026	U U U * U	0.050 0.050 0.020 0.20 0.030	0.022 0.024 0.013 0.15	ug/L ug/L ug/L		10/06/19 08:46 10/06/19 08:46 10/06/19 08:46	10/07/19 02:45 10/07/19 02:45 10/07/19 02:45	1 1 1
Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile	0.022 0.024 0.013 0.15 0.026	U U U * U	0.050 0.050 0.020 0.20 0.030	0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L	 D	10/06/19 08:46 10/06/19 08:46 10/06/19 08:46	10/07/19 02:45 10/07/19 02:45 10/07/19 02:45	1 1 1
Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte	0.022 0.024 0.013 0.15 0.026 • Organic Co	U U U * U mpounds Qualifier	0.050 0.050 0.020 0.20 0.030 6 (GC/MS) RL	0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L	<u>D</u>	10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 Prepared	10/07/19 02:45 10/07/19 02:45 10/07/19 02:45 10/07/19 02:45 Analyzed	1 1 1
Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene	0.022 0.024 0.013 0.15 0.026	U U U ± U mpounds Qualifier	0.050 0.050 0.020 0.20 0.030 6 (GC/MS)	0.022 0.024 0.013 0.15 0.026 MDL 0.29	ug/L ug/L ug/L ug/L	<u>D</u>	10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 10/06/19 08:46 Prepared 10/06/19 08:46	10/07/19 02:45 10/07/19 02:45 10/07/19 02:45 10/07/19 02:45	1 1 1 1 Dil Fac

Eurofins TestAmerica, Edison

10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-103-TZ

Lab Sample ID: 460-193074-2 Date Collected: 10/04/19 12:50

Matrix: Water

Date Received: 10/04/19 20:15

Method: 8270D - Semivolatil ^{Analyte}		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1-Methylphenol	0.24	U	10	0.24	ug/L		10/06/19 08:46	10/07/19 05:12	
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/06/19 08:46	10/07/19 05:12	
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/06/19 08:46	10/07/19 05:12	
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/06/19 08:46	10/07/19 05:12	
4-Chloro-3-methylphenol	0.58	U	10		ug/L		10/06/19 08:46	10/07/19 05:12	
2,4,6-Trichlorophenol	0.30	U	10	0.30	-		10/06/19 08:46	10/07/19 05:12	
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/06/19 08:46	10/07/19 05:12	
2,4-Dinitrophenol	14	U	20		ug/L		10/06/19 08:46	10/07/19 05:12	
4-Nitrophenol	0.69	U	20	0.69	-		10/06/19 08:46	10/07/19 05:12	
4,6-Dinitro-2-methylphenol	13	U	20	13	•		10/06/19 08:46	10/07/19 05:12	
1,3-Dichlorobenzene	2.0	U	10	2.0	•		10/06/19 08:46	10/07/19 05:12	
1,4-Dichlorobenzene	1.3		10	1.3	ug/L		10/06/19 08:46	10/07/19 05:12	
1,2-Dichlorobenzene	1.3		10	1.3	ug/L		10/06/19 08:46	10/07/19 05:12	
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L		10/06/19 08:46	10/07/19 05:12	
Hexachloroethane	1.2		2.0		-		10/06/19 08:46	10/07/19 05:12	
Nitrobenzene	0.57		1.0		ug/L		10/06/19 08:46	10/07/19 05:12	
sophorone	0.80		10	0.80	ug/L		10/06/19 08:46	10/07/19 05:12	
Bis(2-chloroethoxy)methane	0.24		10		ug/L		10/06/19 08:46	10/07/19 05:12	
1,2,4-Trichlorobenzene	1.3		2.0				10/06/19 08:46	10/07/19 05:12	
, ,			10						
Naphthalene 1-Chloroaniline	1.1 1.9		10	1.1	ug/L		10/06/19 08:46	10/07/19 05:12	
				1.9	ug/L		10/06/19 08:46	10/07/19 05:12	
Hexachlorobutadiene	0.78		1.0	0.78	•			10/07/19 05:12	
2-Methylnaphthalene	1.1		10	1.1	ug/L		10/06/19 08:46	10/07/19 05:12	
Hexachlorocyclopentadiene	1.7		10		ug/L		10/06/19 08:46	10/07/19 05:12	
2-Chloronaphthalene	1.2		10		J			10/07/19 05:12	
2-Nitroaniline	0.47		10	0.47	U		10/06/19 08:46	10/07/19 05:12	
Dimethyl phthalate	0.77		10	0.77	•		10/06/19 08:46	10/07/19 05:12	
Acenaphthylene	0.82		10		ug/L		10/06/19 08:46	10/07/19 05:12	
2,6-Dinitrotoluene	0.39		2.0	0.39	ug/L		10/06/19 08:46	10/07/19 05:12	
3-Nitroaniline	0.96		10		ug/L		10/06/19 08:46	10/07/19 05:12	
Acenaphthene	1.1		10	1.1	ug/L		10/06/19 08:46	10/07/19 05:12	
Dibenzofuran	1.1		10	1.1	ug/L			10/07/19 05:12	
2,4-Dinitrotoluene	1.0		2.0	1.0	ug/L			10/07/19 05:12	
Diethyl phthalate	0.98		10		ug/L			10/07/19 05:12	
I-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/06/19 08:46	10/07/19 05:12	
Fluorene	0.91	U	10		ug/L		10/06/19 08:46	10/07/19 05:12	
l-Nitroaniline	0.54	U	10	0.54	ug/L		10/06/19 08:46	10/07/19 05:12	
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/06/19 08:46	10/07/19 05:12	
l-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/06/19 08:46	10/07/19 05:12	
Phenanthrene	0.58	U	10	0.58	ug/L		10/06/19 08:46	10/07/19 05:12	
Anthracene	0.63	U	10	0.63	ug/L		10/06/19 08:46	10/07/19 05:12	
Carbazole	0.68	U	10	0.68	ug/L		10/06/19 08:46	10/07/19 05:12	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/06/19 08:46	10/07/19 05:12	
Fluoranthene	0.84	U	10		ug/L		10/06/19 08:46	10/07/19 05:12	
Pyrene	1.6	U	10		ug/L			10/07/19 05:12	
Butyl benzyl phthalate	0.85		10		ug/L			10/07/19 05:12	
3,3'-Dichlorobenzidine	1.4		10		ug/L			10/07/19 05:12	
Chrysene	0.91		2.0		ug/L			10/07/19 05:12	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/07/19 05:12	

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Lab Sample ID: 460-193074-2 Client Sample ID: UPA-103-TZ

Date Collected: 10/04/19 12:50 Matrix: Water Date Received: 10/04/19 20:15

Method: 8270D - Semivolatile				Contir		•	-	Dromarad	A m = 1	D:: F-
Analyte		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil Fa
Di-n-octyl phthalate	4.8		10			ug/L			10/07/19 05:12	
Benzo[k]fluoranthene	0.67		1.0		0.67	-			10/07/19 05:12	
ndeno[1,2,3-cd]pyrene	1.3		2.0			ug/L			10/07/19 05:12	
Dibenz(a,h)anthracene	0.72		1.0		0.72	_			10/07/19 05:12	
Benzo[g,h,i]perylene	1.4		10			ug/L			10/07/19 05:12	
Diphenyl ether	1.2		10			ug/L			10/07/19 05:12	
n,n'-Dimethylaniline	0.91	U	1.0		0.91	ug/L		10/06/19 08:46	10/07/19 05:12	
Caprolactam	0.68	U	10		0.68	-		10/06/19 08:46	10/07/19 05:12	
ois (2-chloroisopropyl) ether	0.63	U	10		0.63	ug/L		10/06/19 08:46	10/07/19 05:12	
3isphenol-A	9.9	U	10		9.9	ug/L		10/06/19 08:46	10/07/19 05:12	
N-Methylaniline	0.48	U	5.0		0.48	ug/L		10/06/19 08:46	10/07/19 05:12	
entatively Identified Compound	Est. Result	Qualifier	Unit	D	i	RT	CAS No.	Prepared	Analyzed	Dil Fa
entatively Identified Compound	None		ug/L					10/06/19 08:46	10/07/19 05:12	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil F
litrobenzene-d5 (Surr)	68		51 - 108					10/06/19 08:46	10/07/19 05:12	
Phenol-d5 (Surr)	24		14 - 39					10/06/19 08:46	10/07/19 05:12	
erphenyl-d14 (Surr)	57		40 - 148					10/06/19 08:46	10/07/19 05:12	
,4,6-Tribromophenol (Surr)	81		26 - 139					10/06/19 08:46	10/07/19 05:12	
-Fluorophenol (Surr)	35		25 - 58					10/06/19 08:46	10/07/19 05:12	
-Fluorobiphenyl (Surr)	61		45 - 107						10/07/19 05:12	
Chloride litrate as N	57.5 0.056		2.64 0.10		0.056	_			10/05/19 19:11 10/05/19 16:12	
litrite as N Sulfate	0.076 24.0		0.12		0.076	mg/L mg/L			10/05/19 16:12 10/05/19 16:12	
8 () 1 000 0 88 / 2 /20m/9	05 of a 1 200 A 2 200 B									
//Method: 200.8 - Metals (ICP/ //nalyte		ecoverap Qualifier	ie RL		MDL	Unit	D	Prepared	Analyzed	Dil F
alcium	14000	- Cannici	250			ug/L		10/08/19 09:29	10/09/19 02:16	
otassium	7110		250			ug/L			10/09/19 02:16	
	8670		250		24.8	-			10/09/19 02:16	
lagnesium			250		66.8	_			10/09/19 02:16	
odium	41500		250		00.0	ug/L		10/06/19 09.29	10/09/19 02.10	
lethod: 6010D - Metals (ICP)							_			
nalyte		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil F
obalt, Dissolved	31.7	J	50.0			ug/L		10/09/19 08:11	10/09/19 21:27	
on, Dissolved	8750		150			ug/L		10/09/19 08:11		
langanese, Dissolved	807		15.0		0.99	ug/L		10/09/19 08:11	10/09/19 21:27	
General Chemistry										
nalyte	Result	Qualifier	RL		MDL		D	Prepared	Analyzed	Dil F
mmonia (as N)	0.15		0.10	(0.068	mg/L			10/09/19 09:59	
Sicarbonate Alkalinity as CaCO3	68.4		5.0		5.0	mg/L			10/08/19 13:03	
Carbonate Alkalinity as CaCO3	5.0	U	5.0		5.0	mg/L			10/08/19 13:03	
Darbonate Attaining as Daoos	0.0	•	0.0		0.0	mg/L				

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-103-LS

Lab Sample ID: 460-193074-3 Date Collected: 10/04/19 13:10

Matrix: Water

Date Received: 10/04/19 20:15

Method: 8260C SIM - Vola Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/09/19 18:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	83		72 - 133			-	, , - p	10/09/19 18:01	1
			<i>d</i> 10 8 <i>d</i>						
Method: 8260C - Volatile [.] Analyte		unds by G Qualifier	C/MS RL	MDI	Unit	D	Prepared	Analyzod	Dil Fac
Chloromethane	0.40		1.0		ug/L		riepaieu	Analyzed 10/10/19 12:44	DIIFAC
Bromomethane	0.40		1.0		ug/L ug/L			10/10/19 12:44	
	0.55	-	1.0		_			10/10/19 12:44	1
Vinyl chloride Chloroethane	0.17				ug/L ug/L			10/10/19 12:44	
Methylene Chloride	0.32		1.0 1.0		-			10/10/19 12:44	
•			5.0 5.5		ug/L				
Acetone	5.5	. U			ug/L			10/10/19 12:44	
Carbon disulfide	3.5		1.0		ug/L			10/10/19 12:44	1
1,1-Dichloroethene	0.26		1.0		ug/L			10/10/19 12:44	1
1,1-Dichloroethane	0.26		1.0		ug/L			10/10/19 12:44	
trans-1,2-Dichloroethene	0.24		1.0		ug/L			10/10/19 12:44	1
cis-1,2-Dichloroethene	0.22		1.0		ug/L			10/10/19 12:44	1
Chloroform	0.33		1.0		ug/L			10/10/19 12:44	
1,2-Dichloroethane	0.43		1.0		ug/L			10/10/19 12:44	1
2-Butanone (MEK)	1.9		5.0		ug/L			10/10/19 12:44	1
1,1,1-Trichloroethane	0.24	U	1.0		ug/L			10/10/19 12:44	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/10/19 12:44	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/10/19 12:44	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/10/19 12:44	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/10/19 12:44	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/10/19 12:44	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/10/19 12:44	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/10/19 12:44	1
Benzene	0.20	U	1.0	0.20	ug/L			10/10/19 12:44	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/10/19 12:44	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/10/19 12:44	1
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			10/10/19 12:44	1
2-Hexanone	1.1	U	5.0		ug/L			10/10/19 12:44	1
Tetrachloroethene	0.25	U	1.0		ug/L			10/10/19 12:44	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0		ug/L			10/10/19 12:44	1
Toluene	0.38		1.0		ug/L			10/10/19 12:44	1
Chlorobenzene	0.38		1.0		ug/L			10/10/19 12:44	1
Ethylbenzene	0.30		1.0		ug/L			10/10/19 12:44	1
Styrene	0.42		1.0		ug/L			10/10/19 12:44	1
Kylenes, Total	0.65		2.0		ug/L			10/10/19 12:44	
Diethyl ether	0.03		1.0		ug/L ug/L			10/10/19 12:44	1
MTBE	0.21		1.0		-			10/10/19 12:44	
					ug/L				
Tetrahydrofuran	1.0		2.0		ug/L			10/10/19 12:44	
Cyclohexane	0.32		1.0		ug/L			10/10/19 12:44	1
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/10/19 12:44	•
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/10/19 12:44	1
sopropylbenzene	0.34		1.0		ug/L			10/10/19 12:44	1
N-Propylbenzene	0.32		1.0		ug/L			10/10/19 12:44	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/10/19 12:44	1

Eurofins TestAmerica, Edison

10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-103-LS

Lab Sample ID: 460-193074-3

2,4-Dichlorophenol

4-Chloro-3-methylphenol

Pate Collected: 10/04/19 13:10 Pate Received: 10/04/19 20:15								Matrix	: Wate
Method: 8260C - Volatile Org Analyte		unds by (Qualifier	GC/MS (Cor		Unit	D	Prepared	Analyzed	Dil Fa
Indane	0.35		1.0		ug/L			10/10/19 12:44	Diria
Dichlorofluoromethane	0.34		1.0		ug/L			10/10/19 12:44	
1,2,3-Trimethylbenzene	0.36	_	1.0		ug/L			10/10/19 12:44	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/10/19 12:44	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		74 - 132					10/10/19 12:44	
Toluene-d8 (Surr)	96		80 - 120					10/10/19 12:44	
4-Bromofluorobenzene	95		77 - 124					10/10/19 12:44	
Dibromofluoromethane (Surr)	93		72 - 131					10/10/19 12:44	
Analyte Benzo[a]anthracene	Result 0.016	Qualifier	RL 0.050	MDL 0.016	Unit	<u>D</u>	Prepared 10/06/19 08:46	Analyzed 10/07/19 03:06	Dil Fa
Benzo[a]pyrene	0.010		0.050	0.018	-		10/06/19 08:46		
Benzo[b]fluoranthene	0.022		0.050	0.022	-			10/07/19 03:06	
Hexachlorobenzene	0.024		0.020	0.024	•			10/07/19 03:06	,
Pentachlorophenol	0.15		0.20		ug/L			10/07/19 03:06	
Bis(2-chloroethyl)ether	0.026	-	0.030	0.026	•			10/07/19 03:06	
Method: 8270D - Semivolatile				3,445	g. 				
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Phenol	0.29	U	10	0.29	ug/L		10/06/19 08:46	10/07/19 05:33	
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/06/19 08:46	10/07/19 05:33	
2-Methylphenol	0.26	U	10	0.26	ug/L		10/06/19 08:46	10/07/19 05:33	
4-Methylphenol				0.04			10/06/10 00:46	40/07/40 05:00	
	0.24	U	10	0.24	ug/L		10/06/19 06:46	10/07/19 05:33	
2-Nitrophenol	0.24 0.75		10 10		ug/L ug/L			10/07/19 05:33	· · · · · · · · · · .
2-Nitrophenol 2,4-Dimethylphenol		U		0.75	_		10/06/19 08:46		

1	4-Chloro-3-methylphenol	0.56	U	10	0.50	ug/L	10/06/19 06:46	10/07/19 05.33	1
	2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L	10/06/19 08:46	10/07/19 05:33	1
-	2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L	10/06/19 08:46	10/07/19 05:33	1
-	2,4-Dinitrophenol	14	U	20	14	ug/L	10/06/19 08:46	10/07/19 05:33	1
	4-Nitrophenol	0.69	U	20	0.69	ug/L	10/06/19 08:46	10/07/19 05:33	1
-	4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L	10/06/19 08:46	10/07/19 05:33	1
-	1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L	10/06/19 08:46	10/07/19 05:33	1
	1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L	10/06/19 08:46	10/07/19 05:33	1
-	1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L	10/06/19 08:46	10/07/19 05:33	1
-	N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L	10/06/19 08:46	10/07/19 05:33	1
	Hexachloroethane	1.2	U	2.0	1.2	ug/L	10/06/19 08:46	10/07/19 05:33	1
	Nitrobenzene	0.57	U	1.0	0.57	ug/L	10/06/19 08:46	10/07/19 05:33	1
	Isophorone	0.80	U	10	0.80	ug/L	10/06/19 08:46	10/07/19 05:33	1
-	Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L	10/06/19 08:46	10/07/19 05:33	1
-	1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L	10/06/19 08:46	10/07/19 05:33	1
-	Naphthalene	1.1	U	10	1.1	ug/L	10/06/19 08:46	10/07/19 05:33	1
-	4-Chloroaniline	1.9	U	10	1.9	ug/L	10/06/19 08:46	10/07/19 05:33	1
-	Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L	10/06/19 08:46	10/07/19 05:33	1
-	2-Methylnaphthalene	1.1	U	10	1.1	ug/L	10/06/19 08:46	10/07/19 05:33	1
•									
							Furofins 1	TestAmerica	Edison

10

10

0.42 ug/L

0.58 ug/L

0.42 U

0.58 U

Eurofins TestAmerica, Edison 10/17/2019

10/06/19 08:46 10/07/19 05:33

10/06/19 08:46 10/07/19 05:33

1

Client: Golder Associates Inc.

Date Received: 10/04/19 20:15

Phenol-d5 (Surr)

Terphenyl-d14 (Surr)

2-Fluorophenol (Surr)

2-Fluorobiphenyl (Surr)

2,4,6-Tribromophenol (Surr)

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-103-LS

Lab Sample ID: 460-193074-3 Date Collected: 10/04/19 13:10

Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 1.7 U 10 10/06/19 08:46 10/07/19 05:33 Hexachlorocyclopentadiene 1.7 ug/L 1.2 U 10 2-Chloronaphthalene 10/06/19 08:46 10/07/19 05:33 1 1.2 ug/L 10 2-Nitroaniline 0.47 U 0.47 ug/L 10/06/19 08:46 10/07/19 05:33 10 Dimethyl phthalate 0.77 U 0.77 ug/L 10/06/19 08:46 10/07/19 05:33 1 Acenaphthylene 0.82 Ü 10 0.82 ug/L 10/06/19 08:46 10/07/19 05:33 2.0 2,6-Dinitrotoluene 0.39 U 0.39 10/06/19 08:46 10/07/19 05:33 1 ug/L U 10 10/06/19 08:46 10/07/19 05:33 3-Nitroaniline 0.96 0.96 ug/L 1 10 Acenaphthene U 10/06/19 08:46 10/07/19 05:33 1 1.1 ug/L 1.1 Dibenzofuran U 10 10/06/19 08:46 10/07/19 05:33 1 1.1 ug/L 2.4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/06/19 08:46 10/07/19 05:33 1 Diethyl phthalate 0.98 Ü 10 0.98 10/06/19 08:46 10/07/19 05:33 ug/L 10 10/06/19 08:46 10/07/19 05:33 4-Chlorophenyl phenyl ether 1.3 U 1 1.3 ug/L Fluorene 0.91 U 10 0.91 ug/L 10/06/19 08:46 10/07/19 05:33 1 0.54 U 10 10/06/19 08:46 10/07/19 05:33 1 4-Nitroaniline 0.54 ug/L N-Nitrosodiphenylamine 0.89 U 10 0.89 ug/L 10/06/19 08:46 10/07/19 05:33 1 4-Bromophenyl phenyl ether 0.75 U 10 0.75 10/06/19 08:46 10/07/19 05:33 1 ug/L Phenanthrene 0.58 U 10 0.58 ug/L 10/06/19 08:46 10/07/19 05:33 1 Anthracene 0.63 U 10 0.63 ug/L 10/06/19 08:46 10/07/19 05:33 1 Carbazole 0.68 U 10 0.68 ug/L 10/06/19 08:46 10/07/19 05:33 1 Di-n-butvl phthalate 0.84 U 10 0.84 ua/L 10/06/19 08:46 10/07/19 05:33 1 Fluoranthene 0.84 U 10 ug/L 10/06/19 08:46 10/07/19 05:33 0.84 1 Pyrene 1.6 U 10 1.6 ug/L 10/06/19 08:46 10/07/19 05:33 1 Butyl benzyl phthalate 0.85 U 10 0.85 10/06/19 08:46 10/07/19 05:33 1 ug/L 10 3,3'-Dichlorobenzidine 1.4 U 1.4 ug/L 10/06/19 08:46 10/07/19 05:33 1 Chrysene 0.91 U 2.0 0.91 10/06/19 08:46 10/07/19 05:33 1 ug/L 2.0 10/06/19 08:46 10/07/19 05:33 Bis(2-ethylhexyl) phthalate 17 U 1.7 ug/L 4.8 U 10 Di-n-octyl phthalate 4.8 10/06/19 08:46 10/07/19 05:33 1 ug/L 0.67 U 1.0 Benzo[k]fluoranthene 0.67 ug/L 10/06/19 08:46 10/07/19 05:33 Indeno[1,2,3-cd]pyrene 1.3 U 2.0 1.3 ug/L 10/06/19 08:46 10/07/19 05:33 1 Dibenz(a,h)anthracene 0.72 U 1.0 0.72 ug/L 10/06/19 08:46 10/07/19 05:33 U 10 1.4 10/06/19 08:46 10/07/19 05:33 1 Benzo[g,h,i]perylene 1.4 ug/L U 10 Diphenyl ether 1.2 1.2 ug/L 10/06/19 08:46 10/07/19 05:33 1.0 n,n'-Dimethylaniline 0.91 U 0.91 ug/L 10/06/19 08:46 10/07/19 05:33 1 Caprolactam 0.68 U 10 0.68 ug/L 10/06/19 08:46 10/07/19 05:33 1 bis (2-chloroisopropyl) ether 0.63 U 10 0.63 ug/L 10/06/19 08:46 1 10/07/19 05:33 Bisphenol-A 9.9 U 10 9.9 ug/L 10/06/19 08:46 10/07/19 05:33 5.0 10/06/19 08:46 10/07/19 05:33 N-Methylaniline 0.48 -11 0.48 ug/L 1 Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Dil Fac Prepared Analyzed Tentatively Identified Compound None ug/L 10/06/19 08:46 10/07/19 05:33 %Recovery Surrogate Qualifier Limits Prepared Analyzed Dil Fac Nitrobenzene-d5 (Surr) 101 51 - 108 10/06/19 08:46 10/07/19 05:33

> Eurofins TestAmerica, Edison 10/17/2019

10/07/19 05:33

10/07/19 05:33

10/07/19 05:33

10/07/19 05:33

10/06/19 08:46 10/07/19 05:33

1

1

1

1

1

10/06/19 08:46

10/06/19 08:46

10/06/19 08:46

10/06/19 08:46

14 - 39

40 - 148

26 - 139

25 - 58

45 - 107

35

79

117

50

91

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-103-LS

Lab Sample ID: 460-193074-3 Date Collected: 10/04/19 13:10

Matrix: Water

m, 14 1 m	~~xx~~x	1010-1110	
Date	Received:	10/04/19	20:15

Method: 300.0 - Anions, Ion Chi	romatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	36.6		1.68	0.20	mg/L			10/05/19 19:26	14
Nitrate as N	2.56		0.10	0.056	mg/L			10/05/19 16:27	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/05/19 16:27	1
Sulfate	22.5		0.60	0.35	mg/L			10/05/19 16:27	1
- Method: 200.8 - Metals (ICP/MS) - Total R	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	19900		250	233	ug/L		10/08/19 09:29	10/09/19 02:19	5
Potassium	4160		250	73.5	ug/L		10/08/19 09:29	10/09/19 02:19	5
Magnesium	6850		250	24.8	ug/L		10/08/19 09:29	10/09/19 02:19	5
Sodium	24300		250	66.8	ug/L		10/08/19 09:29	10/09/19 02:19	5
:: Method: 6010D - Metals (ICP) -	Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	38.8	J	50.0	1.7	ug/L		10/09/19 08:11	10/09/19 21:31	1
Iron, Dissolved	13600		150	34.2	ug/L		10/09/19 08:11	10/09/19 21:31	1
Manganese, Dissolved	573		15.0	0.99	ug/L		10/09/19 08:11	10/09/19 21:31	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.72		0.10	0.068	mg/L			10/09/19 10:01	1
Bicarbonate Alkalinity as CaCO3	58.3		5.0	5.0	mg/L			10/08/19 13:11	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/08/19 13:11	1

Client Sample ID: TBGW_100419

Date Collected: 10/04/19 00:00

Date Received: 10/04/19 20:15

Lab Sample ID: 460-193074-4

Matrix: Water

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)												
Ana	alyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,4-	-Dioxane	0.20	U	0.40	0.20	ug/L			10/09/19 16:45	1		
	rogate romofluorobenzene	%Recovery 86	Qualifier	72 - 133			-	Prepared	Analyzed 10/09/19 16:45	Dil Fac		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/10/19 11:56	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/10/19 11:56	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/10/19 11:56	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/10/19 11:56	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/10/19 11:56	1
Acetone	7.9		5.0	4.4	ug/L			10/10/19 11:56	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/10/19 11:56	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/10/19 11:56	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/10/19 11:56	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/10/19 11:56	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/10/19 11:56	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/10/19 11:56	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/10/19 11:56	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: TBGW_100419

Lab Sample ID: 460-193074-4 Date Collected: 10/04/19 00:00

Matrix: Water

Date Received: 10/04/19 20:15

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/10/19 11:56	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/10/19 11:56	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/10/19 11:56	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/10/19 11:56	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/10/19 11:56	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/10/19 11:56	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/10/19 11:56	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/10/19 11:56	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/10/19 11:56	1
Benzene	0.20	U	1.0	0.20	ug/L			10/10/19 11:56	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/10/19 11:56	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/10/19 11:56	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/10/19 11:56	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/10/19 11:56	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/10/19 11:56	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/10/19 11:56	1
Toluene	0.38	U	1.0	0.38	ug/L			10/10/19 11:56	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/10/19 11:56	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/10/19 11:56	1
Styrene	0.42	U	1.0	0.42	ug/L			10/10/19 11:56	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/10/19 11:56	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/10/19 11:56	1
MTBE	0.47	U	1.0	0.47	ug/L			10/10/19 11:56	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/10/19 11:56	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/10/19 11:56	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/10/19 11:56	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/10/19 11:56	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/10/19 11:56	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/10/19 11:56	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/10/19 11:56	1
Indane	0.35	U	1.0		ug/L			10/10/19 11:56	1
Dichlorofluoromethane	0.34	U	1.0		ug/L			10/10/19 11:56	1
1,2,3-Trimethylbenzene	0.36	U	1.0		ug/L			10/10/19 11:56	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L			-		10/10/19 11:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		74 - 132					10/10/19 11:56	1
Toluene-d8 (Surr)	96		80 - 120					10/10/19 11:56	1
4-Bromofluorobenzene	93		77 - 124					10/10/19 11:56	1
Dibromofluoromethane (Surr)	92		72 - 131					10/10/19 11:56	1

Date Collected: 10/07/19 10:05

Client Sample ID: DGC-11S Lab Sample ID: 460-193280-1

Date Received: 10/07/19 19:35

Method: 8260C SIM - Volatile 0	Organic Cor	npounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1.4-Dioxane	0.20	U	0.40	0.20	ua/L	 		10/11/19 12:40	1	

Eurofins TestAmerica, Edison

10/17/2019

Matrix: Water

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: DGC-11S

Date Received: 10/07/19 19:35

Lab Sample ID: 460-193280-1 Date Collected: 10/07/19 10:05

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	82	72 - 133		10/11/19 12:40	1

4-Bromonuoropenzene	02		12-133					10/11/19 12.40	,
Method: 8260C - Volatile Orga						_			
Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40		1.0	0.40	_			10/10/19 07:11	1
Bromomethane	0.55		1.0	0.55	-			10/10/19 07:11	1
Vinyl chloride	0.17		1.0	0.17	_			10/10/19 07:11	1
Chloroethane	0.32		1.0	0.32	-			10/10/19 07:11	1
Methylene Chloride	0.32		1.0	0.32	-			10/10/19 07:11	1
Acetone	4.4		5.0		ug/L			10/10/19 07:11	1
Carbon disulfide	0.82		1.0	0.82				10/10/19 07:11	1
1,1-Dichloroethene	0.26		1.0	0.26				10/10/19 07:11	1
1,1-Dichloroethane	0.26		1.0	0.26				10/10/19 07:11	1
trans-1,2-Dichloroethene	0.24		1.0	0.24				10/10/19 07:11	1
cis-1,2-Dichloroethene	0.22		1.0	0.22				10/10/19 07:11	1
Chloroform	0.33		1.0	0.33				10/10/19 07:11	1
1,2-Dichloroethane	0.43	U	1.0	0.43				10/10/19 07:11	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/10/19 07:11	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/10/19 07:11	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/10/19 07:11	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/10/19 07:11	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/10/19 07:11	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/10/19 07:11	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/10/19 07:11	1
Dibromochloromethane	0.28	₩± UJ	1.0	0.28	ug/L			10/10/19 07:11	1
1,1,2-Trichloroethane	0.43		1.0	0.43	ug/L			10/10/19 07:11	
Benzene	0.20	U	1.0	0.20	ug/L			10/10/19 07:11	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/10/19 07:11	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/10/19 07:11	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/10/19 07:11	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/10/19 07:11	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/10/19 07:11	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/10/19 07:11	1
Toluene	0.38	U	1.0	0.38	ug/L			10/10/19 07:11	1
Chlorobenzene	0.38	U	1.0	0.38				10/10/19 07:11	1
Ethylbenzene	0.30	U	1.0	0.30				10/10/19 07:11	1
Styrene	0.42	U	1.0	0.42				10/10/19 07:11	1
Xylenes, Total	0.65	U	2.0	0.65				10/10/19 07:11	1
Diethyl ether	0.21		1.0	0.21				10/10/19 07:11	1
MTBÉ	0.47		1.0		ug/L			10/10/19 07:11	1
Tetrahydrofuran	1.0		2.0		ug/L			10/10/19 07:11	1
Cyclohexane	0.32		1.0		ug/L			10/10/19 07:11	1
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/10/19 07:11	1
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/10/19 07:11	1
Isopropylbenzene	0.34		1.0		ug/L			10/10/19 07:11	. 1
N-Propylbenzene	0.32		1.0	0.32				10/10/19 07:11	1
Methylcyclohexane	0.26		1.0		ug/L			10/10/19 07:11	1
Indane	0.20		1.0		ug/L			10/10/19 07:11	1
Dichlorofluoromethane	0.33		1.0		ug/L			10/10/19 07:11	1
1,2,3-Trimethylbenzene	0.34		1.0	0.54	49/L			10/10/10 07:11	'

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: DGC-11S

Lab Sample ID: 460-193280-1

Date Collected: 10/07/19 10:05 Date Received: 10/07/19 19:35

Matrix: Water

Tentatively Identified Compound Tentatively Identified Compound	Est. Result None	Qualifier	Unit ug/L	<i>D</i>	RT	CAS No.	Prepared	Analyzed 10/10/19 07:11	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		74 - 132	-				10/10/19 07:11	1
Toluene-d8 (Surr)	101		80 - 120					10/10/19 07:11	1
4-Bromofluorobenzene	96		77 - 124					10/10/19 07:11	1
Dibromofluoromethane (Surr)	97		72 - 131					10/10/19 07:11	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/09/19 08:56	10/10/19 15:25	1			
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/09/19 08:56	10/10/19 15:25	1			
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/09/19 08:56	10/10/19 15:25	1			
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/09/19 08:56	10/10/19 15:25	1			
Pentachlorophenol	0.15	U	0.20	0.15	ug/L		10/09/19 08:56	10/10/19 15:25	1			
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026	ug/L		10/09/19 08:56	10/10/19 15:25	1			

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U*	10	0.29	ug/L		10/09/19 08:56	10/09/19 22:22	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/09/19 08:56	10/09/19 22:22	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/09/19 08:56	10/09/19 22:22	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/09/19 08:56	10/09/19 22:22	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/09/19 08:56	10/09/19 22:22	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/09/19 08:56	10/09/19 22:22	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/09/19 08:56	10/09/19 22:22	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/09/19 08:56	10/09/19 22:22	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/09/19 08:56	10/09/19 22:22	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/09/19 08:56	10/09/19 22:22	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/09/19 08:56	10/09/19 22:22	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/09/19 08:56	10/09/19 22:22	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/09/19 08:56	10/09/19 22:22	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/09/19 08:56	10/09/19 22:22	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/09/19 08:56	10/09/19 22:22	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/09/19 08:56	10/09/19 22:22	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/09/19 08:56	10/09/19 22:22	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/09/19 08:56	10/09/19 22:22	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/09/19 08:56	10/09/19 22:22	1
Isophorone	0.80	U	10	0.80	ug/L		10/09/19 08:56	10/09/19 22:22	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/09/19 08:56	10/09/19 22:22	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/09/19 08:56	10/09/19 22:22	1
Naphthalene	1.1	U	10	1.1	ug/L		10/09/19 08:56	10/09/19 22:22	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/09/19 08:56	10/09/19 22:22	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/09/19 08:56	10/09/19 22:22	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/09/19 08:56	10/09/19 22:22	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/09/19 08:56	10/09/19 22:22	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/09/19 08:56	10/09/19 22:22	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/09/19 08:56	10/09/19 22:22	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/09/19 08:56	10/09/19 22:22	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/09/19 08:56	10/09/19 22:22	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/09/19 08:56	10/09/19 22:22	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: DGC-11S

Lab Sample ID: 460-193280-1

Matrix: Water

Date Collected: 10/07/19 10:05 Date Received: 10/07/19 19:35

Analyte		Qualifier	ŔĹ	Continue MDI	Unit	D	Prepared	Analyzed	Dil Fa
3-Nitroaniline	0.96		10	0.96	ug/L		10/09/19 08:56	10/09/19 22:22	
Acenaphthene	1.1	U	10	1.			10/09/19 08:56	10/09/19 22:22	
Dibenzofuran	1.1	U	10	1.1	l ug/L		10/09/19 08:56	10/09/19 22:22	
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/09/19 08:56	10/09/19 22:22	
Diethyl phthalate	0.98	U	10		3 ug/L		10/09/19 08:56	10/09/19 22:22	
1-Chlorophenyl phenyl ether	1.3		10		3 ug/L		10/09/19 08:56	10/09/19 22:22	
Fluorene	0.91	U	10		l ug/L		10/09/19 08:56	10/09/19 22:22	
1-Nitroaniline	0.54	U	10	0.5	l ug/L		10/09/19 08:56	10/09/19 22:22	
N-Nitrosodiphenylamine	0.89		10		ug/L		10/09/19 08:56	10/09/19 22:22	
1-Bromophenyl phenyl ether	0.75		10		ug/L		10/09/19 08:56	10/09/19 22:22	
Phenanthrene	0.58		10		3 ug/L		10/09/19 08:56	10/09/19 22:22	
Anthracene	0.63		10		3 ug/L		10/09/19 08:56	10/09/19 22:22	
Carbazole	0.68		10		3 ug/L		10/09/19 08:56	10/09/19 22:22	
Di-n-butyl phthalate	0.84		10		ug/L		10/09/19 08:56	10/09/19 22:22	
Fluoranthene	0.84		10		ug/L		10/09/19 08:56	10/09/19 22:22	
Pyrene	1.6		10		ug/L ug/L		10/09/19 08:56	10/09/19 22:22	
Butyl benzyl phthalate	0.85		10		ug/L ug/L		10/09/19 08:56	10/09/19 22:22	
3,3'-Dichlorobenzidine	1.4		10		ug/L		10/09/19 08:56	10/09/19 22:22	
,	0.91		2.0	0.9	-		10/09/19 08:56	10/09/19 22:22	
Chrysene	1.7	U	2.0		•				
Bis(2-ethylhexyl) phthalate	4.8	U	2.0		ug/L		10/09/19 08:56	10/09/19 22:22	
Di-n-octyl phthalate					3 ug/L		10/09/19 08:56	10/09/19 22:22	
Benzo[k]fluoranthene	0.67		1.0		ug/L		10/09/19 08:56	10/09/19 22:22	
ndeno[1,2,3-cd]pyrene	1.3	U	2.0		3 ug/L		10/09/19 08:56	10/09/19 22:22	,
Dibenz(a,h)anthracene	0.72		1.0		2 ug/L		10/09/19 08:56	10/09/19 22:22	,
Benzo[g,h,i]perylene	1.4	U	10		l ug/L		10/09/19 08:56	10/09/19 22:22	
Diphenyl ether	1.2	U	10		2 ug/L		10/09/19 08:56	10/09/19 22:22	
n,n'-Dimethylaniline	0.91		1.0		l ug/L		10/09/19 08:56	10/09/19 22:22	
Caprolactam	0.68		10		3 ug/L		10/09/19 08:56	10/09/19 22:22	
bis (2-chloroisopropyl) ether	0.63		10		3 ug/L		10/09/19 08:56	10/09/19 22:22	
Bisphenol-A		U.* UJ	10		ug/L		10/09/19 08:56	10/09/19 22:22	
N-Methylaniline	0.48	U	5.0	0.48	3 ug/L		10/09/19 08:56	10/09/19 22:22	
Fentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Fentatively Identified Compound	None		ug/L				10/09/19 08:56	10/09/19 22:22	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
litrobenzene-d5 (Surr)	92		51 _ 108				10/09/19 08:56	10/09/19 22:22	
Phenol-d5 (Surr)	30		14 - 39				10/09/19 08:56	10/09/19 22:22	
Terphenyl-d14 (Surr)	91		40 - 148				10/09/19 08:56	10/09/19 22:22	
2,4,6-Tribromophenol (Surr)	101		26 - 139				10/09/19 08:56	10/09/19 22:22	
2-Fluorophenol (Surr)	46		25 - 58				10/09/19 08:56	10/09/19 22:22	
2-Fluorobiphenyl (Surr)	81		45 - 107				10/09/19 08:56	10/09/19 22:22	
Method: 300.0 - Anions, Ion C	hromatogra	phv							
Analyte		Qualifier	RL	MDI	. Unit	D	Prepared	Analyzed	Dil Fa
Chloride	2.93		0.12	0.014	mg/L			10/08/19 21:15	
Nitrate as N	0.056	U	0.10		mg/L			10/08/19 21:15	
Nitrite as N	0.076		0.12		mg/L			10/08/19 21:15	
Sulfate	8.41		0.60		mg/L			10/08/19 21:15	

Eurofins TestAmerica, Edison 10/17/2019

Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

SDG: 193027

Lab Sample ID: 460-193280-1

Matrix: Water

Job ID: 460-193027-1

Client	Sample	ID:	DGC-11S

Date Collected: 10/07/19 10:05 Date Received: 10/07/19 19:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	6950		250	233	ug/L		10/10/19 07:41	10/11/19 16:00	5
Potassium	2410		250	73.5	ug/L		10/10/19 07:41	10/11/19 16:00	5
Magnesium	2620		250	24.8	ug/L		10/10/19 07:41	10/11/19 16:00	5
Sodium	4750		250	66.8	ug/L		10/10/19 07:41	10/11/19 16:00	5
Method: 6010D - Metals (ICP) - [Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	1.7	U	50.0	1.7	ug/L		10/09/19 08:11	10/09/19 21:35	1
Iron, Dissolved	34.2	U	150	34.2	ug/L		10/09/19 08:11	10/09/19 21:35	1
Manganese, Dissolved	8.0	J	15.0	0.99	ug/L		10/09/19 08:11	10/09/19 21:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			10/09/19 10:39	1
Bicarbonate Alkalinity as CaCO3	27.0		5.0	5.0	mg/L			10/08/19 19:59	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/08/19 19:59	1
		U	1.0	0.58					

Client Sample ID: DGC-11D

Date Collected: 10/07/19 10:20

Date Received: 10/07/19 19:35

Lab Sample ID: 460-193280-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/11/19 13:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	83		72 - 133			-		10/11/19 13:06	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/10/19 07:35	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/10/19 07:35	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/10/19 07:35	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/10/19 07:35	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/10/19 07:35	1
Acetone	4.4	U	5.0	4.4	ug/L			10/10/19 07:35	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/10/19 07:35	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/10/19 07:35	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/10/19 07:35	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/10/19 07:35	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/10/19 07:35	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/10/19 07:35	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/10/19 07:35	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/10/19 07:35	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/10/19 07:35	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/10/19 07:35	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/10/19 07:35	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/10/19 07:35	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/10/19 07:35	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/10/19 07:35	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

2-Chlorophenol

2-Methylphenol

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: DGC-11D

Lab Sample ID: 460-193280-2

Date Collected: 10/07/19 10:20 Date Received: 10/07/19 19:35

Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Dibromochloromethane	0.28	₩± UJ	1.0	0.28	ug/L			10/10/19 07:35	
1,1,2-Trichloroethane	0.43		1.0	0.43	ug/L			10/10/19 07:35	
Benzene	0.20	U	1.0	0.20	ug/L			10/10/19 07:35	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/10/19 07:35	
Bromoform	0.54	U	1.0	0.54	ug/L			10/10/19 07:35	
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/10/19 07:35	
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/10/19 07:35	
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/10/19 07:35	
1,1,2,2-Tetrachloroethane	0.37	U	1.0		ug/L			10/10/19 07:35	
Toluene	0.38	U	1.0	0.38	ug/L			10/10/19 07:35	
Chlorobenzene	0.38	U	1.0		ug/L			10/10/19 07:35	
Ethylbenzene	0.30	U	1.0		ug/L			10/10/19 07:35	
Styrene	0.42		1.0		ug/L			10/10/19 07:35	
Xylenes, Total	0.65		2.0		ug/L			10/10/19 07:35	
Diethyl ether	0.21		1.0		ug/L			10/10/19 07:35	
MTBE	0.47		1.0		ug/L			10/10/19 07:35	
Tetrahydrofuran	1.0		2.0		ug/L ug/L			10/10/19 07:35	
Cyclohexane	0.32		1.0		ug/L			10/10/19 07:35	
1,2,4-Trimethylbenzene	0.32		1.0		ug/L ug/L			10/10/19 07:35	
1,3,5-Trimethylbenzene	0.37		1.0		ug/L ug/L			10/10/19 07:35	
	0.33		1.0		-			10/10/19 07:35	
sopropylbenzene	0.34		1.0		ug/L			10/10/19 07:35	
N-Propylbenzene	0.32				ug/L				
Methylcyclohexane	0.26		1.0		ug/L			10/10/19 07:35	
Indane			1.0		ug/L			10/10/19 07:35	
Dichlorofluoromethane	0.34 0.36		1.0 1.0		ug/L			10/10/19 07:35	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/10/19 07:35	
Fentatively Identified Compound	Est. Result	Qualifier	Unit	D .	RT	CAS No.	Prepared	Analyzed	Dil F
Tentatively Identified Compound	None		ug/L	_				10/10/19 07:35	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	96		74 - 132					10/10/19 07:35	
Toluene-d8 (Surr)	102		80 - 120					10/10/19 07:35	
4-Bromofluorobenzene	99		77 - 124					10/10/19 07:35	
Dibromofluoromethane (Surr)	99		72 - 131					10/10/19 07:35	
Method: 8270D SIM - Semivo	latila Organi	c Campa	unde /GC/M	IC CIMI					
vietnog: 0270D Silvi - Semivol Analyte		Qualifier	unus (GC/N RL	•	Unit	D	Prepared	Analyzed	Dil F
Benzo[a]anthracene	0.016		0.050	0.016			10/09/19 08:56		
Benzo[a]pyrene	0.022		0.050	0.022			10/09/19 08:56		
	0.024		0.050	0.024	-			10/10/19 15:46	
Benzo[b]fluoranthene	- · · ·		0.020	0.013				10/10/19 15:46	
	0.013								
Hexachlorobenzene	0.013 0.15			0.15	ua/l		10/09/19 08:56	10/10/19 15:46	
dexachlorobenzene Pentachlorophenol	0.15	U	0.20	0.15 0.026				10/10/19 15:46 10/10/19 15:46	
lexachlorobenzene Pentachlorophenol		U		0.15 0.026				10/10/19 15:46 10/10/19 15:46	
Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile	0.15 0.026 • Organic Co	∪ ∪ mpounds	0.20 0.030 s (GC/MS)	0.026	ug/L		10/09/19 08:56	10/10/19 15:46	
Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte	0.15 0.026 • Organic Co	∪ ∪ mpounds Qualifier	0.20 0.030	0.026 MD L		D	10/09/19 08:56 Prepared		Dil F

Eurofins TestAmerica, Edison

10/09/19 08:56 10/09/19 22:43

10/09/19 08:56 10/09/19 22:43

10/17/2019

10

10

0.38 ug/L

0.26 ug/L

0.38 U

0.26 U

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Lab Sample ID: 460-193280-2 **Client Sample ID: DGC-11D**

Date Collected: 10/07/19 10:20 Matrix: Water Date Received: 10/07/19 19:35

Method: 8270D - Semivolatil Analyte		Qualifier	ŔĹ	MDL		D	Prepared	Analyzed	Dil F
1-Methylphenol	0.24	U	10	0.24	ug/L		10/09/19 08:56	10/09/19 22:43	
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/09/19 08:56	10/09/19 22:43	
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/09/19 08:56	10/09/19 22:43	
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/09/19 08:56	10/09/19 22:43	
4-Chloro-3-methylphenol	0.58	U	10		ug/L		10/09/19 08:56	10/09/19 22:43	
2,4,6-Trichlorophenol	0.30	U	10	0.30	-		10/09/19 08:56	10/09/19 22:43	
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/09/19 08:56	10/09/19 22:43	
2,4-Dinitrophenol	14	U	20		ug/L		10/09/19 08:56	10/09/19 22:43	
1-Nitrophenol	0.69	U	20	0.69	-		10/09/19 08:56	10/09/19 22:43	
l,6-Dinitro-2-methylphenol	13	U	20		·		10/09/19 08:56	10/09/19 22:43	
1,3-Dichlorobenzene	2.0		10	2.0	-		10/09/19 08:56	10/09/19 22:43	
I,4-Dichlorobenzene	1.3		10	1.3	ug/L		10/09/19 08:56	10/09/19 22:43	
I,2-Dichlorobenzene	1.3		10	1.3	ug/L		10/09/19 08:56	10/09/19 22:43	
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L		10/09/19 08:56	10/09/19 22:43	
Hexachloroethane	1.2		2.0		=		10/09/19 08:56	10/09/19 22:43	
Vitrobenzene	0.57		1.0		ug/L		10/09/19 08:56	10/09/19 22:43	
sophorone	0.80		1.0	0.80	ug/L		10/09/19 08:56	10/09/19 22:43	
Bis(2-chloroethoxy)methane	0.24		10		ug/L		10/09/19 08:56	10/09/19 22:43	
,2,4-Trichlorobenzene	1.3		2.0				10/09/19 08:56	10/09/19 22:43	
' '			10						
laphthalene l-Chloroaniline	1.1 1.9		10	1.1	ug/L		10/09/19 08:56	10/09/19 22:43	
				1.9	ug/L		10/09/19 08:56	10/09/19 22:43	
lexachlorobutadiene	0.78		1.0	0.78	•		10/09/19 08:56	10/09/19 22:43	
-Methylnaphthalene	1.1		10	1.1	ug/L		10/09/19 08:56	10/09/19 22:43	
lexachlorocyclopentadiene	1.7		10		ug/L		10/09/19 08:56	10/09/19 22:43	
-Chloronaphthalene	1.2		10		ū		10/09/19 08:56	10/09/19 22:43	
-Nitroaniline	0.47		10	0.47	U		10/09/19 08:56	10/09/19 22:43	
Dimethyl phthalate	0.77		10	0.77	•		10/09/19 08:56	10/09/19 22:43	
Acenaphthylene	0.82		10		ug/L		10/09/19 08:56	10/09/19 22:43	
2,6-Dinitrotoluene	0.39		2.0	0.39	ug/L		10/09/19 08:56	10/09/19 22:43	
-Nitroaniline	0.96		10		ug/L		10/09/19 08:56	10/09/19 22:43	
Acenaphthene		U	10	1.1	ug/L		10/09/19 08:56	10/09/19 22:43	
Dibenzofuran	1.1		10	1.1	ug/L		10/09/19 08:56	10/09/19 22:43	
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/09/19 08:56	10/09/19 22:43	
Diethyl phthalate	0.98	U	10		ug/L		10/09/19 08:56	10/09/19 22:43	
l-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/09/19 08:56	10/09/19 22:43	
luorene	0.91	U	10	0.91	ug/L		10/09/19 08:56	10/09/19 22:43	
-Nitroaniline	0.54	U	10	0.54	ug/L		10/09/19 08:56	10/09/19 22:43	
I-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/09/19 08:56	10/09/19 22:43	
-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/09/19 08:56	10/09/19 22:43	
Phenanthrene	0.58	U	10	0.58	ug/L		10/09/19 08:56	10/09/19 22:43	
nthracene	0.63	U	10	0.63	ug/L		10/09/19 08:56	10/09/19 22:43	
Carbazole	0.68	U	10	0.68	ug/L		10/09/19 08:56	10/09/19 22:43	
i-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/09/19 08:56	10/09/19 22:43	
luoranthene	0.84		10		ug/L			10/09/19 22:43	
yrene	1.6		10		ug/L			10/09/19 22:43	
utyl benzyl phthalate	0.85		10		ug/L			10/09/19 22:43	
,3'-Dichlorobenzidine	1.4		10		ug/L			10/09/19 22:43	
Chrysene	0.91		2.0		ug/L			10/09/19 22:43	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/09/19 22:43	

Eurofins TestAmerica, Edison 10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: DGC-11D Lab Sample ID: 460-193280-2

Date Collected: 10/07/19 10:20 Matrix: Water Date Received: 10/07/19 19:35

Method: 8270D - Semivolatile Analyte		Qualifier	ŔĹ		. Unit	D	Prepared	Analyzed	Dil Fa
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/09/19 08:56	10/09/19 22:43	-
Benzo[k]fluoranthene	0.67	U	1.0		ug/L		10/09/19 08:56	10/09/19 22:43	
Indeno[1,2,3-cd]pyrene	1.3	U	2.0	1.3	ug/L		10/09/19 08:56	10/09/19 22:43	
Dibenz(a,h)anthracene	0.72	U	1.0		ug/L		10/09/19 08:56	10/09/19 22:43	
Benzo[g,h,i]perylene	1.4	U	10		ug/L		10/09/19 08:56	10/09/19 22:43	
Diphenyl ether	1.2	U	10		ug/L		10/09/19 08:56	10/09/19 22:43	
n,n'-Dimethylaniline	0.91		1.0		ug/L		10/09/19 08:56	10/09/19 22:43	
Caprolactam	0.68	U	10		ug/L		10/09/19 08:56	10/09/19 22:43	
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/09/19 22:43	
Bisphenol-A		u≛ UJ	10		ug/L			10/09/19 22:43	
N-Methylaniline	0.48		5.0		ug/L			10/09/19 22:43	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None	quantiti	ug/L			0,40,110.	10/09/19 08:56	10/09/19 22:43	D 1111
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	106	quanner	51 - 108				10/09/19 08:56	10/09/19 22:43	<i>Dii i u</i>
Phenol-d5 (Surr)	49	Υ	14 - 39				10/09/19 08:56	10/09/19 22:43	
Terphenyl-d14 (Surr)	102	^	40 - 148				10/09/19 08:56	10/09/19 22:43	
2,4,6-Tribromophenol (Surr)	119		26 - 139				10/09/19 08:56	10/09/19 22:43	
2-Fluorophenol (Surr)	63	V	25 - 58				10/09/19 08:56	10/09/19 22:43	
2-Fluorobiphenyl (Surr)	94	^	45 - 107					10/09/19 22:43	
Method: 300.0 - Anions, Ion C Analyte Chloride	•	Qualifier	RL 0.48		Unit mg/L	<u>D</u>	Prepared	Analyzed 10/09/19 01:04	Dil Fa
					-				•
Nitrate as N	0.53		0.10		mg/L			10/08/19 21:30	
Nitrite as N Sulfate	0.076 52.0		0.12 2.40		mg/L mg/L			10/08/19 21:30	
				1.00	, mg/L			10/00/10 01:04	
Method: 200.8 - Metals (ICP/M						_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Calcium	15800		250		ug/L		10/10/19 07:41	10/11/19 16:05	
Potassium	2130		250		ug/L		10/10/19 07:41	10/11/19 16:05	
Magnesium	10200		250		ug/L		10/10/19 07:41		
Sodium	7570		250	66.8	ug/L		10/10/19 07:41	10/11/19 16:05	
Method: 6010D - Metals (ICP)									
Analyte		Qualifier	RL		. Unit	D	Prepared	Analyzed	Dil Fa
Cobalt, Dissolved	1.7	U	50.0		ug/L		10/09/19 08:11	10/09/19 21:55	
Iron, Dissolved	34.2	U	150	34.2	2 ug/L		10/09/19 08:11	10/09/19 21:55	
Manganese, Dissolved	4.4	J	15.0	0.99	ug/L		10/09/19 08:11	10/09/19 21:55	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fa
Ammonia (as N)	0.11		0.10	0.068	mg/L			10/09/19 10:40	
m!	29.9		5.0	5.0	mg/L			10/08/19 20:33	
Bicarbonate Aikalinity as CaCO3	£0.0								
Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/08/19 20:33	

Eurofins TestAmerica, Edison 10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-103-US

Lab Sample ID: 460-193280-3

Matrix: Water

Date Collected: 10/07/19 10:25 Date Received: 10/07/19 19:35

Method: 8260C SIM - Vola	tile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	1.6		0.40	0.20	ug/L			10/11/19 13:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	82		72 - 133			•		10/11/19 13:31	1

4-Bromofluorobenzene	82		72 - 133			-		10/11/19 13:31	1
Method: 8260C - Volatile Or						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40		1.0		ug/L			10/10/19 07:59	1
Bromomethane	0.55		1.0		ug/L			10/10/19 07:59	1
Vinyl chloride	0.17		1.0		ug/L			10/10/19 07:59	
Chloroethane	0.32		1.0		ug/L			10/10/19 07:59	1
Methylene Chloride	0.32		1.0		ug/L			10/10/19 07:59	1
Acetone	4.4		5.0		ug/L			10/10/19 07:59	1
Carbon disulfide	0.82		1.0		ug/L			10/10/19 07:59	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/10/19 07:59	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/10/19 07:59	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/10/19 07:59	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/10/19 07:59	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/10/19 07:59	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/10/19 07:59	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/10/19 07:59	1
1,1,1-Trichloroethane	0.24	U	1.0		ug/L			10/10/19 07:59	1
Carbon tetrachloride	0.21		1.0	0.21	ug/L			10/10/19 07:59	1
Bromodichloromethane	0.34		1.0		ug/L			10/10/19 07:59	1
1,2-Dichloropropane	0.35		1.0		ug/L			10/10/19 07:59	1
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/10/19 07:59	1
Trichloroethene	0.31		1.0		ug/L			10/10/19 07:59	1
Dibromochloromethane		₩ <u>*</u> [],]	1.0		ug/L			10/10/19 07:59	1
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/10/19 07:59	
Benzene	0.20		1.0		ug/L			10/10/19 07:59	1
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/10/19 07:59	. 1
Bromoform	0.54		1.0		ug/L			10/10/19 07:59	
	1.3				_				
4-Methyl-2-pentanone			5.0		ug/L			10/10/19 07:59	1
2-Hexanone	1.1		5.0		ug/L			10/10/19 07:59	1
Tetrachloroethene	0.25		1.0		ug/L			10/10/19 07:59	1
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/10/19 07:59	1
Toluene	0.38	U	1.0		ug/L			10/10/19 07:59	1
Chlorobenzene	1.1		1.0		ug/L			10/10/19 07:59	1
Ethylbenzene	0.30		1.0		ug/L			10/10/19 07:59	1
Styrene	0.42		1.0		ug/L			10/10/19 07:59	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/10/19 07:59	1
Diethyl ether	0.98		1.0	0.21	ug/L			10/10/19 07:59	1
MTBE	0.47	U	1.0	0.47	ug/L			10/10/19 07:59	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/10/19 07:59	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/10/19 07:59	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/10/19 07:59	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/10/19 07:59	1
Isopropylbenzene	0.34		1.0		ug/L			10/10/19 07:59	1
N-Propylbenzene	0.32		1.0		ug/L			10/10/19 07:59	1
Methylcyclohexane	0.26		1.0		ug/L			10/10/19 07:59	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-103-US

Lab Sample ID: 460-193280-3

Date Collected: 10/07/19 10:25

Matrix: Water

Method: 8260C - Volatile Org						_	D	A I I	D:1 E
Analyte	0.35	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
ndane		_	1.0	0.35	-			10/10/19 07:59	
Dichlorofluoromethane	0.34		1.0		ug/L			10/10/19 07:59	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/10/19 07:59	
Fentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil F
Fentatively Identified Compound	None		ug/L					10/10/19 07:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
,2-Dichloroethane-d4 (Surr)	96		74 - 132					10/10/19 07:59	
Foluene-d8 (Surr)	102		80 - 120					10/10/19 07:59	
1-Bromofluorobenzene	99		77 - 124					10/10/19 07:59	
Dibromofluoromethane (Surr)	98		72 - 131					10/10/19 07:59	
Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene		Qualifier	unds (GC/N RL 0.050	•	Unit	<u>D</u>	Prepared 10/09/19 08:56	Analyzed 10/10/19 05:27	Dil F
Benzo[a]pyrene	0.022		0.050	0.022	-		10/09/19 08:56	10/10/19 05:27	
Benzo[b]fluoranthene	0.022		0.050	0.022	•		10/09/19 08:56	10/10/19 05:27	
Hexachlorobenzene	0.024		0.030	0.024			10/09/19 08:56	10/10/19 05:27	
Pentachlorophenol	0.015		0.020		ug/L ug/L		10/09/19 08:56	10/10/19 05:27	
Bis(2-chloroethyl)ether	0.15	U	0.20	0.13	-		10/09/19 08:56	10/10/19 05:27	
				MDI	Unit	D	Branarad	bordenA	Dile
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Analyte Phenol	Result 0.29	Qualifier U *	RL 10	0.29	ug/L	D	10/09/19 08:56	10/09/19 23:04	Dil F
Analyte Phenol 2-Chlorophenol	Result 0.29 0.38	Qualifier U *	RL 10 10	0.29 0.38	ug/L ug/L	D	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dil F
Analyte Phenol P-Chlorophenol P-Methylphenol	0.29 0.38 0.26	Qualifier U * U U	RL 10 10 10	0.29 0.38 0.26	ug/L ug/L ug/L	D	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04 10/09/19 23:04	Dil F
Analyte Phenol 2-Chlorophenol 2-Methylphenol I-Methylphenol	Result 0.29 0.38 0.26 0.24	Qualifier U * U U U	RL 10 10 10	0.29 0.38 0.26 0.24	ug/L ug/L ug/L ug/L	D	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04	Dil F
Analyte Phenol P-Chlorophenol P-Methylphenol P-Mitrophenol	Result 0.29 0.38 0.26 0.24 0.75	Qualifier U * U U U U	10 10 10 10 10	0.29 0.38 0.26 0.24 0.75	ug/L ug/L ug/L ug/L ug/L	D	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04	Dil F
Analyte Phenol P-Chlorophenol P-Methylphenol P-Nitrophenol P-Aitrophenol	Result 0.29 0.38 0.26 0.24 0.75 0.24	Qualifier U * U U U U U U	10 10 10 10 10 10	0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L	D	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04	Dilf
Analyte Phenol Phenol P-Chlorophenol P-Methylphenol P-Nitrophenol P-A-Dimethylphenol P-A-Dimethylphenol	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42	Qualifier U ** U U U U U U U U U	10 10 10 10 10 10 10	0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04	Dil F
Analyte Phenol Phenol Phenol Phenol Phenol Phenol Phitrophenol	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	Qualifier U ** U U U U U U U U U	10 10 10 10 10 10 10 10	0.29 0.38 0.26 0.24 0.75 0.24 0.42	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04	Dill
Analyte Phenol P-Chlorophenol P-Methylphenol P-Nitrophenol P-A-Dimethylphenol P-Chloro-3-methylphenol P-Chloro-3-methylphenol	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	Qualifier U * U U U U U U U U U U U U	10 10 10 10 10 10 10 10	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04	Dilf
Analyte Chenol Chlorophenol Chlorophenol Chlorophenol Chlorophenol Chlorophenol Chlorophenol Chloro-3-methylphenol Chloro-Trichlorophenol Chlorophenol Chlorophenol Chlorophenol Chlorophenol Chlorophenol	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28	Qualifier U * U U U U U U U U U U U U U	10 10 10 10 10 10 10 10 10	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04	Dill
Analyte Phenol Phenol Phenol Phenol Phethylphenol Phitrophenol	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14	Qualifier U * U U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 10	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04 10/09/19 23:04	Dill
Analyte Chenol Chlorophenol Chlorophenol Chethylphenol Chlorophenol Chlorophenol Chloro-3-methylphenol Chloro-5-methylphenol Chlorophenol	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	Qualifier U ** U U U U U U U U U U U U U U U U U	10 10 10 10 10 10 10 10 10 20 20	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	DilF
Analyte Chenol Chlorophenol Chlorophenol Chlorophenol Chlorophenol Chlorophenol Chloro-3-methylphenol Chlorophenol	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	Qualifier U ** U U U U U U U U U U U U	10 10 10 10 10 10 10 10 10 20 20	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dilf
nalyte henol -Chlorophenol -Methylphenol -Nitrophenol ,4-Dimethylphenol ,4-Dichlorophenol ,4-Frichlorophenol ,4,6-Trichlorophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0	Qualifier U * U U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 20 20 20	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dil I
nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol ,4-Dimethylphenol ,4-Dichlorophenol ,4,6-Trichlorophenol ,4,5-Trichlorophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol -Nitrophenol ,6-Dinitro-2-methylphenol ,3-Dichlorobenzene ,4-Dichlorobenzene	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3	Qualifier U * U U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 20 20 20 10	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dil I
nalyte henol -Chlorophenol -Methylphenol -Nitrophenol ,4-Dichlorophenol ,4-Dichlorophenol ,4,6-Trichlorophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol ,5-Dinitro-2-methylphenol ,6-Dinitro-2-methylphenol ,3-Dichlorobenzene ,4-Dichlorobenzene	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3	Qualifier U * U U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 20 20 20 10 10	0.29 0.38 0.26 0.24 0.75 0.24 0.58 0.30 0.28 14 0.69 13 2.0 1.3	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dill
nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol ,4-Dimethylphenol ,4-Dichlorophenol ,4-Crichlorophenol ,4,6-Trichlorophenol ,4,5-Trichlorophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol -Nitrophenol ,6-Dinitro-2-methylphenol ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichlorobenzene l-Nitrosodi-n-propylamine	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3	Qualifier U * U U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 20 20 20 10 10	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dil 1
chanlyte chenol chlorophenol chlorophenol chlorophenol chlorophenol chlorophenol chlorophenol chloro-3-methylphenol chloro-3-methylphenol chloro-1 chlorophenol	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2	Qualifier U * U U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 20 20 20 10 10 10	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dilf
chanlyte chenol chlorophenol chlorophenol chlorophenol chlorophenol chlorophenol chlorophenol chloro-3-methylphenol chloro-3-methylphenol chloro-1 chlorophenol	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57	Qualifier U ** U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 20 20 20 10 10 10 10	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	DilF
nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol ,4-Dimethylphenol ,4-Dichlorophenol ,4-Chloro-3-methylphenol ,4,6-Trichlorophenol ,4,5-Trichlorophenol ,4-Dinitrophenol ,4-Dinitrophenol ,3-Dichlorobenzene ,4-Dichlorobenzene ,4-Dichlorobenzene ,4-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichlorobenzene l-Nitrosodi-n-propylamine lexachloroethane litrobenzene sophorone	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80	Qualifier U * U U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 20 20 10 10 10 10 10	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dil I
nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol ,4-Dimethylphenol ,4-Dichlorophenol ,4-Dichlorophenol ,4-Crichlorophenol ,4-S-Trichlorophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol -Nitrophenol ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichlorobenzene l-Nitrosodi-n-propylamine lexachloroethane litrobenzene sophorone sis(2-chloroethoxy)methane	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80 0.24	Qualifier U * U U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 20 20 20 10 10 10 10 10 10 10 10 10 1	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dil I
nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol ,4-Dimethylphenol ,4-Dichlorophenol ,4-Dichlorophenol ,4-Chrichlorophenol ,4-Trichlorophenol ,4-S-Trichlorophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol ,2-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichlorobenzene l-Nitrosodi-n-propylamine lexachloroethane litrobenzene sophorone is(2-chloroethoxy)methane ,2,4-Trichlorobenzene	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80 0.24 1.3	Qualifier U * U U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 20 20 20 10 10 10 10 10 10 10 10 10 1	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80 0.24 1.3	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dil I
nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol ,4-Dimethylphenol ,4-Dichlorophenol -Chloro-3-methylphenol ,4,6-Trichlorophenol ,4,5-Trichlorophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol ,4-Dinitrophenol -Nitrophenol -Nitrophenol ,3-Dichlorobenzene ,2-Dichlorobenzene l-Nitrosodi-n-propylamine lexachloroethane litrobenzene sophorone sis(2-chloroethoxy)methane ,2,4-Trichlorobenzene laphthalene	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80 0.24 1.3 1.1	Qualifier U * U U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 20 20 20 10 10 10 10 10 20 20 20 10 10 10 10 10 10 10 10 10 1	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80 0.24 1.3 1.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dil
Analyte Phenol Phenol P-Chlorophenol P-Methylphenol P-Methylphenol P-Nitrophenol P-Nitrophenol P-A-Dimethylphenol P-A-Dimethylphenol P-A-Dichlorophenol P-A-Dinitrophenol P-A-Dinitrophenol P-Nitrophenol P-Nitrophenol P-Nitrophenol P-Nitrophenol P-Nitrophenol P-Dichlorobenzene P-Dichlorobenzene P-Nitrosodi-n-propylamine Plexachloroethane Plitrobenzene P-Nitrobenzene P-Nitrosodi-n-propylamine Plexachloroethane P-P-Nitrophenol P-P-Nitrosodi-n-propylamine P-P-Nitrosodi-n-propylamine P-P-Nitrophenol P-Nitrobenzene P-Chloroaniline	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57 0.80 0.24 1.3 1.1	Qualifier U * U U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 20 20 20 10 10 10 10 20 20 10 10 10 10 10 10 10 10 10 1	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80 0.24 1.3 1.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dil
Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 4-Nitrophenol 4-Nitrophenol 4-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene N-Nitrosodi-n-propylamine Hexachloroethane Nitrobenzene sophorone Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene	Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80 0.24 1.3 1.1	Qualifier U * U U U U U U U U U U U U U	RL 10 10 10 10 10 10 10 10 20 20 20 10 10 10 10 10 20 20 20 10 10 10 10 10 10 10 10 10 1	0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80 0.24 1.3 1.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/09/19 08:56 10/09/19 08:56	10/09/19 23:04 10/09/19 23:04	Dil

Eurofins TestAmerica, Edison 10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-103-US

Lab Sample ID: 460-193280-3

Matrix: Water

Date Collected: 10/07/19 10:25 Date Received: 10/07/19 19:35

Method: 8270D - Semivolatile Analyte	***	Qualifier	ŘĹ		Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/09/19 08:56	10/09/19 23:04	
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/09/19 08:56	10/09/19 23:04	1
2-Nitroaniline	0.47	U	10		ug/L		10/09/19 08:56	10/09/19 23:04	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/09/19 08:56	10/09/19 23:04	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/09/19 08:56	10/09/19 23:04	1
2,6-Dinitrotoluene	0.39	U	2.0		ug/L		10/09/19 08:56	10/09/19 23:04	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/09/19 08:56	10/09/19 23:04	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/09/19 08:56	10/09/19 23:04	1
Dibenzofuran	1.1	U	10	1.1	ug/L		10/09/19 08:56	10/09/19 23:04	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/09/19 08:56	10/09/19 23:04	1
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/09/19 08:56	10/09/19 23:04	1
4-Chlorophenyl phenyl ether	1.3	U	10		ug/L		10/09/19 08:56	10/09/19 23:04	1
Fluorene	0.91	U	10		ug/L		10/09/19 08:56	10/09/19 23:04	1
4-Nitroaniline	0.54	U	10		ug/L			10/09/19 23:04	
N-Nitrosodiphenylamine	0.89		10		ug/L			10/09/19 23:04	1
4-Bromophenyl phenyl ether	0.75		10		ug/L			10/09/19 23:04	1
Phenanthrene	0.58	U	10		ug/L		10/09/19 08:56	10/09/19 23:04	1
Anthracene	0.63	U	10		ug/L		10/09/19 08:56	10/09/19 23:04	1
Carbazole	0.68	U	10		ug/L			10/09/19 23:04	1
Di-n-butyl phthalate	0.84		10		ug/L		10/09/19 08:56	10/09/19 23:04	1
Fluoranthene	0.84		10		ug/L		10/09/19 08:56	10/09/19 23:04	1
Pyrene	1.6		10		ug/L			10/09/19 23:04	1
Butyl benzyl phthalate	0.85		10		ug/L			10/09/19 23:04	1
3,3'-Dichlorobenzidine	1.4		10		ug/L			10/09/19 23:04	1
Chrysene	0.91		2.0		ug/L			10/09/19 23:04	1
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/09/19 23:04	1
Di-n-octyl phthalate	4.8		10		ug/L			10/09/19 23:04	1
Benzo[k]fluoranthene	0.67		1.0		ug/L			10/09/19 23:04	1
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/09/19 23:04	1
Dibenz(a,h)anthracene	0.72		1.0		ug/L			10/09/19 23:04	
Benzo[g,h,i]perylene	1.4		10		ug/L			10/09/19 23:04	
Diphenyl ether	1.2		10		ug/L			10/09/19 23:04	
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/09/19 23:04	
Caprolactam	0.68		10		ug/L			10/09/19 23:04	
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/09/19 23:04	
Bisphenol-A		₩	10		ug/L			10/09/19 23:04	
N-Methylaniline	0.48		5.0		ug/L			10/09/19 23:04	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				10/09/19 08:56	10/09/19 23:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	103		51 - 108				10/09/19 08:56	10/09/19 23:04	
Phenol-d5 (Surr)	41	X	14 - 39				10/09/19 08:56	10/09/19 23:04	1
Terphenyl-d14 (Surr)	97		40 - 148				10/09/19 08:56	10/09/19 23:04	1
2,4,6-Tribromophenol (Surr)	94		26 - 139				10/09/19 08:56	10/09/19 23:04	
2-Fluorophenol (Surr)	47		25 - 58				10/09/19 08:56	10/09/19 23:04	1
2-Fluorobiphenyl (Surr)	94		45 - 107				10/09/19 08:56	10/09/19 23:04	1

Eurofins TestAmerica, Edison 10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Lab Sample ID: 460-193280-3 Client Sample ID: UPA-103-US

Date Collected: 10/07/19 10:25 Matrix: Water

Date Received: 10/07/19 19:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	40.0		1.80	0.21	mg/L			10/09/19 01:19	15
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/08/19 21:45	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/08/19 21:45	1
Sulfate	19.2		0.60	0.35	mg/L			10/08/19 21:45	1
- Method: 200.8 - Metals (ICP/MS)) - Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	20900		250	233	ug/L		10/10/19 07:41	10/11/19 16:08	5
Potassium	5250		250	73.5	ug/L		10/10/19 07:41	10/11/19 16:08	5
Magnesium	15200		250	24.8	ug/L		10/10/19 07:41	10/11/19 16:08	5
Sodium	32500		250	66.8	ug/L		10/10/19 07:41	10/11/19 16:08	5
Method: 6010D - Metals (ICP) - [Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	57.6		50.0	1.7	ug/L		10/09/19 08:11	10/09/19 21:59	1
Iron, Dissolved	57400		150	34.2	ug/L		10/09/19 08:11	10/09/19 21:59	1
Manganese, Dissolved	4530		15.0	0.99	ug/L		10/09/19 08:11	10/09/19 21:59	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	2.3		0.10	0.068	mg/L			10/09/19 10:42	1
Bicarbonate Alkalinity as CaCO3	131		5.0	5.0	mg/L			10/08/19 20:40	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/08/19 20:40	1
Sulfide	0.58	11	1.0	0.58	mg/L			10/10/19 15:03	

Client Sample ID: DGC-10D

Date Collected: 10/07/19 14:15

Date Received: 10/07/19 19:35

Lá	ap	Sample	IL):	460-193	28U-4	
				Matriy:	Water	

Method: 8260C SIM - Vo	lethod: 8260C SIM - Volatile Organic Compounds (GC/MS)												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
1,4-Dioxane	0.67		0.40	0.20	ug/L			10/11/19 13:56	1				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac				
4-Bromofluorobenzene	81		72 - 133					10/11/19 13:56					

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/10/19 08:23	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/10/19 08:23	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/10/19 08:23	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/10/19 08:23	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/10/19 08:23	1
Acetone	4.4	U	5.0	4.4	ug/L			10/10/19 08:23	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/10/19 08:23	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/10/19 08:23	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/10/19 08:23	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/10/19 08:23	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/10/19 08:23	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/10/19 08:23	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/10/19 08:23	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: DGC-10D

Lab Sample ID: 460-193280-4

Matrix: Water

Date Collected: 10/07/19 14:15 Date Received: 10/07/19 19:35

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/10/19 08:23	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/10/19 08:23	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/10/19 08:23	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/10/19 08:23	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/10/19 08:23	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/10/19 08:23	1
Trichloroethene	0.31		1.0	0.31	ug/L			10/10/19 08:23	1
Dibromochloromethane		₩* WJ	1.0	0.28	ug/L			10/10/19 08:23	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/10/19 08:23	1
Benzene	0.20	U	1.0	0.20	ug/L			10/10/19 08:23	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/10/19 08:23	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/10/19 08:23	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/10/19 08:23	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/10/19 08:23	1
Tetrachloroethene	1.5		1.0	0.25	ug/L			10/10/19 08:23	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/10/19 08:23	1
Toluene	0.38	U	1.0	0.38	ug/L			10/10/19 08:23	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/10/19 08:23	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/10/19 08:23	1
Styrene	0.42	U	1.0	0.42	ug/L			10/10/19 08:23	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/10/19 08:23	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/10/19 08:23	1
MTBE	0.48	J	1.0	0.47	ug/L			10/10/19 08:23	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/10/19 08:23	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/10/19 08:23	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/10/19 08:23	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/10/19 08:23	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/10/19 08:23	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/10/19 08:23	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/10/19 08:23	1
Indane	0.35	U	1.0	0.35	ug/L			10/10/19 08:23	1
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/10/19 08:23	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/10/19 08:23	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/10/19 08:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		74 - 132					10/10/19 08:23	1
Toluene-d8 (Surr)	100		80 - 120					10/10/19 08:23	1
4-Bromofluorobenzene	96		77 - 124					10/10/19 08:23	1
Dibromofluoromethane (Surr)	95		72 - 131					10/10/19 08:23	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)											
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Benzo[a]anthracene	0.016	J	0.050	0.016	ug/L		10/09/19 08:56	10/10/19 05:48	1		
Benzo[a]pyrene	0.022 l	J	0.050	0.022	ug/L		10/09/19 08:56	10/10/19 05:48	1		
Benzo[b]fluoranthene	0.024 l	J	0.050	0.024	ug/L		10/09/19 08:56	10/10/19 05:48	1		
Hexachlorobenzene	0.013 l	j	0.020	0.013	ug/L		10/09/19 08:56	10/10/19 05:48	1		
Pentachlorophenol	0.15 l	J	0.20	0.15	ug/L		10/09/19 08:56	10/10/19 05:48	1		

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: DGC-10D Lab Sample ID: 460-193280-4

Date Collected: 10/07/19 14:15 Matrix: Water Date Received: 10/07/19 19:35

Method: 8270D SIM - Semivola	itile Organi	c Compoi	ınds (GC/MS SI	M) (C	ontinued	l)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026	ug/L		10/09/19 08:56	10/10/19 05:48	1

Method: 8270D - Semivolatil				paro.	11:4		D	A m. a l l	D:: 5
Analyte	Result 0.29	Qualifier		MDL		D	Prepared	Analyzed	Dil Fa
Phenol			10	0.29	-			10/10/19 02:25	
2-Chlorophenol	0.38		10		ug/L			10/10/19 02:25	
2-Methylphenol	0.26		10		ug/L			10/10/19 02:25	
4-Methylphenol	0.24		10	0.24	-			10/10/19 02:25	
2-Nitrophenol	0.75		10	0.75	_			10/10/19 02:25	
2,4-Dimethylphenol	0.24		10	0.24	-			10/10/19 02:25	
2,4-Dichlorophenol	0.42		10		ug/L			10/10/19 02:25	
4-Chloro-3-methylphenol	0.58		10		ug/L			10/10/19 02:25	
2,4,6-Trichlorophenol	0.30		10	0.30	-			10/10/19 02:25	
2,4,5-Trichlorophenol	0.28		10	0.28				10/10/19 02:25	
2,4-Dinitrophenol	14		20		ug/ L			10/10/19 02:25	
4-Nitrophenol	0.69		20	0.69	-		10/09/19 08:56	10/10/19 02:25	
4,6-Dinitro-2-methylphenol	13		20		ug/L			10/10/19 02:25	
1,3-Dichlorobenzene	2.0		10		ug/L			10/10/19 02:25	
1,4-Dichlorobenzene	1.3		10		ug/L		10/09/19 08:56	10/10/19 02:25	
1,2-Dichlorobenzene	1.3	U	10		ug/L		10/09/19 08:56	10/10/19 02:25	
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/09/19 08:56	10/10/19 02:25	
Hexachloroethane	1.2		2.0	1.2	ug/L		10/09/19 08:56	10/10/19 02:25	
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/09/19 08:56	10/10/19 02:25	
Isophorone	0.80	U	10	0.80	ug/L		10/09/19 08:56	10/10/19 02:25	
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/09/19 08:56	10/10/19 02:25	
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/09/19 08:56	10/10/19 02:25	
Naphthalene	1.1	U	10	1.1	ug/L		10/09/19 08:56	10/10/19 02:25	
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/09/19 08:56	10/10/19 02:25	
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/09/19 08:56	10/10/19 02:25	
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/09/19 08:56	10/10/19 02:25	
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/09/19 08:56	10/10/19 02:25	
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/09/19 08:56	10/10/19 02:25	
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/09/19 08:56	10/10/19 02:25	
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/09/19 08:56	10/10/19 02:25	
Acenaphthylene	0.82	U	10	0.82	ug/L		10/09/19 08:56	10/10/19 02:25	
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/09/19 08:56	10/10/19 02:25	
3-Nitroaniline	0.96	U	10	0.96	_		10/09/19 08:56	10/10/19 02:25	
Acenaphthene	1.1		10		ug/L		10/09/19 08:56	10/10/19 02:25	
Dibenzofuran	1.1	U	10		ug/L		10/09/19 08:56	10/10/19 02:25	
2,4-Dinitrotoluene	1.0		2.0		ug/L			10/10/19 02:25	
Diethyl phthalate	0.98		10		ug/L			10/10/19 02:25	
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/10/19 02:25	
Fluorene	0.91		10	0.91				10/10/19 02:25	
4-Nitroaniline	0.54		10		ug/L			10/10/19 02:25	
N-Nitrosodiphenylamine	0.89		10		ug/L			10/10/19 02:25	
4-Bromophenyl phenyl ether	0.75		10		ug/L ug/L			10/10/19 02:25	
Phenanthrene	0.78		10		ug/L			10/10/19 02:25	,
Anthracene	0.63		10		ug/L			10/10/19 02:25	
Carbazole	0.68		10		ug/L			10/10/19 02:25	
Di-n-butyl phthalate	0.84		10		ug/L ug/L			10/10/19 02:25	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: DGC-10D Lab Sample ID: 460-193280-4 Date Collected: 10/07/19 14:15

Matrix: Water

Date Received: 10/07/19 19:35

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	0.84	U	10	0.8	4 ug/L		10/09/19 08:56	10/10/19 02:25	-
Pyrene	1.6	U	10	1.6	3 ug/L		10/09/19 08:56	10/10/19 02:25	
Butyl benzyl phthalate	0.85	U	10	0.8	5 ug/L		10/09/19 08:56	10/10/19 02:25	
3,3'-Dichlorobenzidine	1.4	U	10	1.4	4 ug/L		10/09/19 08:56	10/10/19 02:25	
Chrysene	0.91	U	2.0	0.9	1 ug/L		10/09/19 08:56	10/10/19 02:25	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.	7 ug/L		10/09/19 08:56	10/10/19 02:25	• • • • • • • •
Di-n-octyl phthalate	4.8	U	10	4.8	3 ug/L		10/09/19 08:56	10/10/19 02:25	1
Benzo[k]fluoranthene	0.67	U	1.0	0.6	7 ug/L		10/09/19 08:56	10/10/19 02:25	
Indeno[1,2,3-cd]pyrene	1.3	U	2.0	1.3	3 ug/L		10/09/19 08:56	10/10/19 02:25	1
Dibenz(a,h)anthracene	0.72	U	1.0	0.73	2 ug/L		10/09/19 08:56	10/10/19 02:25	1
Benzo[g,h,i]perylene	1.4	U	10	1.4	4 ug/L		10/09/19 08:56	10/10/19 02:25	1
Diphenyl ether	1.2	U	10		2 ug/L		10/09/19 08:56	10/10/19 02:25	1
n,n'-Dimethylaniline	0.91		1.0	0.9	-		10/09/19 08:56	10/10/19 02:25	1
Caprolactam	0.68	U	10		3 ug/L			10/10/19 02:25	1
bis (2-chloroisopropyl) ether	0.63		10	0.6				10/10/19 02:25	1
Bisphenol-A		لل شها	10	9.9				10/10/19 02:25	1
N-Methylaniline	0.48		5.0	0.4	•			10/10/19 02:25	1
14-Metrylamine	0.40	O	5.0	0.4	J ug/L		10/03/13 00.50	10/10/13 02:23	,
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				10/09/19 08:56	10/10/19 02:25	7
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	96	-	51 - 108				10/09/19 08:56	10/10/19 02:25	1
Phenol-d5 (Surr)	32		14 - 39				10/09/19 08:56	10/10/19 02:25	1
Terphenyl-d14 (Surr)	98		40 - 148				10/09/19 08:56	10/10/19 02:25	1
2,4,6-Tribromophenol (Surr)	94		26 - 139				10/09/19 08:56	10/10/19 02:25	
2-Fluorophenol (Surr)	48		25 - 58				10/09/19 08:56	10/10/19 02:25	1
2-Fluorobiphenyl (Surr)	88		45 - 107				10/09/19 08:56	10/10/19 02:25	1
Method: 300.0 - Anions, Ion C	Chromatogra	phy							
Analyte	Result	Qualifier	RL	MD	_ Unit	D	Prepared	Analyzed	Dil Fac
Chloride	37.8		1.80	0.2	1 mg/L			10/09/19 01:33	15
Nitrate as N	2.10		0.10	0.05	6 mg/L			10/08/19 22:00	1
Nitrite as N	0.076	U	0.12	0.07	3 mg/L			10/08/19 22:00	1
Sulfate	9.51		0.60	0.3	5 mg/L			10/08/19 22:00	1
Method: 200.8 - Metals (ICP/N	/IS) - Total R	ecoverab	le						
Analyte		Qualifier	RL	MD	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	13700		250	23	3 ug/L		10/10/19 07:41	10/11/19 16:10	5
Potassium	2670		250	73.	5 ug/L		10/10/19 07:41	10/11/19 16:10	5
Magnesium	4780		250	24.	3 ug/L		10/10/19 07:41	10/11/19 16:10	5
Sodium	19000		250	66.	3 ug/L		10/10/19 07:41	10/11/19 16:10	5
Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MD	_ Unit	D	Prepared	Analyzed	Dil Fa
Cobalt, Dissolved	3.5	J	50.0	1.	7 ug/L		10/09/19 09:44	10/09/19 22:03	
	34.2	11	150				10/09/19 09:44	10/09/19 22:03	1
Iron, Dissolved	J4.∠	U	150	34	2 ug/L		10/09/19 09.44	10/03/13 22:03	

Eurofins TestAmerica, Edison 10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Lab Sample ID: 460-193280-4 Client Sample ID: DGC-10D

Date Collected: 10/07/19 14:15 Date Received: 10/07/19 19:35

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			10/09/19 10:43	1
Bicarbonate Alkalinity as CaCO3	17.4		5.0	5.0	mg/L			10/08/19 20:47	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/08/19 20:47	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/10/19 15:03	1

Lab Sample ID: 460-193280-5 Client Sample ID: DGC-10S

Date Collected: 10/07/19 15:15 Date Received: 10/07/19 19:35 Matrix: Water

Method: 8260C SIM - Volatile (Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	4.7		0.40	0.20	ug/L			10/11/19 14:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	81		72 - 133					10/11/19 14:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/10/19 08:46	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/10/19 08:46	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/10/19 08:46	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/10/19 08:46	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/10/19 08:46	1
Acetone	4.4	U	5.0	4.4	ug/L			10/10/19 08:46	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/10/19 08:46	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/10/19 08:46	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/10/19 08:46	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/10/19 08:46	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/10/19 08:46	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/10/19 08:46	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/10/19 08:46	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/10/19 08:46	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/10/19 08:46	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/10/19 08:46	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/10/19 08:46	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/10/19 08:46	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/10/19 08:46	1
Trichloroethene	0.86	J	1.0	0.31	ug/L			10/10/19 08:46	1
Dibromochloromethane	0.28	U.≛ UJ	1.0	0.28	ug/L			10/10/19 08:46	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/10/19 08:46	1
Benzene	0.20	U	1.0	0.20	ug/L			10/10/19 08:46	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/10/19 08:46	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/10/19 08:46	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/10/19 08:46	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/10/19 08:46	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/10/19 08:46	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/10/19 08:46	1
Toluene	0.38	U	1.0	0.38	ug/L			10/10/19 08:46	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/10/19 08:46	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/10/19 08:46	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

1,4-Dichlorobenzene

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Lab Sample ID: 460-193280-5 **Client Sample ID: DGC-10S**

Date Collected: 10/07/19 15:15 Matrix: Water Date Received: 10/07/19 19:35

Method: 8260C - Volatile Org			SC/MS (Con						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
tyrene	0.42	U	1.0		ug/L			10/10/19 08:46	
(ylenes, Total	0.65	U	2.0	0.65	ug/L			10/10/19 08:46	
ethyl ether	0.21	U	1.0	0.21	ug/L			10/10/19 08:46	
ITBE	0.47	U	1.0	0.47	ug/L			10/10/19 08:46	
etrahydrofuran	1.0	U	2.0	1.0	ug/L			10/10/19 08:46	
yclohexane	0.32	U	1.0	0.32	ug/L			10/10/19 08:46	
,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/10/19 08:46	
,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/10/19 08:46	
opropylbenzene	0.34	U	1.0	0.34	ug/L			10/10/19 08:46	
-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/10/19 08:46	
lethylcyclohexane	0.26	U	1.0	0.26	ug/L			10/10/19 08:46	
dane	0.35	U	1.0	0.35	ug/L			10/10/19 08:46	
ichlorofluoromethane	0.35	J	1.0	0.34	ug/L			10/10/19 08:46	
,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/10/19 08:46	
entatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
entatively Identified Compound	None		ug/L					10/10/19 08:46	
ırrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Dichloroethane-d4 (Surr)	93	-	74 - 132					10/10/19 08:46	
oluene-d8 (Surr)	101		80 - 120					10/10/19 08:46	
Bromofluorobenzene	96		77 - 124					10/10/19 08:46	
	97 latile Organi	c Compoi	72 ₋ 131 unds (GC/M	S SIM)				10/10/19 08:46	
lethod: 8270D SIM - Semivo nalyte	latile Organi Result	Qualifier	unds (GC/M RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene	latile Organi Result 0.016	Qualifier U	unds (GC/M RL 0.050	MDL 0.016	ug/L	<u>D</u>	10/09/19 08:56	Analyzed 10/10/19 06:09	
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene	latile Organi Result 0.016 0.022	Qualifier U	unds (GC/M RL 0.050 0.050	0.016 0.022	ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09	Dil Fa
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene	latile Organi Result 0.016 0.022 0.024	Qualifier U U U	unds (GC/M RL 0.050 0.050 0.050	0.016 0.022 0.024	ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09	
Method: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene lexachlorobenzene	latile Organi Result 0.016 0.022 0.024 0.013	Qualifier U U U U	unds (GC/M RL 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09	Dil Fa
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol	latile Organi Result 0.016 0.022 0.024 0.013 0.15	Qualifier U U U U	unds (GC/M RL 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09	
Method: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene lenzo[b]fluoranthene lexachlorobenzene entachlorophenol	latile Organi Result 0.016 0.022 0.024 0.013	Qualifier U U U U	unds (GC/M RL 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09	
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol sis(2-chloroethyl)ether	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30	Qualifier U U U U U U	0.050 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	D_	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09	
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol is(2-chloroethyl)ether	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30	Qualifier U U U U U U	0.050 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L	<u> </u>	10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09	
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol iis(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30	Qualifier U U U U U Qualifier	unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 Prepared	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09	Dil Fa
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol is(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte	latile Organi	Qualifier U U U U U U U Mathematical series of the	unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 Prepared 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09	Dil Fa
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol is(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte henol -Chlorophenol	Result	Qualifier U U U U U U Compounds Qualifier U U	0.050 0.050 0.050 0.050 0.020 0.030 0.030 0.030	0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38	ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 Prepared 10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09	
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol iis(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol	Result	Qualifier U U U U U Compounds Qualifier U * U U U	unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26	ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09	Dil Fa
lethod: 8270D SIM - Semivonalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol is(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte nenol Chlorophenol Methylphenol	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30 e Organic Co Result 0.29 0.38 0.26	Qualifier U U U U U U U U U U U U U U U U U U	unds (GC/M RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 Analyzed 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46	Dil Fa
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol is(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte nenol Chlorophenol Methylphenol Methylphenol Nitrophenol	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30 e Organic Co Result 0.29 0.38 0.26 0.24	Qualifier U U U U U U U U U U U U U U U U U U U	unds (GC/M RL 0.050 0.050 0.020 0.030 6 (GC/MS) RL 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 Analyzed 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46	
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol is(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte nenol Chlorophenol Methylphenol Methylphenol Nitrophenol 4-Dimethylphenol	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30 e Organic Co Result 0.29 0.38 0.26 0.24 0.75	Qualifier U U U U U U U U U U U U U U U U U U U	unds (GC/M RL 0.050 0.050 0.050 0.020 0.030 6 (GC/MS) RL 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46	
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol is(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte nenol Chlorophenol Methylphenol Methylphenol Nitrophenol 4-Dimethylphenol 4-Dimethylphenol	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24	Qualifier U U U U U U U U U U U U U U U U U U U	unds (GC/M RL 0.050 0.050 0.050 0.020 0.030 s (GC/MS) RL 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46	
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol is(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte nenol Chlorophenol Methylphenol Methylphenol Nitrophenol 4-Dimethylphenol 4-Dichlorophenol Chloro-3-methylphenol	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	Qualifier U U U U U U U U U U U U U U U U U U	unds (GC/M RL 0.050 0.050 0.050 0.020 0.030 s (GC/MS) RL 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 Analyzed 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46	Dil Fa
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol is(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte nenol Chlorophenol Methylphenol Methylphenol Nitrophenol 4-Dimethylphenol 4-Dichlorophenol Chloro-3-methylphenol 4,6-Trichlorophenol	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	Qualifier U U U U U U U U U U U U U U U U U U	unds (GC/M RL 0.050 0.050 0.050 0.020 0.030 s (GC/MS) RL 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 Analyzed 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46	Dil Fa
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]filuoranthene exachlorobenzene entachlorophenol is(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol 4-Dimethylphenol -Chloro-3-methylphenol 4,6-Trichlorophenol	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	Qualifier U U U U U U U U U U U U U U U U U U	unds (GC/M RL 0.050 0.050 0.050 0.020 0.030 6 (GC/MS) RL 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 Analyzed 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46	Dil Fa
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]fluoranthene exachlorobenzene entachlorophenol is(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte nenol .Chlorophenol .Methylphenol .Mitrophenol 4-Dimethylphenol 4-Dichlorophenol .Chloro-3-methylphenol 4,6-Trichlorophenol 4,5-Trichlorophenol 4-Dinitrophenol	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14	Qualifier U U U U U U U U U U U U U U U U U U	unds (GC/M RL 0.050 0.050 0.020 0.030 6 (GC/MS) RL 10 10 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46	Dil Fa
lethod: 8270D SIM - Semivo nalyte enzo[a]anthracene enzo[a]pyrene enzo[b]filuoranthene exachlorobenzene entachlorophenol iis(2-chloroethyl)ether lethod: 8270D - Semivolatile nalyte henol -Chlorophenol -Methylphenol -Methylphenol -Mitrophenol -4-Dimethylphenol -Chloro-3-methylphenol -4,6-Trichlorophenol -4,5-Trichlorophenol -Nitrophenol -4-Dinitrophenol -4-Dinitrophenol	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	Qualifier U U U U U U U U U U U U U U U U U U	unds (GC/M RL 0.050 0.050 0.050 0.020 0.030 s (GC/MS) RL 10 10 10 10 10 10 10 10 10 20 20	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46	
Method: 8270D SIM - Semivo nalyte Senzo[a]anthracene Senzo[a]pyrene Senzo[b]fluoranthene Sis(2-chloroethyl)ether Method: 8270D - Semivolatile Senzo[b]fluoranthenel Senzo[b]fluoranthene Senzo[b]fluor	latile Organi Result 0.016 0.022 0.024 0.013 0.15 0.30 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14	Qualifier U U U U U U U U U U U U U U U U U U U	unds (GC/M RL 0.050 0.050 0.020 0.030 6 (GC/MS) RL 10 10 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/09/19 08:56 10/09/19 08:56	Analyzed 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 06:09 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46 10/10/19 02:46	Dil Fa

10

1.3 ug/L

1.3 U

Eurofins TestAmerica, Edison

10/09/19 08:56 10/10/19 02:46

Page 56 of 2332 10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: DGC-10S

Lab Sample ID: 460-193280-5

Matrix: Water

Date Collected: 10/07/19 15:15 Date Received: 10/07/19 19:35

/lethod: 8270D - Semivolatile					_			
analyte	Result Qualifier		MDL		D	Prepared	Analyzed	Dil Fa
,2-Dichlorobenzene	1.3 U	10		ug/L			10/10/19 02:46	
I-Nitrosodi-n-propylamine	0.43 U	1.0	0.43	_			10/10/19 02:46	
lexachloroethane	1.2 U	2.0	1.2	ug/L		10/09/19 08:56	10/10/19 02:46	
litrobenzene	0.57 U	1.0	0.57	•		10/09/19 08:56	10/10/19 02:46	
sophorone	0.80 U	10	0.80	_		10/09/19 08:56	10/10/19 02:46	
Bis(2-chloroethoxy)methane	0.24 U	10	0.24	-		10/09/19 08:56	10/10/19 02:46	
,2,4-Trichlorobenzene	1.3 U	2.0	1.3	ug/L		10/09/19 08:56	10/10/19 02:46	
laphthalene	1.1 U	10	1.1	ug/L		10/09/19 08:56	10/10/19 02:46	
-Chloroaniline	1.9 U	10	1.9	ug/L		10/09/19 08:56	10/10/19 02:46	
lexachlorobutadiene	0.78 U	1.0	0.78	ug/L		10/09/19 08:56	10/10/19 02:46	
-Methylnaphthalene	1.1 U	10	1.1	ug/L		10/09/19 08:56	10/10/19 02:46	
lexachlorocyclopentadiene	1.7 U	10	1.7	ug/L		10/09/19 08:56	10/10/19 02:46	
-Chloronaphthalene	1.2 U	10	1.2	ug/L		10/09/19 08:56	10/10/19 02:46	
-Nitroaniline	0.47 U	10	0.47	ug/L		10/09/19 08:56	10/10/19 02:46	
Dimethyl phthalate	0.77 U	10	0.77	ug/L		10/09/19 08:56	10/10/19 02:46	
cenaphthylene	0.82 U	10	0.82	ug/L		10/09/19 08:56	10/10/19 02:46	
2,6-Dinitrotoluene	0.39 U	2.0	0.39	ug/L		10/09/19 08:56	10/10/19 02:46	
-Nitroaniline	0.96 U	10	0.96	ug/L		10/09/19 08:56	10/10/19 02:46	
cenaphthene	1.1 U	10		ug/L		10/09/19 08:56	10/10/19 02:46	
Dibenzofuran	1.1 U	10		ug/L		10/09/19 08:56	10/10/19 02:46	
,4-Dinitrotoluene	1.0 U	2.0		ug/L		10/09/19 08:56	10/10/19 02:46	
liethyl phthalate	0.98 U	10	0.98	-			10/10/19 02:46	
-Chlorophenyl phenyl ether	1.3 U	10		ug/L			10/10/19 02:46	
luorene	0.91 U	10	0.91				10/10/19 02:46	
-Nitroaniline	0.54 U	10	0.54	-			10/10/19 02:46	
l-Nitrosodiphenylamine	0.89 U	10	0.89	-			10/10/19 02:46	
-Bromophenyl phenyl ether	0.75 U	10	0.75	-			10/10/19 02:46	
Phenanthrene	0.58 U	10	0.58	-			10/10/19 02:46	
Inthracene	0.63 U	10	0.63	-			10/10/19 02:46	
Carbazole	0.68 U	10	0.68	_			10/10/19 02:46	
Di-n-butyl phthalate	0.84 U	10	0.84	_			10/10/19 02:46	
luoranthene	0.84 U	10	0.84	-			10/10/19 02:46	
Pyrene	1.6 U	10		ug/L			10/10/19 02:46	
lutyl benzyl phthalate	0.85 U	10	0.85	-			10/10/19 02:46	
,3'-Dichlorobenzidine	1.4 U	10		ug/L			10/10/19 02:46	
Chrysene	0.91 U	2.0	0.91				10/10/19 02:46	
is(2-ethylhexyl) phthalate	1.7 U	2.0		ug/L			10/10/19 02:46	
	4.8 U	10					10/10/19 02:46	
Di-n-octyl phthalate				ug/L				
enzo[k]fluoranthene	0.67 U	1.0	0.67	_			10/10/19 02:46	
ndeno[1,2,3-cd]pyrene	1.3 U	2.0		ug/L			10/10/19 02:46	
Dibenz(a,h)anthracene	0.72 U	1.0	0.72				10/10/19 02:46	
enzo[g,h,i]perylene	1.4 U	10		ug/L			10/10/19 02:46	
Diphenyl ether	1.2 U	10		ug/L			10/10/19 02:46	
,n'-Dimethylaniline	0.91 U	1.0	0.91				10/10/19 02:46	
Caprolactam	0.68 U	10	0.68				10/10/19 02:46	
is (2-chloroisopropyl) ether	0.63 U	10	0.63				10/10/19 02:46	
Bisphenol-A	9.9 U ≛ UJ	10	9.9	ug/L		10/09/19 08:56	10/10/19 02:46	

Eurofins TestAmerica, Edison 10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: DGC-10S

Lab Sample ID: 460-193280-5 Date Collected: 10/07/19 15:15

Matrix: Water

m, 14 1 m	~~xx~~cc~~x		1 W x 1 W
Date	Received:	10/07/19	19:35

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	13	J	ug/L		4.	.98		10/09/19 08:56	10/10/19 02:46	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	97		51 - 108					10/09/19 08:56	10/10/19 02:46	1
Phenol-d5 (Surr)	33		14 - 39					10/09/19 08:56	10/10/19 02:46	1
Terphenyl-d14 (Surr)	95		40 - 148					10/09/19 08:56	10/10/19 02:46	1
2,4,6-Tribromophenol (Surr)	101		26 - 139					10/09/19 08:56	10/10/19 02:46	1
2-Fluorophenol (Surr)	49		25 - 58					10/09/19 08:56	10/10/19 02:46	1
2-Fluorobiphenyl (Surr)	88		45 - 107					10/09/19 08:56	10/10/19 02:46	1
Method: 300.0 - Anions, Ion C	hromatogra	phy								
Analyte	Result	Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fac
Chloride	29.9	-	1.32		0.15	mg/L			10/09/19 01:48	11
Nitrate as N	0.25		0.10	C	0.056	mg/L			10/08/19 22:15	1
Nitrite as N	0.076	U	0.12	(0.076	mg/L			10/08/19 22:15	1
Sulfate	3.67		0.60		0.35	mg/L			10/08/19 22:15	1
Method: 200.8 - Metals (ICP/M	IS) - Total R	ecoverabl	le							
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	13700		250		233	ug/L		10/10/19 07:41	10/11/19 16:13	- 5
Potassium	1850		250		73.5	ug/L		10/10/19 07:41	10/11/19 16:13	5
Magnesium	3630		250		24.8	ug/L		10/10/19 07:41	10/11/19 16:13	5
Sodium	14300		250		66.8	ug/L		10/10/19 07:41	10/11/19 16:13	5
Method: 6010D - Metals (ICP)	- Dissolved									
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	2.5	J	50.0		1.7	ug/L		10/09/19 09:44	10/09/19 22:07	1
Iron, Dissolved	728		150		34.2	ug/L		10/09/19 09:44	10/09/19 22:07	1
Manganese, Dissolved	80.0		15.0		0.99	ug/L		10/09/19 09:44	10/09/19 22:07	1
General Chemistry										
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	(0.068	mg/L			10/09/19 10:45	1
Bicarbonate Alkalinity as CaCO3	27.2		5.0		5.0	mg/L			10/08/19 20:55	1
									10/08/19 20:55	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0		5.0	mg/L			10/00/19 20.55	1

Date Collected: 10/07/19 15:15

Date Received: 10/07/19 19:35

Bromomethane

Matrix: Water

Method: 8260C SIM - Vola Analyte 1,4-Dioxane		Qualifier	(GC/MS) RL 0.40		Unit ug/L	D	Prepared	Analyzed 10/11/19 10:09	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	82		72 - 133					10/11/19 10:09	1
Method: 8260C - Volatile (Organic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/10/19 02:23	1

1.0

0.55 ug/L

Eurofins TestAmerica, Edison

10/10/19 02:23

10/17/2019

0.55 U

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: TBGW_100719

Lab Sample ID: 460-193280-6

Matrix: Water

Date Collected: 10/07/19 15:15 Date Received: 10/07/19 19:35

Method: 8260C - Volatile Org Analyte		Qualifier	` RL		Unit	D	Prepared	Analyzed	Dil Fa
Vinyl chloride	0.17	U	1.0	0.17	ug/L		· ·	10/10/19 02:23	
Chloroethane	0.32	U	1.0		ug/L			10/10/19 02:23	
Methylene Chloride	0.32		1.0		ug/L			10/10/19 02:23	
Acetone	12		5.0		ug/L			10/10/19 02:23	
Carbon disulfide	0.82		1.0		ug/L			10/10/19 02:23	
1,1-Dichloroethene	0.26		1.0		ug/L			10/10/19 02:23	
1,1-Dichloroethane	0.26		1.0		ug/L			10/10/19 02:23	
trans-1,2-Dichloroethene	0.24		1.0		ug/L			10/10/19 02:23	,
cis-1,2-Dichloroethene	0.22		1.0		ug/L			10/10/19 02:23	
Chloroform	0.33		1.0		ug/L			10/10/19 02:23	
1,2-Dichloroethane	0.43		1.0		ug/L			10/10/19 02:23	,
2-Butanone (MEK)	1.9		5.0		ug/L			10/10/19 02:23	
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/10/19 02:23	
Carbon tetrachloride	0.24		1.0		ug/L ug/L			10/10/19 02:23	
	0.21				ug/L ug/L			10/10/19 02:23	
Bromodichloromethane			1.0		~				
1,2-Dichloropropane	0.35		1.0		ug/L			10/10/19 02:23	
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/10/19 02:23	,
Trichloroethene	0.31		1.0		ug/L			10/10/19 02:23	
Dibromochloromethane	0.28		1.0		ug/L			10/10/19 02:23	•
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/10/19 02:23	
Benzene	0.20		1.0		ug/L			10/10/19 02:23	
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/10/19 02:23	,
Bromoform	0.54		1.0		ug/L			10/10/19 02:23	,
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/10/19 02:23	•
2-Hexanone	1.1		5.0		ug/L			10/10/19 02:23	
Tetrachloroethene	0.25		1.0		ug/L			10/10/19 02:23	
1,1,2,2-Tetrachloroethane	0.37	U	1.0		ug/L			10/10/19 02:23	
Toluene	0.38	U	1.0	0.38	ug/L			10/10/19 02:23	,
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/10/19 02:23	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/10/19 02:23	
Styrene	0.42	U	1.0	0.42	ug/L			10/10/19 02:23	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/10/19 02:23	
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/10/19 02:23	
MTBE	0.47	U	1.0	0.47	ug/L			10/10/19 02:23	
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/10/19 02:23	
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/10/19 02:23	
1,2,4-Trimethylbenzene	0.37	U	1.0		ug/L			10/10/19 02:23	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/10/19 02:23	
Isopropylbenzene	0.34		1.0		ug/L			10/10/19 02:23	
N-Propylbenzene	0.32		1.0		ug/L			10/10/19 02:23	
Methylcyclohexane	0.26		1.0		ug/L			10/10/19 02:23	
Indane	0.35		1.0		ug/L			10/10/19 02:23	
Dichlorofluoromethane	0.34		1.0		ug/L			10/10/19 02:23	
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/10/19 02:23	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/10/19 02:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	96		74 - 132					10/10/19 02:23	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: TBGW_100719

Lab Sample ID: 460-193280-6

Matrix: Water

Date Collected: 10/07/19 15:15 Date Received: 10/07/19 19:35

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120		10/10/19 02:23	1
4-Bromofluorobenzene	96		77 - 124		10/10/19 02:23	1
Dibromofluoromethane (Surr)	99		72 - 131		10/10/19 02:23	1

Client Sample ID: UPA-106-CA

Lab Sample ID: 460-193375-1

Date Collected: 10/08/19 11:25 Date Received: 10/08/19 20:30

Matrix: Water

Method: 8260C SIM - Volatile	Organic Cor	npounds (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	29		0.40	0.20	ug/L			10/12/19 20:25	1
Surrogate 4-Bromofluorobenzene	%Recovery	Qualifier	Limits 72 - 133			-	Prepared	Analyzed 10/12/19 20:25	Dil Fac

-	• • • • • • • • • • • • • • • • • • • •		, = , 00					70.72.70 20.20	•
Method: 8260C - Volatile Or Analyte		unds by (Qualifier	GC/MS	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40		1.0	0.40		<u>-</u>		10/11/19 03:13	1
Bromomethane	0.55	U	1.0	0.55	_			10/11/19 03:13	1
Vinyl chloride	0.17	U	1.0	0.17	_			10/11/19 03:13	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/11/19 03:13	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/11/19 03:13	1
Acetone	4.4	U	5.0	4.4	ug/L			10/11/19 03:13	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/11/19 03:13	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/11/19 03:13	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/11/19 03:13	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/11/19 03:13	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/11/19 03:13	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/11/19 03:13	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/11/19 03:13	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/11/19 03:13	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24				10/11/19 03:13	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/11/19 03:13	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/11/19 03:13	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/11/19 03:13	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/11/19 03:13	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/11/19 03:13	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/11/19 03:13	1
1,1,2-Trichloroethane	0.43	U *	1.0	0.43	ug/L			10/11/19 03:13	1
Benzene	0.20	U	1.0	0.20	ug/L			10/11/19 03:13	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/11/19 03:13	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/11/19 03:13	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/11/19 03:13	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/11/19 03:13	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/11/19 03:13	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/11/19 03:13	1
Toluene	0.38	U	1.0	0.38	ug/L			10/11/19 03:13	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/11/19 03:13	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/11/19 03:13	1
Styrene	0.42	U	1.0	0.42	ug/L			10/11/19 03:13	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-CA

Lab Sample ID: 460-193375-1

Matrix: Water

Date Collected: 10/08/19 11:25

2-Nitrophenol

2,4-Dimethylphenol

2,4-Dichlorophenol

4-Chloro-3-methylphenol

4,6-Dinitro-2-methylphenol

2,4,6-Trichlorophenol

2,4,5-Trichlorophenol

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

2,4-Dinitrophenol

4-Nitrophenol

Date Received: 10/08/19 20:30									
Method: 8260C - Volatile Org			,			_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	0.65		2.0		ug/L			10/11/19 03:13	1
Diethyl ether	0.21		1.0		ug/L			10/11/19 03:13	1
MTBE	0.47	U	1.0		ug/L			10/11/19 03:13	1
Tetrahydrofuran	4.2		2.0		ug/L			10/11/19 03:13	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/11/19 03:13	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/11/19 03:13	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/11/19 03:13	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/11/19 03:13	1
N-Propylbenzene	0.32	U *	1.0	0.32	ug/L			10/11/19 03:13	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/11/19 03:13	1
Indane	0.35	U	1.0	0.35	ug/L			10/11/19 03:13	1
Dichlorofluoromethane	0.93	J	1.0	0.34	ug/L			10/11/19 03:13	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/11/19 03:13	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	_				10/11/19 03:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		74 - 132					10/11/19 03:13	1
Toluene-d8 (Surr)	106		80 - 120					10/11/19 03:13	1
4-Bromofluorobenzene	91		77 - 124					10/11/19 03:13	1
Dibromofluoromethane (Surr)	89		72 - 131					10/11/19 03:13	
Method: 8270D SIM - Semivo	latile Organi	c Compo	unds (GC/N	AS SIM)					
Analyte	Result	Qualifier	` RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/10/19 09:41	10/11/19 01:57	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/10/19 09:41	10/11/19 01:57	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/10/19 09:41	10/11/19 01:57	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/10/19 09:41	10/11/19 01:57	1
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/10/19 09:41	10/11/19 01:57	1
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026	ug/L		10/10/19 09:41	10/11/19 01:57	1
Method: 8270D - Semivolatile	e Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	. RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/10/19 09:41	10/10/19 22:03	1
2-Chlorophenol	0.38		10		ug/L		10/10/19 09:41	10/10/19 22:03	1
2-Methylphenol	0.26	U	10		ug/L		10/10/19 09:41	10/10/19 22:03	1
4-Methylphenol	0.24		10		ug/L		10/10/19 09:41	10/10/19 22:03	
> 1	·			- · - ·					

Eurofins TestAmerica, Edison 10/17/2019

10/10/19 09:41 10/10/19 22:03

10/10/19 09:41 10/10/19 22:03

10/10/19 09:41 10/10/19 22:03

10/10/19 09:41 10/10/19 22:03

10/10/19 09:41 10/10/19 22:03

10/10/19 09:41 10/10/19 22:03

10/10/19 09:41 10/10/19 22:03

10/10/19 09:41 10/10/19 22:03

10/10/19 09:41 10/10/19 22:03

10/10/19 09:41 10/10/19 22:03

10/10/19 09:41 10/10/19 22:03

10/10/19 09:41 10/10/19 22:03

1

1

1

1

1

1

10

10

10

10

10

10

20

20

20

10

10

10

0.75 ug/L

0.24 ug/L

0.42 ug/L

0.58 ug/L

0.30 ug/L

0.28 ug/L

0.69 ug/L

14 ug/L

13 ug/L

2.0 ug/L

1.3 ug/L

1.3 ug/L

0.75 U

0.24 U

0.42 U

0.58 U

0.30 U

0.28 U

0.69 U

14 U

13 U

2.0 U

1.3 U

1.3 U

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-CA

Lab Sample ID: 460-193375-1 Date Collected: 10/08/19 11:25

Matrix: Water

Date Received: 10/08/19 20:30

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/10/19 09:41	10/10/19 22:03	
Hexachloroethane	1.2	U	2.0		ug/L		10/10/19 09:41	10/10/19 22:03	
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/10/19 09:41	10/10/19 22:03	
Isophorone	0.80	U	10	0.80	ug/L		10/10/19 09:41	10/10/19 22:03	
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/10/19 09:41	10/10/19 22:03	
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/10/19 09:41	10/10/19 22:03	
Naphthalene	1.1	U	10	1.1	ug/L		10/10/19 09:41	10/10/19 22:03	
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/10/19 09:41	10/10/19 22:03	
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/10/19 09:41	10/10/19 22:03	
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/10/19 09:41	10/10/19 22:03	
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/10/19 09:41	10/10/19 22:03	
2-Chloronaphthalene	1.2	U	10				10/10/19 09:41	10/10/19 22:03	• • • • • • • •
2-Nitroaniline	0.47	U	10		ug/L		10/10/19 09:41	10/10/19 22:03	
Dimethyl phthalate	0.77	U	10		ug/L		10/10/19 09:41	10/10/19 22:03	
Acenaphthylene	0.82		10		ug/L			10/10/19 22:03	
2,6-Dinitrotoluene	0.39		2.0		ug/L		10/10/19 09:41		
3-Nitroaniline	0.96	U	10		ug/L		10/10/19 09:41	10/10/19 22:03	
Acenaphthene	1.1		10		ug/L			10/10/19 22:03	
Dibenzofuran	1.1		10		-		10/10/19 09:41		
2,4-Dinitrotoluene	1.0		2.0	1.0	ug/L		10/10/19 09:41		
Diethyl phthalate	0.98		10	0.98	ug/L		10/10/19 09:41		
4-Chlorophenyl phenyl ether	1.3		10		ug/L		10/10/19 09:41		
Fluorene	0.91		10		ug/L		10/10/19 09:41		
4-Nitroaniline	0.54		10		ug/L			10/10/19 22:03	• • • • • • • •
N-Nitrosodiphenylamine	0.89		10	0.89	ug/L		10/10/19 09:41		
4-Bromophenyl phenyl ether	0.75		10		ug/L		10/10/19 09:41		
Phenanthrene	0.58		10		ug/L			10/10/19 22:03	
Anthracene	0.63		10		ug/L		10/10/19 09:41		
Carbazole	0.68		10		ug/L		10/10/19 09:41		
Di-n-butyl phthalate	0.84		10				10/10/19 09:41		
Fluoranthene	0.84		10		•		10/10/19 09:41		
Pyrene	1.6		10		ug/L ug/L		10/10/19 09:41		
Butyl benzyl phthalate	0.85		10		ug/L ug/L		10/10/19 09:41		
3,3'-Dichlorobenzidine	1.4		10		ug/L ug/L			10/10/19 22:03	
,	0.91		2.0		•				
Chrysene	1.7				ug/L			10/10/19 22:03	
Bis(2-ethylhexyl) phthalate			2.0		ug/L		10/10/19 09:41		
Di-n-octyl phthalate	4.8		10		ug/L		10/10/19 09:41		
Benzo[k]fluoranthene	0.67		1.0		ug/L		10/10/19 09:41		
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L		10/10/19 09:41		
Dibenz(a,h)anthracene	0.72		1.0		ug/L		10/10/19 09:41		
Benzo[g,h,i]perylene	1.4		10		ug/L		10/10/19 09:41		
Diphenyl ether	2.8		10		ug/L		10/10/19 09:41		
n,n'-Dimethylaniline	0.91		1.0		ug/L		10/10/19 09:41		
Caprolactam		⊌.* UJ	10		ug/L		10/10/19 09:41		
bis (2-chloroisopropyl) ether	0.63		10		ug/L		10/10/19 09:41		
Bisphenol-A	9.9		10		ug/L		10/10/19 09:41		
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/10/19 09:41	10/10/19 22:03	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D .	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L				10/10/19 09:41	10/10/19 22:03	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

SDG: 193027

Lab Sample ID: 460-193375-1

Matrix: Water

Job ID: 460-193027-1

Client Sample	ID:	UPA-106-CA
Date Collected: 1	0/08	/19 11:25

Date Received: 10/08/19 20:30

Vinyl chloride

Chloroethane

Methylene Chloride

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	86		51 - 108				10/10/19 09:41	10/10/19 22:03	
Phenol-d5 (Surr)	27		14 - 39				10/10/19 09:41	10/10/19 22:03	
Terphenyl-d14 (Surr)	72		40 - 148				10/10/19 09:41	10/10/19 22:03	
2,4,6-Tribromophenol (Surr)	96		26 - 139				10/10/19 09:41	10/10/19 22:03	
2-Fluorophenol (Surr)	41		25 - 58				10/10/19 09:41	10/10/19 22:03	
2-Fluorobiphenyl (Surr)	79		45 - 107				10/10/19 09:41	10/10/19 22:03	
Method: 300.0 - Anions, Ion C									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Chloride	197		9.00	1.05	mg/L			10/09/19 23:17	
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/09/19 14:20	
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/09/19 14:20	
Sulfate	70.4		45.0	26.0	mg/L			10/09/19 23:17	
Method: 200.8 - Metals (ICP/M									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Sodium	133000		250	66.8	-		10/12/19 09:39	10/14/19 17:36	
Magnesium	14000		250		ug/L		10/12/19 09:39	10/14/19 17:36	
Potassium	5120		250		ug/L		10/12/19 09:39	10/14/19 17:36	
Calcium	46200		250	233	ug/L		10/12/19 09:39	10/14/19 17:36	
Method: 6010D - Metals (ICP)									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Cobalt, Dissolved	247		50.0		ug/L		10/14/19 09:44	10/14/19 17:16	
Iron, Dissolved	11600		150		ug/L		10/14/19 09:44	10/14/19 17:16	
Manganese, Dissolved	5890		15.0	0.99	ug/L		10/14/19 09:44	10/14/19 17:16	
General Chemistry						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Ammonia (as N)	0.20		0.10	0.068	-			10/10/19 15:06	
Bicarbonate Alkalinity as CaCO3	127		5.0		mg/L			10/10/19 11:55	
Carbonate Alkalinity as CaCO3 Sulfide	5.0 0.58		5.0 1.0		mg/L mg/L			10/10/19 11:55 10/10/19 15:03	
			1.0	0.00	9/L	8	š. 2° š		, on 1000 fox
lient Sample ID: UPA-10 ate Collected: 10/08/19 10:05	0-U3D					L.c	in Sample	ID: 460-193 Matrix	
ate Received: 10/08/19 20:30									
Method: 8260C SIM - Volatile			•	N # PPA 1					m - 1 m
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
I,4-Dioxane	5.1		0.40	0.20	ug/L			10/12/19 20:50	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil I
1-Bromofluorobenzene	89		72 - 133					10/12/19 20:50	
Method: 8260C - Volatile Orga						_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Chloromethane	0.40		1.0		ug/L			10/11/19 03:39	
Bromomethane	0.55	U	1.0	0.55	ug/L			10/11/19 03:39	

Eurofins TestAmerica, Edison

10/11/19 03:39

10/11/19 03:39

10/11/19 03:39

10/17/2019

1

1.0

1.0

1.0

0.17 ug/L

0.32 ug/L

0.32 ug/L

0.17 U

0.32 U

0.32 U

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-USB

Lab Sample ID: 460-193375-2

Matrix: Water

Date Collected: 10/08/19 10:05 Date Received: 10/08/19 20:30

Analyte		Qualifier	RL		. Unit	D	Prepared	Analyzed	Dil Fac
Acetone	4.4	U	5.0	4.4	-			10/11/19 03:39	1
Carbon disulfide	0.82	U	1.0		ug/L			10/11/19 03:39	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/11/19 03:39	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/11/19 03:39	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/11/19 03:39	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/11/19 03:39	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/11/19 03:39	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/11/19 03:39	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/11/19 03:39	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/11/19 03:39	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/11/19 03:39	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/11/19 03:39	1
1,2-Dichloropropane	0.35	U	1.0		ug/L			10/11/19 03:39	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/11/19 03:39	1
Trichloroethene	0.31	U	1.0		ug/L			10/11/19 03:39	1
Dibromochloromethane	0.28	U	1.0		ug/L			10/11/19 03:39	1
1,1,2-Trichloroethane	0.43	U *	1.0		ug/L			10/11/19 03:39	1
Benzene	0.20	U	1.0		ug/L			10/11/19 03:39	1
trans-1,3-Dichloropropene	0.49	U	1.0		ug/L			10/11/19 03:39	1
Bromoform	0.54		1.0		ug/L			10/11/19 03:39	1
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/11/19 03:39	1
2-Hexanone	1.1		5.0		ug/L			10/11/19 03:39	1
Tetrachloroethene	0.25		1.0		ug/L			10/11/19 03:39	1
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/11/19 03:39	1
Toluene	0.38		1.0		ug/L			10/11/19 03:39	1
Chlorobenzene	9.3	Ü	1.0		ug/L			10/11/19 03:39	1
Ethylbenzene	0.30	11	1.0		ug/L			10/11/19 03:39	1
Styrene	0.42		1.0		ug/L			10/11/19 03:39	1
Xylenes, Total	0.65		2.0		ug/L			10/11/19 03:39	1
Diethyl ether	13	J	1.0		ug/L			10/11/19 03:39	1
MTBE	0.47	11	1.0		ug/L ug/L			10/11/19 03:39	1
Tetrahydrofuran	1.0		2.0		ug/L			10/11/19 03:39	
Cyclohexane	0.32		1.0		ug/L			10/11/19 03:39	1
1,2,4-Trimethylbenzene	0.32		1.0					10/11/19 03:39	1
	0.37		1.0		ug/L ug/L			10/11/19 03:39	
1,3,5-Trimethylbenzene	0.33				-				1
Isopropylbenzene			1.0		ug/L			10/11/19 03:39	1
N-Propylbenzene	0.32		1.0		ug/L			10/11/19 03:39	
Methylcyclohexane	0.26		1.0		ug/L			10/11/19 03:39	1
Indane	0.45		1.0		ug/L			10/11/19 03:39	1
Dichlorofluoromethane	0.34		1.0		ug/L			10/11/19 03:39	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/11/19 03:39	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/11/19 03:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		74 - 132					10/11/19 03:39	1
Toluene-d8 (Surr)	106		80 - 120					10/11/19 03:39	1
4-Bromofluorobenzene	91		77 - 124					10/11/19 03:39	1
								48144115	

Eurofins TestAmerica, Edison

10/11/19 03:39

10/17/2019

72 - 131

88

Dibromofluoromethane (Surr)

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-USB

Lab Sample ID: 460-193375-2

Matrix: Water

Date Collected: 10/08/19 10:05 Date Received: 10/08/19 20:30

Method: 8270D SIM - Semix	olatile Organi	c Compour	ids (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/10/19 09:41	10/11/19 02:18	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/10/19 09:41	10/11/19 02:18	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/10/19 09:41	10/11/19 02:18	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/10/19 09:41	10/11/19 02:18	1
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/10/19 09:41	10/11/19 02:18	1
Bis(2-chloroethyl)ether	0.20		0.030	0.026	ug/L		10/10/19 09:41	10/11/19 02:18	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/10/19 09:41	10/10/19 22:28	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/10/19 09:41	10/10/19 22:28	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/10/19 09:41	10/10/19 22:28	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/10/19 09:41	10/10/19 22:28	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/10/19 09:41	10/10/19 22:28	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/10/19 09:41	10/10/19 22:28	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/10/19 09:41	10/10/19 22:28	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/10/19 09:41	10/10/19 22:28	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/10/19 09:41	10/10/19 22:28	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/10/19 09:41	10/10/19 22:28	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/10/19 09:41	10/10/19 22:28	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/10/19 09:41	10/10/19 22:28	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/10/19 09:41	10/10/19 22:28	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/10/19 09:41	10/10/19 22:28	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/10/19 09:41	10/10/19 22:28	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/10/19 09:41	10/10/19 22:28	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/10/19 09:41	10/10/19 22:28	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/10/19 09:41	10/10/19 22:28	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/10/19 09:41	10/10/19 22:28	1
Isophorone	0.80	U	10	0.80	ug/L		10/10/19 09:41	10/10/19 22:28	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/10/19 09:41	10/10/19 22:28	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/10/19 09:41	10/10/19 22:28	1
Naphthalene	1.1	U	10	1.1	ug/L		10/10/19 09:41	10/10/19 22:28	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/10/19 09:41	10/10/19 22:28	1
Hexachlorobutadiene	0.78	U	1.0	0.78			10/10/19 09:41	10/10/19 22:28	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/10/19 09:41	10/10/19 22:28	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/10/19 09:41	10/10/19 22:28	1
2-Chloronaphthalene	1.2	. U	10		ug/L		10/10/19 09:41	10/10/19 22:28	1
2-Nitroaniline	0.47	U	10	0.47			10/10/19 09:41	10/10/19 22:28	1
Dimethyl phthalate	0.77	U	10	0.77			10/10/19 09:41	10/10/19 22:28	1
Acenaphthylene	0.82	U	10	0.82			10/10/19 09:41	10/10/19 22:28	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39			10/10/19 09:41	10/10/19 22:28	1
3-Nitroaniline	0.96	U	10	0.96			10/10/19 09:41	10/10/19 22:28	1
Acenaphthene	1.1	U	10		ug/L		10/10/19 09:41	10/10/19 22:28	1
Dibenzofuran	1.1	U	10		ug/L		10/10/19 09:41	10/10/19 22:28	1
2,4-Dinitrotoluene	1.0		2.0		ug/L			10/10/19 22:28	1
Diethyl phthalate	0.98		10		ug/L			10/10/19 22:28	
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/10/19 22:28	1
Fluorene	0.91		10		ug/L			10/10/19 22:28	1
4-Nitroaniline	0.54		10		ug/L			10/10/19 22:28	1
N-Nitrosodiphenylamine	0.89		10		ug/L			10/10/19 22:28	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-USB

Lab Sample ID: 460-193375-2

Matrix: Water

Date Collected: 10/08/19 10:05 Date Received: 10/08/19 20:30

Method: 8270D - Semivolatile (^{Analyte}		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/10/19 09:41	10/10/19 22:28	-
Phenanthrene	0.58	U	10	0.58	ug/L		10/10/19 09:41	10/10/19 22:28	
Anthracene	0.63	U	10	0.63	ug/L		10/10/19 09:41	10/10/19 22:28	
Carbazole	0.68	U	10	0.68	ug/L		10/10/19 09:41	10/10/19 22:28	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/10/19 09:41	10/10/19 22:28	
Fluoranthene	0.84	U	10	0.84	ug/L		10/10/19 09:41	10/10/19 22:28	
Pyrene	1.6	U	10	1.6	ug/L		10/10/19 09:41	10/10/19 22:28	
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/10/19 09:41	10/10/19 22:28	
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/10/19 09:41	10/10/19 22:28	
Chrysene	0.91	U	2.0	0.91	ug/L		10/10/19 09:41	10/10/19 22:28	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/10/19 09:41	10/10/19 22:28	
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/10/19 09:41	10/10/19 22:28	
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/10/19 09:41	10/10/19 22:28	
Indeno[1,2,3-cd]pyrene	1.3	U	2.0	1.3	ug/L		10/10/19 09:41	10/10/19 22:28	
Dibenz(a,h)anthracene	0.72	U	1.0		ug/L		10/10/19 09:41	10/10/19 22:28	
Benzo[g,h,i]perylene	1.4	U	10		ug/L		10/10/19 09:41	10/10/19 22:28	
Diphenyl ether	1.2	U	10		ug/L		10/10/19 09:41	10/10/19 22:28	
n,n'-Dimethylaniline	0.91	U	1.0		ug/L		10/10/19 09:41	10/10/19 22:28	
Caprolactam	0.68	U≛ UJ	10	0.68	-		10/10/19 09:41	10/10/19 22:28	
bis (2-chloroisopropyl) ether	0.63		10	0.63	-		10/10/19 09:41	10/10/19 22:28	
Bisphenol-A	9.9		10		ug/L		10/10/19 09:41	10/10/19 22:28	
N-Methylaniline	0.48		5.0		ug/L		10/10/19 09:41	10/10/19 22:28	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L				10/10/19 09:41	10/10/19 22:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	98		51 - 108				10/10/19 09:41	10/10/19 22:28	
Phenol-d5 (Surr)	31		14 - 39				10/10/19 09:41	10/10/19 22:28	
Terphenyl-d14 (Surr)	74		40 - 148				10/10/19 09:41	10/10/19 22:28	
2,4,6-Tribromophenol (Surr)	108		26 - 139				10/10/19 09:41	10/10/19 22:28	
2-Fluorophenol (Surr)	46		25 - 58				10/10/19 09:41	10/10/19 22:28	
2-Fluorobiphenyl (Surr)	88		45 - 107				10/10/19 09:41	10/10/19 22:28	
Method: 300.0 - Anions, Ion Ch	nromatogra	ıphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	48.5		2.16		mg/L			10/09/19 23:32	1
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/09/19 14:35	
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/09/19 14:35	
Sulfate	0.53	J	0.60	0.35	mg/L			10/09/19 14:35	
Method: 200.8 - Metals (ICP/MS	S) - Total R	ecoverable	!						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	30100		250	66.8	ug/L		10/12/19 09:39	10/14/19 17:58	
Sodium			250		ug/L		10/12/19 09:39	10/14/19 17:58	
	10500		050		ug/L		10/12/19 09:39	10/14/19 17:58	
Magnesium			250						
Magnesium Potassium	17000 20000		250 250		ug/L		10/12/19 09:39	10/14/19 17:58	
Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) -	17000 20000						10/12/19 09:39	10/14/19 17:58	
Magnesium Potassium	17000 20000 Dissolved	Qualifier		233		D	10/12/19 09:39 Prepared	10/14/19 17:58 Analyzed	Dil Fa

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-USB

Lab Sample ID: 460-193375-2 Date Collected: 10/08/19 10:05

Matrix: Water

Date Received: 10/08/19 20:30

Method: 6010D - Metals (ICP) -	Dissolved	(Continued))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	38900		150	34.2	ug/L		10/14/19 09:44	10/14/19 17:20	1
Manganese, Dissolved	2150		15.0	0.99	ug/L		10/14/19 09:44	10/14/19 17:20	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	27.4		0.50	0.34	mg/L			10/10/19 16:31	5
Bicarbonate Alkalinity as CaCO3	192		5.0	5.0	mg/L			10/10/19 12:03	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/10/19 12:03	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/10/19 15:03	1

Client Sample ID: UPA-106-LS

Lab Sample ID: 460-193375-3

Date Collected: 10/08/19 11:45 Date Received: 10/08/19 20:30

Matrix: Water

Method: 8260C SIM - Volatile	e Organic Coi	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	4.9		0.40	0.20	ug/L			10/12/19 21:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	86		72 - 133			-		10/12/19 21:15	1

Method: 8260C - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/11/19 04:04	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/11/19 04:04	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/11/19 04:04	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/11/19 04:04	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/11/19 04:04	1
Acetone	5.8	U	5.0 5.8	4.4	ug/L			10/11/19 04:04	1
Carbon disulfide	0.94	J	1.0	0.82	ug/L			10/11/19 04:04	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/11/19 04:04	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/11/19 04:04	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/11/19 04:04	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/11/19 04:04	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/11/19 04:04	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/11/19 04:04	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/11/19 04:04	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/11/19 04:04	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/11/19 04:04	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/11/19 04:04	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/11/19 04:04	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/11/19 04:04	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/11/19 04:04	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/11/19 04:04	1
1,1,2-Trichloroethane	0.43	U ±	1.0	0.43	ug/L			10/11/19 04:04	1
Benzene	0.20	U	1.0	0.20	ug/L			10/11/19 04:04	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/11/19 04:04	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/11/19 04:04	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/11/19 04:04	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/11/19 04:04	1
Tetrachloroethene	0.27	J	1.0	0.25	ug/L			10/11/19 04:04	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-LS

Lab Sample ID: 460-193375-3

Matrix: Water

Date Collected: 10/08/19 11:45 Date Received: 10/08/19 20:30

Method: 8260C - Volatile Orga Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,2,2-Tetrachloroethane	0.37	U *	1.0	0.37	7 ug/L			10/11/19 04:04	
Toluene	0.38	U	1.0	0.38	3 ug/L			10/11/19 04:04	
Chlorobenzene	3.0		1.0	0.38	3 ug/L			10/11/19 04:04	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/11/19 04:04	
Styrene	0.42	U	1.0	0.42	2 ug/L			10/11/19 04:04	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/11/19 04:04	
Diethyl ether	6.9		1.0	0.2	1 ug/L			10/11/19 04:04	
MTBE	0.47	U	1.0	0.47	7 ug/L			10/11/19 04:04	
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/11/19 04:04	
Cyclohexane	0.32	U	1.0	0.32	2 ug/L			10/11/19 04:04	
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	7 ug/L			10/11/19 04:04	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	3 ug/L			10/11/19 04:04	
Isopropylbenzene	0.34	U	1.0		4 ug/L			10/11/19 04:04	
N-Propylbenzene	0.32	U *	1.0		2 ug/L			10/11/19 04:04	
Methylcyclohexane	0.26		1.0		3 ug/L			10/11/19 04:04	
Indane	0.35	U	1.0		5 ug/L			10/11/19 04:04	
Dichlorofluoromethane	0.34		1.0		4 ug/L			10/11/19 04:04	
1,2,3-Trimethylbenzene	0.36		1.0		3 ug/L			10/11/19 04:04	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L	_				10/11/19 04:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104	-	74 - 132					10/11/19 04:04	
Toluene-d8 (Surr)	107		80 - 120					10/11/19 04:04	
4-Bromofluorobenzene	92		77 - 124					10/11/19 04:04	
Dibromofluoromethane (Surr)	88		72 - 131					10/11/19 04:04	
Method: 8270D SIM - Semivol	latile Organi	c Compo	unds (GC/N	1S SIM)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]anthracene	0.016	U	0.050	0.016	g ug/L		10/10/19 09:41	10/11/19 02:39	
Benzo[a]pyrene	0.022	U	0.050	0.022	2 ug/L		10/10/19 09:41	10/11/19 02:39	
Benzo[b]fluoranthene	0.024	U	0.050	0.024	4 ug/L		10/10/19 09:41	10/11/19 02:39	
Hexachlorobenzene	0.013	U	0.020	0.013	3 ug/L		10/10/19 09:41	10/11/19 02:39	
Pentachlorophenol	0.15	U *	0.20	0.15	5 ug/L		10/10/19 09:41	10/11/19 02:39	
Bis(2-chloroethyl)ether	0.68		0.030	0.026	3 ug/L		10/10/19 09:41	10/11/19 02:39	
Method: 8270D - Semivolatile	Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Phenol	0.29	U	10	0.29	ug/L		10/10/19 09:41	10/10/19 22:49	
2-Chlorophenol	0.38	U	10	0.38	3 ug/L		10/10/19 09:41	10/10/19 22:49	
Z-Oniorophicnoi		1.1	10	0.26	3 ug/L		10/10/19 09:41	10/10/19 22:49	
-	0.26	U			-				
2-Methylphenol	0.26 0.24		10	0.24	4 ug/L		10/10/19 09:41	10/10/19 22:49	
2-Methylphenol 4-Methylphenol		U			4 ug/L 5 ug/L		10/10/19 09:41 10/10/19 09:41	10/10/19 22:49 10/10/19 22:49	
2-Methylphenol 4-Methylphenol 2-Nitrophenol	0.24	U U	10	0.75	_				
2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol	0.24 0.75 0.24	U U U	10 10	0.75 0.24	5 ug/L 4 ug/L		10/10/19 09:41	10/10/19 22:49	
2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol	0.24 0.75	U U U	10 10 10	0.75 0.24 0.42	5 ug/L 4 ug/L 2 ug/L		10/10/19 09:41 10/10/19 09:41	10/10/19 22:49 10/10/19 22:49	
2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol	0.24 0.75 0.24 0.42	U U U U	10 10 10 10	0.75 0.24 0.42 0.58	5 ug/L 4 ug/L 2 ug/L 3 ug/L		10/10/19 09:41 10/10/19 09:41 10/10/19 09:41	10/10/19 22:49 10/10/19 22:49 10/10/19 22:49	
2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	0.24 0.75 0.24 0.42 0.58	U U U U U	10 10 10 10	0.75 0.24 0.42 0.58 0.30	5 ug/L 4 ug/L 2 ug/L		10/10/19 09:41 10/10/19 09:41 10/10/19 09:41 10/10/19 09:41	10/10/19 22:49 10/10/19 22:49 10/10/19 22:49 10/10/19 22:49	

Eurofins TestAmerica, Edison

10/17/2019

Page 68 of 2332

Client: Golder Associates Inc.

Date Received: 10/08/19 20:30

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-LS

Lab Sample ID: 460-193375-3 Date Collected: 10/08/19 11:45

Matrix: Water

Method: 8270D - Semivolatil ^{Analyte}		Qualifier	ŔĹ	MDL		D	Prepared	Analyzed	Dil Fa
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/10/19 09:41	10/10/19 22:49	-
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/10/19 09:41	10/10/19 22:49	
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/10/19 09:41	10/10/19 22:49	
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/10/19 09:41	10/10/19 22:49	
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/10/19 09:41	10/10/19 22:49	
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/10/19 09:41	10/10/19 22:49	
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/10/19 09:41	10/10/19 22:49	
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/10/19 09:41	10/10/19 22:49	
Isophorone	0.80	U	10	0.80	ug/L		10/10/19 09:41	10/10/19 22:49	
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/10/19 09:41	10/10/19 22:49	
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3			10/10/19 09:41	10/10/19 22:49	
Naphthalene	1.1	U	10	1.1	ug/L		10/10/19 09:41	10/10/19 22:49	
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/10/19 09:41	10/10/19 22:49	
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/10/19 09:41	10/10/19 22:49	
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/10/19 09:41	10/10/19 22:49	
Hexachlorocyclopentadiene		U	10	1.7	ug/L		10/10/19 09:41	10/10/19 22:49	
2-Chloronaphthalene	1.2		10	1.2			10/10/19 09:41	10/10/19 22:49	
2-Nitroaniline	0.47		10	0.47	•		10/10/19 09:41	10/10/19 22:49	
Dimethyl phthalate	0.77		10	0.77			10/10/19 09:41	10/10/19 22:49	
Acenaphthylene	0.82		10				10/10/19 09:41	10/10/19 22:49	
2.6-Dinitrotoluene	0.39		2.0	0.39	ug/L		10/10/19 09:41	10/10/19 22:49	
3-Nitroaniline	0.96		10		-		10/10/19 09:41	10/10/19 22:49	
Acenaphthene	1.1		10	1.1	ug/L		10/10/19 09:41	10/10/19 22:49	
Dibenzofuran		U	10	1.1	ug/L		10/10/19 09:41	10/10/19 22:49	
2.4-Dinitrotoluene		U	2.0	1.0	ug/L		10/10/19 09:41	10/10/19 22:49	
Diethyl phthalate	0.98		10	0.98	ug/L		10/10/19 09:41	10/10/19 22:49	
4-Chlorophenyl phenyl ether	1.3		10	1.3	ug/L		10/10/19 09:41	10/10/19 22:49	
Fluorene	0.91		10	0.91	-		10/10/19 09:41	10/10/19 22:49	
4-Nitroaniline	0.54		10		ug/L		10/10/19 09:41	10/10/19 22:49	
N-Nitrosodiphenylamine	0.89		10	0.89	ug/L		10/10/19 09:41	10/10/19 22:49	
' '	0.75		10		_		10/10/19 09:41	10/10/19 22:49	
4-Bromophenyl phenyl ether Phenanthrene	0.73		10		ug/L ug/L		10/10/19 09:41		
	0.58		10		ug/L ug/L		10/10/19 09:41	10/10/19 22:49	
Anthracene Carbazole	0.68		10	0.68	-		10/10/19 09:41		
	0.84		10		-				
Di-n-butyl phthalate				0.84				10/10/19 22:49	
Fluoranthene	0.84		10		ug/L		10/10/19 09:41		
Pyrene	1.6		10		ug/L		10/10/19 09:41		
Butyl benzyl phthalate	0.85		10		ug/L		10/10/19 09:41		
3,3'-Dichlorobenzidine	1.4		10		ug/L		10/10/19 09:41		
Chrysene	0.91		2.0		ug/L		10/10/19 09:41		
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L		10/10/19 09:41		
Di-n-octyl phthalate	4.8		10		ug/L		10/10/19 09:41		
Benzo[k]fluoranthene	0.67		1.0		ug/L		10/10/19 09:41		
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L		10/10/19 09:41		
Dibenz(a,h)anthracene	0.72		1.0		ug/L		10/10/19 09:41		
Benzo[g,h,i]perylene	1.4		10		ug/L		10/10/19 09:41		
Diphenyl ether	1.2		10		ug/L		10/10/19 09:41		
n,n'-Dimethylaniline	0.91		1.0		ug/L		10/10/19 09:41		
Caprolactam	0.68-	_ U * UJ	10	0.68	ug/L		10/10/19 09:41	10/10/19 22:49	

Eurofins TestAmerica, Edison 10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: UPA-106-LS

Lab Sample ID: 460-193375-3

Matrix: Water

Date Collected: 10/08/19 11:45 Date Received: 10/08/19 20:30

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
ois (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/10/19 09:41	10/10/19 22:49	
Bisphenol-A	9.9	U	10	9.9	ug/L		10/10/19 09:41	10/10/19 22:49	
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/10/19 09:41	10/10/19 22:49	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L				10/10/19 09:41	10/10/19 22:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	105		51 - 108				10/10/19 09:41	10/10/19 22:49	
Phenol-d5 (Surr)	31		14 _ 39				10/10/19 09:41	10/10/19 22:49	
Terphenyl-d14 (Surr)	96		40 - 148				10/10/19 09:41	10/10/19 22:49	
2,4,6-Tribromophenol (Surr)	115		26 - 139				10/10/19 09:41	10/10/19 22:49	
2-Fluorophenol (Surr)	48		25 - 58				10/10/19 09:41	10/10/19 22:49	
2-Fluorobiphenyl (Surr)	96		45 - 107				10/10/19 09:41	10/10/19 22:49	
Method: 300.0 - Anions, Ion C	Chromatogra	phy							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	36.0		1.68	0.20	mg/L			10/09/19 23:47	1
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/09/19 14:50	
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/09/19 14:50	
Sulfate	8.82		0.60	0.35	mg/L			10/09/19 14:50	
Method: 200.8 - Metals (ICP/N						_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Sodium 	22500		250		ug/L		10/12/19 09:39		
Magnesium	8490		250		ug/L			10/14/19 16:58	
Potassium	12400		250		ug/L			10/14/19 16:58	
Calcium	17200		250	233	ug/L		10/12/19 09:39	10/14/19 16:58	
Method: 6010D - Metals (ICP)						_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Cobalt, Dissolved	16.6	J	50.0		ug/L		10/14/19 09:44		
lron, Dissolved	35400		150		ug/L			10/14/19 17:24	
Manganese, Dissolved	1190		15.0	0.99	ug/L		10/14/19 09:44	10/14/19 17:24	
General Chemistry				- c			_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Ammonia (as N)	17.3		0.10		mg/L			10/10/19 15:12	
	133		5.0	5.0	mg/L			10/10/19 12:10	
Bicarbonate Alkalinity as CaCO3	100								
	5.0	U	5.0	5.0	mg/L			10/10/19 12:10	
Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Sulfide			5.0 1.0		mg/L mg/L			10/10/19 12:10 10/10/19 15:03	

Client Sample ID: P-6

Lab Sample ID: 460-193375-4

Matrix: Water

Date Collected: 10/08/19 15:05 Date Received: 10/08/19 20:30

Method: 8260C - Volatile Orga	nic Compou	ınds by GC	/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/11/19 04:30	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/11/19 04:30	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/11/19 04:30	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: P-6 Lab Sample ID: 460-193375-4

Date Collected: 10/08/19 15:05 Date Received: 10/08/19 20:30 Matrix: Water

Method: 8260C - Volatile Orga Analyte		Qualifier	RL		. Unit	D	Prepared	Analyzed	Dil Fa
Chloroethane	3.1		1.0		ug/L		•	10/11/19 04:30	
Methylene Chloride	0.32	U	1.0		2 ug/L			10/11/19 04:30	
Acetone	6.2		5.0		ug/L			10/11/19 04:30	
Carbon disulfide	0.82		1.0		ug/L			10/11/19 04:30	
1,1-Dichloroethene	0.26		1.0		ug/L			10/11/19 04:30	
1.1-Dichloroethane	0.75		1.0		ug/L			10/11/19 04:30	
trans-1.2-Dichloroethene	0.24		1.0		ug/L			10/11/19 04:30	
cis-1,2-Dichloroethene	0.36		1.0		2 ug/L			10/11/19 04:30	
Chloroform	0.33		1.0		B ug/L			10/11/19 04:30	
1,2-Dichloroethane	0.43		1.0		3 ug/L			10/11/19 04:30	
2-Butanone (MEK)	1.9		5.0		ug/L			10/11/19 04:30	
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/11/19 04:30	
Carbon tetrachloride	0.21		1.0		ug/L			10/11/19 04:30	
Bromodichloromethane	0.34		1.0		ug/L			10/11/19 04:30	
1.2-Dichloropropane	0.35		1.0		ug/L			10/11/19 04:30	
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/11/19 04:30	
Trichloroethene	0.31		1.0		ug/L			10/11/19 04:30	
Dibromochloromethane	0.28		1.0		ug/L			10/11/19 04:30	
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/11/19 04:30	
Benzene	420	0	1.0		ug/L			10/11/19 04:30	
trans-1,3-Dichloropropene	0.49	П	1.0		ug/L			10/11/19 04:30	
Bromoform	0.54		1.0		ug/L			10/11/19 04:30	
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/11/19 04:30	
2-Hexanone	1.1		5.0		ug/L			10/11/19 04:30	
Tetrachloroethene	0.25		1.0		ug/L ug/L			10/11/19 04:30	
1,1,2,2-Tetrachloroethane	0.23		1.0		ug/L			10/11/19 04:30	
Toluene	2.3	0	1.0		ug/L ug/L			10/11/19 04:30	
Chlorobenzene	12		1.0		ug/L ug/L			10/11/19 04:30	
Ethylbenzene	140		1.0		ug/L) ug/L			10/11/19 04:30	
Styrene	0.42	11	1.0		ug/L ug/L			10/11/19 04:30	
Xylenes, Total	61		2.0		ug/L ug/L			10/11/19 04:30	
~ .	8.3		1.0		ug/L			10/11/19 04:30	
Diethyl ether MTBE	0.47	11	1.0		ug/L ug/L			10/11/19 04:30	
			2.0		ug/L ug/L			10/11/19 04:30	
Tetrahydrofuran	110 15		1.0		ug/L ug/L			10/11/19 04:30	
Cyclohexane			50		ug/L ug/L			10/11/19 04:30	
1,4-Dioxane	370				ug/L			10/11/19 04:30	
1,2,4-Trimethylbenzene	37		1.0						
1,3,5-Trimethylbenzene	21		1.0		ug/L			10/11/19 04:30	
Isopropylbenzene	17		1.0		l ug/L			10/11/19 04:30	
N-Propylbenzene	31	2	1.0		ug/L			10/11/19 04:30	
Methylcyclohexane	18		1.0		ug/L			10/11/19 04:30 10/11/19 04:30	
Indane	20		1.0		ug/L				
Dichlorofluoromethane	23		1.0		ug/L			10/11/19 04:30	
1,2,3-Trimethylbenzene	43		1.0	0.36	3 ug/L			10/11/19 04:30	
Tentatively Identified Compound	Est. Result		Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Methane, chlorofluoro-	9.1	JN	ug/L		1.01	593-70-4		10/11/19 04:30	
Benzene, 1-ethyl-3-methyl-	30	JN	ug/L	9	9.10	620-14-4		10/11/19 04:30	
Benzene, 1-ethyl-2-methyl-	35	JN	ug/L	9	9.56	611-14-3		10/11/19 04:30	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: P-6 Lab Sample ID: 460-193375-4

Date Collected: 10/08/19 15:05 Date Received: 10/08/19 20:30

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	74 - 132		10/11/19 04:30	
Toluene-d8 (Surr)	104	80 - 120		10/11/19 04:30	1
4-Bromofluorobenzene	93	77 - 124		10/11/19 04:30	1
Dibromofluoromethane (Surr)	85	72 - 131		10/11/19 04:30	1

ethod: 8270D SIM - Semivolatile	Organi	c Compour	ids (GC/MS	SIM)					
alyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
nzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/10/19 09:41	10/11/19 03:00	1
nzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/10/19 09:41	10/11/19 03:00	1
nzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/10/19 09:41	10/11/19 03:00	1
xachlorobenzene	0.013	U	0.020	0.013	ug/L		10/10/19 09:41	10/11/19 03:00	1
ntachlorophenol	0.15	U *	0.20	0.15	ug/L		10/10/19 09:41	10/11/19 03:00	1
r	alyte Izo[a]anthracene Izo[a]pyrene Izo[b]fluoranthene Izochlorobenzene	Alyte Result Izo[a]anthracene 0.016 Izo[a]pyrene 0.022 Izo[b]fluoranthene 0.024 Kachlorobenzene 0.013	Result Qualifier Izo[a]anthracene 0.016 U Izo[a]pyrene 0.022 U Izo[b]fluoranthene 0.024 U Izachlorobenzene 0.013 U	Result Qualifier RL plzo[a]anthracene 0.016 U 0.050 plzo[a]pyrene 0.022 U 0.050 plzo[b]fluoranthene 0.024 U 0.050 placetoral control	zzo[a]anthracene 0.016 U 0.050 0.016 nzo[a]pyrene 0.022 U 0.050 0.022 nzo[b]fluoranthene 0.024 U 0.050 0.024 cachlorobenzene 0.013 U 0.020 0.013	Result izo[a]anthracene Result izo[a]anthracene Qualifier RL izo[a]anthracene MDL izo[a]anthracene Unit izo[a]anthracene nzo[a]pyrene 0.022 U 0.050 0.022 ug/L izo[b]fluoranthene nzo[b]fluoranthene 0.024 U 0.050 0.024 ug/L izo[b]fluoranthene cachlorobenzene 0.013 U 0.020 0.013 ug/L izo[b]fluoranthene	Result or palyte Result or palyte Qualifier or palyte RL or palyte MDL or palyte Unit or palyte D or palyte dizo[a]anthracene 0.016 U 0.050 0.016 ug/L or palyte dizo[b]fluoranthene 0.024 U 0.050 0.024 ug/L or palyte diachlorobenzene 0.013 U 0.020 0.013 ug/L or palyte	Result ozo[a]anthracene Result ozo[a]anthracene Qualifier RL ozo[a]anthracene MDL ozo[a]anthracene Unit ozo[a]anthracene D ozo[a]anthracene Prepared ozo[a]anthracene Unit ozo[a]anthracene D ozo[a]anthracene MDL ozo[a]anthracene Unit ozo[a]anthracene D ozo[a]anthracene MDL ozo[a]anthracene Unit ozo[a]an	Result (Izo[a]anthracene Result (Izo[a]anthracene Qualifier RL (Izo[a]anthracene MDL (Izo[a]anthracene Unit (Izo[a]anthracene D (Izo[a]anthracene Prepared (Izo[a]anthracene Analyzed (Izo[a]anthracene (Izo[a]pyrene 0.022 (Izo[a]anthracene 0.050 (Izo[a]anthracene 0.050 (Izo[a]anthracene 0.022 (Izo[a]anthracene 0.050 (Izo[a]anthracene 0.022 (Izo[a]anthracene 0.050 (Izo[a]anthracene 0.022 (Izo[a]anthrace

-	3.13		3.23	0.10	~g, =		10/10/10 00:11	10/1///10/00/00	·
Method: 8270D - Semivolatil Analyte		mpounds (C Qualifier	GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/10/19 09:41	10/10/19 23:10	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/10/19 09:41	10/10/19 23:10	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/10/19 09:41	10/10/19 23:10	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/10/19 09:41	10/10/19 23:10	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/10/19 09:41	10/10/19 23:10	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/10/19 09:41	10/10/19 23:10	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/10/19 09:41	10/10/19 23:10	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/10/19 09:41	10/10/19 23:10	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/10/19 09:41	10/10/19 23:10	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/10/19 09:41	10/10/19 23:10	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/10/19 09:41	10/10/19 23:10	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/10/19 09:41	10/10/19 23:10	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/10/19 09:41	10/10/19 23:10	1
Bis(2-chloroethyl)ether	120		1.0	0.30	ug/L		10/10/19 09:41	10/10/19 23:10	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/10/19 09:41	10/10/19 23:10	1
1,4-Dichlorobenzene	1.3	Ü	10	1.3	ug/L		10/10/19 09:41	10/10/19 23:10	1
1,2-Dichlorobenzene	2.2	J	10	1.3	ug/L		10/10/19 09:41	10/10/19 23:10	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/10/19 09:41	10/10/19 23:10	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/10/19 09:41	10/10/19 23:10	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/10/19 09:41	10/10/19 23:10	1
Isophorone	0.80	U	10	0.80	ug/L		10/10/19 09:41	10/10/19 23:10	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/10/19 09:41	10/10/19 23:10	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/10/19 09:41	10/10/19 23:10	1
Naphthalene	1.9	J	10	1.1	ug/L		10/10/19 09:41	10/10/19 23:10	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/10/19 09:41	10/10/19 23:10	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/10/19 09:41	10/10/19 23:10	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/10/19 09:41	10/10/19 23:10	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/10/19 09:41	10/10/19 23:10	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/10/19 09:41	10/10/19 23:10	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/10/19 09:41	10/10/19 23:10	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/10/19 09:41	10/10/19 23:10	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/10/19 09:41	10/10/19 23:10	1
2,6-Dinitrotoluene	0.39	U	2.0		ug/L		10/10/19 09:41	10/10/19 23:10	1
3-Nitroaniline	0.96	U	10		ug/L		10/10/19 09:41	10/10/19 23:10	1
Acenaphthene	1.1	U	10		ug/L		10/10/19 09:41	10/10/19 23:10	1

Eurofins TestAmerica, Edison 10/17/2019

Page 72 of 2332

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Lab Sample ID: 460-193375-4 Client Sample ID: P-6

Date Collected: 10/08/19 15:05 Matrix: Water Date Received: 10/08/19 20:30

Analyte	Result	Qualifier	RL	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenzofuran	1.1	U	10	1.1	ug/L		10/10/19 09:41	10/10/19 23:10	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/10/19 09:41	10/10/19 23:10	1
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/10/19 09:41	10/10/19 23:10	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/10/19 09:41	10/10/19 23:10	1
Fluorene	0.91	U	10	0.91	ug/L		10/10/19 09:41	10/10/19 23:10	1
4-Nitroaniline	0.54	U	10	0.54	ug/L		10/10/19 09:41	10/10/19 23:10	1
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/10/19 09:41	10/10/19 23:10	1
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/10/19 09:41	10/10/19 23:10	1
Phenanthrene	0.58	U	10	0.58	ug/L		10/10/19 09:41	10/10/19 23:10	1
Anthracene	0.63	U	10	0.63	ug/L		10/10/19 09:41	10/10/19 23:10	1
Carbazole	0.68	U	10	0.68	ug/L		10/10/19 09:41	10/10/19 23:10	1
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/10/19 09:41	10/10/19 23:10	1
Fluoranthene	0.84	U	10	0.84	ug/L		10/10/19 09:41	10/10/19 23:10	1
Pyrene	1.6	U	10	1.6	ug/L		10/10/19 09:41	10/10/19 23:10	1
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/10/19 09:41	10/10/19 23:10	1
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/10/19 09:41	10/10/19 23:10	1
Chrysene	0.91	U	2.0	0.91	ug/L		10/10/19 09:41	10/10/19 23:10	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	-		10/10/19 09:41	10/10/19 23:10	1
Di-n-octyl phthalate	4.8	U	10	4.8	-		10/10/19 09:41	10/10/19 23:10	1
Benzo[k]fluoranthene	0.67	U	1.0		-		10/10/19 09:41	10/10/19 23:10	1
Indeno[1,2,3-cd]pyrene	1.3	U	2.0		-		10/10/19 09:41	10/10/19 23:10	1
Dibenz(a,h)anthracene	0.72	U	1.0		ug/L		10/10/19 09:41	10/10/19 23:10	1
Benzo[g,h,i]perylene	1.4	U	10		ug/L		10/10/19 09:41	10/10/19 23:10	1
Diphenyl ether	2.8	J	10		ug/L		10/10/19 09:41	10/10/19 23:10	1
n,n'-Dimethylaniline	21		1.0		-		10/10/19 09:41	10/10/19 23:10	1
Caprolactam		₩	10	0.68	-		10/10/19 09:41	10/10/19 23:10	1
bis (2-chloroisopropyl) ether	0.63	U	10		-		10/10/19 09:41	10/10/19 23:10	1
Bisphenol-A	110		10	9.9	ug/L		10/10/19 09:41	10/10/19 23:10	1
N-Methylaniline	12		5.0	0.48	ug/L		10/10/19 09:41	10/10/19 23:10	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
1.4-Dioxane		JN	ug/L		.92	123-91-1	10/10/19 09:41	10/10/19 23:10	1
Unknown	15		ug/L		.57	,2001	10/10/19 09:41	10/10/19 23:10	1
Unknown	10		ug/L		.93		10/10/19 09:41	10/10/19 23:10	1
Benzene, (1-methylethyl)-		J N	ug/L ug/L		.60	98-82-8	10/10/19 09:41		1
Benzene, (r mearyrearyr) Benzene, propyl-		JN	ug/L		.85		10/10/19 09:41	10/10/19 23:10	1
Benzene, propyr- Benzene, 1-ethyl-3-methyl-		JN	ug/L ug/L		.91		10/10/19 09:41	10/10/19 23:10	1
Benzene, 1-ethyl-2-methyl-		JN	ug/L		.93		10/10/19 09:41		1
Benzene, 1,3,5-trimethyl-		JN	ug/L		.98		10/10/19 09:41	10/10/19 23:10	, 1
Benzene, 1,2,3-trimethyl-		JN	ug/L ug/L		.18		10/10/19 09:41	10/10/19 23:10	1
Benzene, 1,2,4-trimethyl-		JN	ug/L		.40		10/10/19 09:41	10/10/19 23:10	1
Unknown	30				.52	30-03-0	10/10/19 09:41	10/10/19 23:10	1
2-Isopropoxyphenol		J N	ug/L		. 42 . 42	1912 20 9	10/10/19 09:41	10/10/19 23:10	1
2-isopropoxyprienor Phenol, 2-propoxy-		JN	ug/L				10/10/19 09:41	10/10/19 23:10	
			ug/L		.84				1
1,4-Benzenediol, diacetate Unknown	36 35	JN	ug/L		.98 15	1200-91-0	10/10/19 09:41	10/10/19 23:10 10/10/19 23:10	1
			ug/L		.15		10/10/19 09:41		
Unknown	300	J	ug/L	/	.00		10/10/19 09:41		1
	40	1.63	1101/1	,	20			40/40/40 00-40	
Benzenamine, 3-methyl- 2(3H)-Benzothiazolone		J N J N	ug/L ug/L		.28 .07		10/10/19 09:41 10/10/19 09:41	10/10/19 23:10 10/10/19 23:10	1

Eurofins TestAmerica, Edison

10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: P-6 Lab Sample ID: 460-193375-4

Date Collected: 10/08/19 15:05 Matrix: Water

Method: 8270D - Semivolatile	Organic Co	mpounds	; (GC/MS) (Con	tinued)				
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	i	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	12	J	ug/L	_	10.	59		10/10/19 09:41	10/10/19 23:10	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	100		51 - 108					10/10/19 09:41	10/10/19 23:10	
Phenol-d5 (Surr)	32		14 - 39					10/10/19 09:41	10/10/19 23:10	
Terphenyl-d14 (Surr)	76		40 - 148					10/10/19 09:41	10/10/19 23:10	
2,4,6-Tribromophenol (Surr)	107		26 - 139					10/10/19 09:41	10/10/19 23:10	
2-Fluorophenol (Surr)	48		25 - 58					10/10/19 09:41	10/10/19 23:10	
2-Fluorobiphenyl (Surr)	96		45 - 107					10/10/19 09:41	10/10/19 23:10	
Method: 300.0 - Anions, Ion C	hromatogra	phy								
Analyte	Result	Qualifier	RL		MDL		D	Prepared	Analyzed	Dil Fa
Chloride	74.6		3.48			mg/L			10/10/19 00:01	29
Nitrate as N	0.056	U	0.10		0.056	mg/L			10/09/19 15:05	
Nitrite as N	0.076	U	0.12		0.076	mg/L			10/09/19 15:05	
Sulfate	0.39	J	0.60		0.35	mg/L			10/09/19 15:05	,
Method: 200.8 - Metals (ICP/M	S) - Total R	ecoverabl	le							
Analyte	Result	Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fa
Sodium	58100		250		66.8	ug/L		10/12/19 09:39	10/14/19 17:01	
Magnesium	15400		250		24.8	ug/L		10/12/19 09:39	10/14/19 17:01	;
Potassium	506		250		73.5	ug/L		10/12/19 09:39	10/14/19 17:01	;
Calcium	29100		250		233	ug/L		10/12/19 09:39	10/14/19 17:01	
Method: 6010D - Metals (ICP)										
Analyte		Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	4.7	J	50.0		1.7	ug/L		10/14/19 09:44	10/14/19 17:28	
Iron, Dissolved	5070		150			ug/L		10/14/19 09:44	10/14/19 17:28	
Manganese, Dissolved	391		15.0		0.99	ug/L		10/14/19 09:44	10/14/19 17:28	
General Chemistry										
Analyte		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil Fa
Ammonia (as N)	0.16		0.10		0.068	mg/L			10/10/19 15:14	
Bicarbonate Alkalinity as CaCO3	155		5.0			mg/L			10/10/19 12:17	•
Carbonate Alkalinity as CaCO3	5.0		5.0			mg/L			10/10/19 12:17	
Sulfide	0.58	U	1.0		0.58	mg/L			10/10/19 15:03	
lient Sample ID: TBGW_	100819						Lé	ıb Sample	ID: 460-193	1375-5
ate Collected: 10/08/19 15:05 ate Received: 10/08/19 20:30									Matrix	: Wate
Method: 8260C SIM - Volatile (Organic Co	mpounds	(GC/MS)							
Analyte		Qualifier	` RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
		U				ug/L			10/12/19 14:29	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/12/19 14:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	86		72 - 133					10/12/19 14:29	1
 Method: 8260C - Volatile	Organic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	11	1.0	0.40	ua/I			10/11/19 00:41	1

Eurofins TestAmerica, Edison

10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1 Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: TBGW_100819

Lab Sample ID: 460-193375-5

Matrix: Water

Date Collected: 10/08/19 15:05 Date Received: 10/08/19 20:30

Method: 8260C - Volatile Or ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3romomethane	0.55	U	1.0	0.55	ug/L			10/11/19 00:41	
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/11/19 00:41	
Chloroethane	0.32	U	1.0	0.32	ug/L			10/11/19 00:41	*******
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/11/19 00:41	
Acetone	24		5.0		ug/L			10/11/19 00:41	
Carbon disulfide	0.82	U	1.0		ug/L			10/11/19 00:41	
1,1-Dichloroethene	0.26	U	1.0		ug/L			10/11/19 00:41	
1,1-Dichloroethane	0.26	U	1.0		ug/L			10/11/19 00:41	
trans-1,2-Dichloroethene	0.24		1.0		ug/L			10/11/19 00:41	
cis-1,2-Dichloroethene	0.22		1.0		ug/L			10/11/19 00:41	
Chloroform	0.33		1.0		ug/L			10/11/19 00:41	
1,2-Dichloroethane	0.43		1.0		ug/L			10/11/19 00:41	
2-Butanone (MEK)	1.9		5.0		ug/L			10/11/19 00:41	
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/11/19 00:41	
Carbon tetrachloride	0.21		1.0		ug/L			10/11/19 00:41	
Bromodichloromethane	0.34		1.0		ug/L ug/L			10/11/19 00:41	
1,2-Dichloropropane	0.35		1.0		ug/L ug/L			10/11/19 00:41	
·	0.22		1.0					10/11/19 00:41	
cis-1,3-Dichloropropene Trichloroethene					ug/L				
Dibromochloromethane	0.31		1.0		ug/L			10/11/19 00:41	
	0.28		1.0		ug/L			10/11/19 00:41	
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/11/19 00:41	
Benzene	0.20		1.0		ug/L			10/11/19 00:41	•
rans-1,3-Dichloropropene	0.49		1.0		ug/L			10/11/19 00:41	
Bromoform	0.54		1.0		ug/L			10/11/19 00:41	•
1-Methyl-2-pentanone	1.3		5.0		ug/L			10/11/19 00:41	•
2-Hexanone	1.1		5.0		ug/L			10/11/19 00:41	
Tetrachloroethene	0.25		1.0		ug/L			10/11/19 00:41	•
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/11/19 00:41	•
Toluene	0.38		1.0		ug/L			10/11/19 00:41	
Chlorobenzene	0.38		1.0		ug/L			10/11/19 00:41	•
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/11/19 00:41	•
Styrene	0.42	U	1.0		ug/L			10/11/19 00:41	
Kylenes, Total	0.65	U	2.0	0.65	ug/L			10/11/19 00:41	•
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/11/19 00:41	•
MTBE	0.47	U	1.0	0.47	ug/L			10/11/19 00:41	
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/11/19 00:41	•
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/11/19 00:41	
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/11/19 00:41	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/11/19 00:41	
sopropylbenzene	0.34	U	1.0	0.34	ug/L			10/11/19 00:41	
N-Propylbenzene	0.32	U *	1.0	0.32	ug/L			10/11/19 00:41	
Methylcyclohexane	0.26		1.0		ug/L			10/11/19 00:41	
ndane	0.35		1.0		ug/L			10/11/19 00:41	
Dichlorofluoromethane	0.34		1.0		ug/L			10/11/19 00:41	
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/11/19 00:41	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Isopropyl Alcohol		JN	ug/L		.75	67-63-0	•	10/11/19 00:41	

Eurofins TestAmerica, Edison 10/17/2019

Client: Golder Associates Inc.

Job ID: 460-193027-1

Project/Site: DS&G Semi-Annual Groundwater SDG: 193027

Client Sample ID: TBGW_100819 Lab Sample ID: 460-193375-5

Date Collected: 10/08/19 15:05 Matrix: Water Date Received: 10/08/19 20:30

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analvzed	Dil Fac
		- Quanner		-	riepareu		Dirac
1,2-Dichloroethane-d4 (Surr)	104		74 - 132			10/11/19 00:41	7
Toluene-d8 (Surr)	107		80 - 120			10/11/19 00:41	1
4-Bromofluorobenzene	93		77 - 124			10/11/19 00:41	1
Dibromofluoromethane (Surr)	87		72 - 131			10/11/19 00:41	1

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-102-CA

Lab Sample ID: 460-193458-1 Date Collected: 10/09/19 10:00

Matrix: Water

Date Received: 10/09/19 20:20

Method: 8260C SIM - Vola Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/15/19 13:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	99		72 - 133					10/15/19 13:46	<i>D</i> ,,, a
+ Bromondorobonzono	00		72-700					10,10,10,10	
Method: 8260C - Volatile (Organic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	0.40	U	1.0	0.40	ug/L			10/12/19 05:54	
Bromomethane	0.55	U	1.0	0.55	ug/L			10/12/19 05:54	
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/12/19 05:54	
Chloroethane	0.32	U	1.0	0.32	ug/L			10/12/19 05:54	
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/12/19 05:54	
Acetone	4.4	U	5.0	4.4	ug/L			10/12/19 05:54	
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/12/19 05:54	
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/12/19 05:54	
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/12/19 05:54	
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/12/19 05:54	
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/12/19 05:54	
Chloroform	0.33	U	1.0		ug/L			10/12/19 05:54	
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/12/19 05:54	
2-Butanone (MEK)	1.9	U	5.0		ug/L			10/12/19 05:54	
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/12/19 05:54	
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/12/19 05:54	
Bromodichloromethane	0.34		1.0		ug/L			10/12/19 05:54	
1,2-Dichloropropane	0.35		1.0		ug/L			10/12/19 05:54	
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/12/19 05:54	
Trichloroethene	0.31		1.0		ug/L			10/12/19 05:54	
Dibromochloromethane	0.28		1.0		ug/L			10/12/19 05:54	
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/12/19 05:54	
Benzene	0.20		1.0		ug/L			10/12/19 05:54	
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/12/19 05:54	
Bromoform	0.54		1.0		ug/L			10/12/19 05:54	
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/12/19 05:54	
2-Hexanone	1.1		5.0		ug/L			10/12/19 05:54	
Z-riexarione Tetrachloroethene	0.25		1.0		ug/L ug/L			10/12/19 05:54	
1,1,2,2-Tetrachloroethane	0.25		1.0		ug/L ug/L			10/12/19 05:54	
					-				
Toluene	0.38		1.0		ug/L			10/12/19 05:54	
Chlorobenzene	0.38		1.0		ug/L			10/12/19 05:54	
Ethylbenzene	0.30		1.0		ug/L			10/12/19 05:54	
Styrene	0.42		1.0		ug/L			10/12/19 05:54	
Xylenes, Total	0.65		2.0		ug/L			10/12/19 05:54	
Diethyl ether	0.21		1.0		ug/L			10/12/19 05:54	
MTBE	0.47		1.0		ug/L			10/12/19 05:54	
Tetrahydrofuran	1.0		2.0		ug/L			10/12/19 05:54	
Cyclohexane	0.32		1.0		ug/L			10/12/19 05:54	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/12/19 05:54	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/12/19 05:54	
Isopropylbenzene	0.34		1.0		ug/L			10/12/19 05:54	
N-Propylbenzene	0.32	U	1.0		ug/L			10/12/19 05:54	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/12/19 05:54	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-102-CA

Lab Sample ID: 460-193458-1 Date Collected: 10/09/19 10:00

Matrix: Water

Date Received: 10/09/19 20:20

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indane	0.35	U	1.0	-	0.35	ug/L			10/12/19 05:54	1
Dichlorofluoromethane	0.34	U	1.0		0.34	ug/L			10/12/19 05:54	1
1,2,3-Trimethylbenzene	0.36	U	1.0		0.36	ug/L			10/12/19 05:54	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	₹ <i>T</i>	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						10/12/19 05:54	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		74 - 132						10/12/19 05:54	1
Toluene-d8 (Surr)	97		80 - 120						10/12/19 05:54	1
4-Bromofluorobenzene	93		77 - 124						10/12/19 05:54	1
Dibromofluoromethane (Surr)	91		72 - 131						10/12/19 05:54	

Method: 82/UD SIM - Semivor	atile Organi	c Compour	ias (GC/M2	OINI)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/10/19 09:49	10/11/19 04:26	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/10/19 09:49	10/11/19 04:26	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/10/19 09:49	10/11/19 04:26	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/10/19 09:49	10/11/19 04:26	1
Pentachlorophenol	0.15	U	0.20	0.15	ug/L		10/10/19 09:49	10/11/19 04:26	1
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026	ug/L		10/10/19 09:49	10/11/19 04:26	1
	Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol	Analyte Result Benzo[a]anthracene 0.016 Benzo[a]pyrene 0.022 Benzo[b]fluoranthene 0.024 Hexachlorobenzene 0.013 Pentachlorophenol 0.15	Analyte Result Qualifier Benzo[a]anthracene 0.016 U Benzo[a]pyrene 0.022 U Benzo[b]fluoranthene 0.024 U Hexachlorobenzene 0.013 U Pentachlorophenol 0.15 U	Analyte Result Qualifier RL Benzo[a]anthracene 0.016 U 0.050 Benzo[a]pyrene 0.022 U 0.050 Benzo[b]fluoranthene 0.024 U 0.050 Hexachlorobenzene 0.013 U 0.020 Pentachlorophenol 0.15 U 0.20	Analyte Result Qualifier RL MDL Benzo[a]anthracene 0.016 U 0.050 0.016 Benzo[a]pyrene 0.022 U 0.050 0.022 Benzo[b]fluoranthene 0.024 U 0.050 0.024 Hexachlorobenzene 0.013 U 0.020 0.013 Pentachlorophenol 0.15 U 0.20 0.15	Analyte Result Qualifier RL MDL Unit Benzo[a]anthracene 0.016 U 0.050 0.016 ug/L Benzo[a]pyrene 0.022 U 0.050 0.022 ug/L Benzo[b]fluoranthene 0.024 U 0.050 0.024 ug/L Hexachlorobenzene 0.013 U 0.020 0.013 ug/L Pentachlorophenol 0.15 U 0.20 0.15 ug/L	Analyte Result Qualifier RL MDL Unit D Benzo[a]anthracene 0.016 U 0.050 0.016 ug/L Benzo[a]pyrene 0.022 U 0.050 0.022 ug/L Benzo[b]fluoranthene 0.024 U 0.050 0.024 ug/L Hexachlorobenzene 0.013 U 0.020 0.013 ug/L Pentachlorophenol 0.15 U 0.20 0.15 ug/L	Analyte Result Benzo[a]anthracene Qualifier RL MDL Unit ug/L D Prepared Benzo[a]anthracene 0.016 U 0.050 0.050 0.016 ug/L 10/10/19 09:49 Benzo[a]pyrene 0.022 U 0.050 0.022 ug/L 10/10/19 09:49 Benzo[b]fluoranthene 0.024 U 0.050 0.024 ug/L 10/10/19 09:49 Hexachlorobenzene 0.013 U 0.020 0.013 ug/L 10/10/19 09:49 Pentachlorophenol 0.15 U 0.20 0.15 ug/L 10/10/19 09:49	Benzo[a]anthracene 0.016 U 0.050 0.016 ug/L 10/10/19 09:49 10/11/19 04:26 Benzo[a]pyrene 0.022 U 0.050 0.022 ug/L 10/10/19 09:49 10/11/19 04:26 Benzo[b]fluoranthene 0.024 U 0.050 0.024 ug/L 10/10/19 09:49 10/11/19 04:26 Hexachlorobenzene 0.013 U 0.020 0.013 ug/L 10/10/19 09:49 10/11/19 04:26 Pentachlorophenol 0.15 U 0.20 0.15 ug/L 10/10/19 09:49 10/11/19 04:26

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/10/19 09:49	10/11/19 00:22	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/10/19 09:49	10/11/19 00:22	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/10/19 09:49	10/11/19 00:22	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/10/19 09:49	10/11/19 00:22	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/10/19 09:49	10/11/19 00:22	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/10/19 09:49	10/11/19 00:22	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/10/19 09:49	10/11/19 00:22	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/10/19 09:49	10/11/19 00:22	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/10/19 09:49	10/11/19 00:22	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/10/19 09:49	10/11/19 00:22	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/10/19 09:49	10/11/19 00:22	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/10/19 09:49	10/11/19 00:22	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/10/19 09:49	10/11/19 00:22	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/10/19 09:49	10/11/19 00:22	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/10/19 09:49	10/11/19 00:22	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/10/19 09:49	10/11/19 00:22	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/10/19 09:49	10/11/19 00:22	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/10/19 09:49	10/11/19 00:22	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/10/19 09:49	10/11/19 00:22	1
Isophorone	0.80	U	10	0.80	ug/L		10/10/19 09:49	10/11/19 00:22	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/10/19 09:49	10/11/19 00:22	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/10/19 09:49	10/11/19 00:22	1
Naphthalene	1.1	U	10	1.1	ug/L		10/10/19 09:49	10/11/19 00:22	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/10/19 09:49	10/11/19 00:22	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/10/19 09:49	10/11/19 00:22	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/10/19 09:49	10/11/19 00:22	1

Eurofins TestAmerica, Edison

Page 26 of 2942

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-102-CA

Lab Sample ID: 460-193458-1 Date Collected: 10/09/19 10:00

Matrix: Water

Date Received: 10/09/19 20:20

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/10/19 09:49	10/11/19 00:22	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/10/19 09:49	10/11/19 00:22	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/10/19 09:49	10/11/19 00:22	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/10/19 09:49	10/11/19 00:22	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/10/19 09:49	10/11/19 00:22	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/10/19 09:49	10/11/19 00:22	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/10/19 09:49	10/11/19 00:22	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/10/19 09:49	10/11/19 00:22	1
Dibenzofuran	1.1	U	10	1.1	ug/L		10/10/19 09:49	10/11/19 00:22	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/10/19 09:49	10/11/19 00:22	1
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/10/19 09:49	10/11/19 00:22	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/10/19 09:49	10/11/19 00:22	1
Fluorene	0.91	U	10	0.91	ug/L		10/10/19 09:49	10/11/19 00:22	1
4-Nitroaniline	0.54	U	10	0.54	ug/L		10/10/19 09:49	10/11/19 00:22	1
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/10/19 09:49	10/11/19 00:22	1
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/10/19 09:49	10/11/19 00:22	1
Phenanthrene	0.58	U	10	0.58	ug/L		10/10/19 09:49	10/11/19 00:22	1
Anthracene	0.63	U	10	0.63	ug/L		10/10/19 09:49	10/11/19 00:22	1
Carbazole	0.68	U	10	0.68	ug/L		10/10/19 09:49	10/11/19 00:22	1
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/10/19 09:49	10/11/19 00:22	1
Fluoranthene	0.84	U	10	0.84	ug/L		10/10/19 09:49	10/11/19 00:22	1
Pyrene	1.6	U	10	1.6	ug/L		10/10/19 09:49	10/11/19 00:22	1
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/10/19 09:49	10/11/19 00:22	1
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/10/19 09:49	10/11/19 00:22	1
Chrysene	0.91	U	2.0	0.91	ug/L		10/10/19 09:49	10/11/19 00:22	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/10/19 09:49	10/11/19 00:22	1
Di-n-octyl phthalate	4.8	U	10	4.8	-		10/10/19 09:49	10/11/19 00:22	1
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/10/19 09:49	10/11/19 00:22	1
Indeno[1,2,3-cd]pyrene	1.3	U	2.0		ug/L		10/10/19 09:49	10/11/19 00:22	1
Dibenz(a,h)anthracene	0.72	U	1.0		ug/L		10/10/19 09:49	10/11/19 00:22	1
Benzo[g,h,i]perylene	1.4	U	10		ug/L		10/10/19 09:49	10/11/19 00:22	1
Diphenyl ether	1.2		10		ug/L			10/11/19 00:22	1
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/11/19 00:22	1
Caprolactam		⊎≛ UJ	10		ug/L			10/11/19 00:22	1
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/11/19 00:22	1
Bisphenol-A	9.9		10		ug/L			10/11/19 00:22	1
N-Methylaniline	0.48		5.0		ug/L			10/11/19 00:22	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				10/10/19 09:49	10/11/19 00:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	102		51 - 108				10/10/19 09:49		1
Phenol-d5 (Surr)	33		14 - 39					10/11/19 00:22	1
Terphenyl-d14 (Surr)	86		40 - 148					10/11/19 00:22	
2,4,6-Tribromophenol (Surr)	92		26 - 139					10/11/19 00:22	1
2-Fluorophenol (Surr)	51		25 - 58				10/10/19 09:49	10/11/19 00:22	1
2-Fluorobiphenyl (Surr)	98		45 - 107				10/10/19 09:49	10/11/19 00:22	1

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Lab Sample ID: 460-193458-1 Client Sample ID: UPA-102-CA

Date Collected: 10/09/19 10:00 Matrix: Water

Date Received: 10/09/19 20:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/10/19 20:58	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/10/19 20:58	1
Sulfate	22.8		0.60	0.35	mg/L			10/10/19 20:58	1
Method: 300.0 - Anions, Ion Chr	omatogra	phy - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	161	D -	7.44	0.87	mg/L			10/11/19 00:12	62
Method: 200.8 - Metals (ICP/MS)	- Total R	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	107000		250	66.8	ug/L		10/14/19 03:50	10/14/19 20:25	5
Magnesium	18300		250	24.8	ug/L		10/14/19 03:50	10/14/19 20:25	5
Potassium	4510		250	73.5	ug/L		10/14/19 03:50	10/14/19 20:25	5
Calcium	19200		250	233	ug/L		10/14/19 03:50	10/14/19 20:25	5
Method: 6010D - Metals (ICP) - I	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	45.6	J	100	3.3	ug/L		10/14/19 09:44	10/14/19 17:32	2
Iron, Dissolved	87400		300	68.4	ug/L		10/14/19 09:44	10/14/19 17:32	2
Manganese, Dissolved	5230		30.0	2.0	ug/L		10/14/19 09:44	10/14/19 17:32	2
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.15		0.10	0.068	mg/L			10/10/19 16:20	1
Bicarbonate Alkalinity as CaCO3	247		5.0	5.0	mg/L			10/10/19 12:25	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/10/19 12:25	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/15/19 16:45	1

Date Collected: 10/09/19 10:25 Matrix: Water Date Received: 10/09/19 20:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	1.4		0.40	0.20	ug/L			10/14/19 07:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	91	-	72 - 133			-		10/14/19 07:43	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/12/19 06:18	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/12/19 06:18	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/12/19 06:18	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/12/19 06:18	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/12/19 06:18	1
Acetone	4.4	U	5.0	4.4	ug/L			10/12/19 06:18	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/12/19 06:18	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/12/19 06:18	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/12/19 06:18	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/12/19 06:18	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-103-CA

Lab Sample ID: 460-193458-2 Date Collected: 10/09/19 10:25

Matrix: Water

Date Received: 10/09/19 20:20

Benzo[a]anthracene

Benzo[a]pyrene

Method: 8260C - Volatile Org Analyte		Qualifier	` RL		Unit	D	Prepared	Analyzed	Dil Fa
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L		-	10/12/19 06:18	-
Chloroform	2.8		1.0	0.33	ug/L			10/12/19 06:18	
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/12/19 06:18	
2-Butanone (MEK)	1.9	U	5.0		ug/L			10/12/19 06:18	
1,1,1-Trichloroethane	0.24	U	1.0		ug/L			10/12/19 06:18	
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/12/19 06:18	
Bromodichloromethane	2.2		1.0	0.34	ug/L			10/12/19 06:18	
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/12/19 06:18	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/12/19 06:18	
Trichloroethene	0.31	U	1.0		ug/L			10/12/19 06:18	
Dibromochloromethane	1.5		1.0		ug/L			10/12/19 06:18	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/12/19 06:18	
Benzene	0.20	U	1.0		ug/L			10/12/19 06:18	
trans-1,3-Dichloropropene	0.49	U	1.0		ug/L			10/12/19 06:18	
Bromoform	0.54	U	1.0	0.54	ug/L			10/12/19 06:18	
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			10/12/19 06:18	
2-Hexanone	1.1	U	5.0		ug/L			10/12/19 06:18	
Tetrachloroethene	0.25	U	1.0		ug/L			10/12/19 06:18	
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/12/19 06:18	
Toluene	0.38	U	1.0		ug/L			10/12/19 06:18	
Chlorobenzene	0.38	U	1.0		ug/L			10/12/19 06:18	
Ethylbenzene	0.30		1.0		ug/L			10/12/19 06:18	
Styrene	0.42	U	1.0		ug/L			10/12/19 06:18	
Xylenes, Total	0.65		2.0		ug/L			10/12/19 06:18	
Diethyl ether	0.21		1.0		ug/L			10/12/19 06:18	
MTBE	0.47		1.0		ug/L			10/12/19 06:18	
Tetrahydrofuran	1.0	U	2.0		ug/L			10/12/19 06:18	
Cyclohexane	0.32		1.0		ug/L			10/12/19 06:18	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/12/19 06:18	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/12/19 06:18	
Isopropylbenzene	0.34		1.0		ug/L			10/12/19 06:18	
N-Propylbenzene	0.32		1.0		ug/L			10/12/19 06:18	
Methylcyclohexane	0.26		1.0		ug/L			10/12/19 06:18	
Indane	0.35		1.0		ug/L			10/12/19 06:18	
Dichlorofluoromethane	0.34		1.0		ug/L			10/12/19 06:18	
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/12/19 06:18	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT C	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L				-	10/12/19 06:18	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	96		74 - 132					10/12/19 06:18	
Toluene-d8 (Surr)	96		80 - 120					10/12/19 06:18	
4-Bromofluorobenzene	93		77 - 124					10/12/19 06:18	
Dibromofluoromethane (Surr)	92		72 - 131					10/12/19 06:18	
: Method: 8270D SIM - Semivo	latile Organi	c Compo	unds (GC/N	IS SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Donzolalanthracana	0.016		0.050	0 0 4 0	ua/I		10/11/10 00:11	10110110	

Eurofins TestAmerica, Edison

10/11/19 09:11 10/12/19 02:47

10/11/19 09:11 10/12/19 02:47

11/11/2019

0.050

0.050

0.016 ug/L

0.022 ug/L

0.016 U

0.022 U

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-103-CA

Lab Sample ID: 460-193458-2 Date Collected: 10/09/19 10:25

RL

MDL Unit

D

Prepared

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued) Result Qualifier

Matrix: Water

Dil Fac

Analyzed

Date Received: 10/09/19 20:20

Analyte

Phenanthrene

Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/11/19 09:11	10/12/19 02:47	1
Hexachlorobenzene	0.013	U	0.020	0.013			10/11/19 09:11	10/12/19 02:47	1
Pentachlorophenol	0.15	U	0.20	0.15			10/11/19 09:11	10/12/19 02:47	1
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026			10/11/19 09:11	10/12/19 02:47	1
<u></u>					_				
Method: 8270D - Semivola			(GC/MS)						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Phenol	0.29		10	0.29			10/11/19 09:11	10/12/19 04:49	1
2-Chlorophenol	0.38		10	0.38	ug/L		10/11/19 09:11	10/12/19 04:49	1
2-Methylphenol	0.26		10	0.26			10/11/19 09:11	10/12/19 04:49	1
4-Methylphenol	0.24		10	0.24	ug/L		10/11/19 09:11	10/12/19 04:49	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/11/19 09:11	10/12/19 04:49	1
2,4-Dimethylphenol	0.24	U	10	0.24			10/11/19 09:11	10/12/19 04:49	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/11/19 09:11	10/12/19 04:49	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/11/19 09:11	10/12/19 04:49	1
2,4,6-Trichlorophenol	0.30	U	10	0.30			10/11/19 09:11	10/12/19 04:49	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/11/19 09:11	10/12/19 04:49	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/11/19 09:11	10/12/19 04:49	1
4-Nitrophenol	0.69	U *	20	0.69	ug/L		10/11/19 09:11	10/12/19 04:49	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/11/19 09:11	10/12/19 04:49	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/11/19 09:11	10/12/19 04:49	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/11/19 09:11	10/12/19 04:49	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/11/19 09:11	10/12/19 04:49	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/11/19 09:11	10/12/19 04:49	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/11/19 09:11	10/12/19 04:49	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/11/19 09:11	10/12/19 04:49	1
Isophorone	0.80	U	10	0.80	ug/L		10/11/19 09:11	10/12/19 04:49	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/11/19 09:11	10/12/19 04:49	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/11/19 09:11	10/12/19 04:49	1
Naphthalene	1.1	U	10	1.1	ug/L		10/11/19 09:11	10/12/19 04:49	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/11/19 09:11	10/12/19 04:49	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/11/19 09:11	10/12/19 04:49	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/11/19 09:11	10/12/19 04:49	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/11/19 09:11	10/12/19 04:49	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/11/19 09:11	10/12/19 04:49	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/11/19 09:11	10/12/19 04:49	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/11/19 09:11	10/12/19 04:49	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/11/19 09:11	10/12/19 04:49	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/11/19 09:11	10/12/19 04:49	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/11/19 09:11	10/12/19 04:49	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/11/19 09:11	10/12/19 04:49	1
Dibenzofuran	1.1	U	10	1.1	ug/L		10/11/19 09:11	10/12/19 04:49	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/11/19 09:11	10/12/19 04:49	1
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/11/19 09:11	10/12/19 04:49	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/11/19 09:11	10/12/19 04:49	1
Fluorene	0.91	U	10	0.91	ug/L		10/11/19 09:11	10/12/19 04:49	1
4-Nitroaniline	0.54	U	10	0.54	ug/L		10/11/19 09:11	10/12/19 04:49	1
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/11/19 09:11	10/12/19 04:49	1
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/11/19 09:11	10/12/19 04:49	1
Dhananthrana	0.50		10	0.50			10/11/10 00:11	10/10/10 04:40	

Eurofins TestAmerica, Edison

10/11/19 09:11 10/12/19 04:49

11/11/2019

10

0.58 ug/L

0.58 U

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-103-CA

Lab Sample ID: 460-193458-2 Date Collected: 10/09/19 10:25

Matrix: Water

Date Received: 10/09/19 20:20

Method: 8270D - Semivolatile ^{Analyte}	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Anthracene	0.63	U	10	0.63	ug/L		10/11/19 09:11	10/12/19 04:49	
Carbazole	0.68	U	10	0.68	ug/L		10/11/19 09:11	10/12/19 04:49	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/11/19 09:11	10/12/19 04:49	
Fluoranthene	0.84	U	10	0.84	ug/L		10/11/19 09:11	10/12/19 04:49	
Pyrene	1.6	U	10	1.6	ug/L		10/11/19 09:11	10/12/19 04:49	
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/11/19 09:11	10/12/19 04:49	
3,3'-Dichlorobenzidine	1.4	U	10		ug/L		10/11/19 09:11	10/12/19 04:49	
Chrysene	0.91	U	2.0	0.91	ug/L		10/11/19 09:11	10/12/19 04:49	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/11/19 09:11	10/12/19 04:49	
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/11/19 09:11	10/12/19 04:49	
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/11/19 09:11	10/12/19 04:49	
Indeno[1,2,3-cd]pyrene	1.3	U	2.0	1.3	ug/L		10/11/19 09:11	10/12/19 04:49	
Dibenz(a,h)anthracene	0.72		1.0	0.72			10/11/19 09:11	10/12/19 04:49	
Benzo[g,h,i]perylene	1.4		10		ug/L		10/11/19 09:11	10/12/19 04:49	
Diphenyl ether	1.2		10		ug/L		10/11/19 09:11		
n,n'-Dimethylaniline	0.91		1.0		ug/L		10/11/19 09:11	10/12/19 04:49	
Caprolactam	0.68		10	0.68	_		10/11/19 09:11	10/12/19 04:49	
bis (2-chloroisopropyl) ether	0.63		10	0.63				10/12/19 04:49	
Bisphenol-A	9.9		10	9.9	ug/L		10/11/19 09:11	10/12/19 04:49	
N-Methylaniline	0.48		5.0		ug/L		10/11/19 09:11		
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	13	J	ug/L	3.	.77		10/11/19 09:11	10/12/19 04:49	
Unknown	12	J	ug/L	11.	.42		10/11/19 09:11	10/12/19 04:49	
Unknown	15	J	ug/L	11.	.91		10/11/19 09:11	10/12/19 04:49	
Unknown	11		ug/L	13.	71		10/11/19 09:11	10/12/19 04:49	
Unknown	26	J	ug/L	13.	.95		10/11/19 09:11	10/12/19 04:49	
Unknown	13	J	ug/L	14.	.05		10/11/19 09:11	10/12/19 04:49	
Unknown	35	_J	ug/L	14.				10/12/19 04:49	
Unknown	24		ug/L	14.			10/11/19 09:11	10/12/19 04:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	96	-	51 - 108				10/11/19 09:11	10/12/19 04:49	-
Phenol-d5 (Surr)	28		14 - 39				10/11/19 09:11	10/12/19 04:49	
Terphenyl-d14 (Surr)	89		40 - 148				10/11/19 09:11	10/12/19 04:49	
2,4,6-Tribromophenol (Surr)	104		26 - 139				10/11/19 09:11	10/12/19 04:49	
2-Fluorophenol (Surr)	50		25 - 58					10/12/19 04:49	
2-Fluorobiphenyl (Surr)	93		45 - 107				10/11/19 09:11	10/12/19 04:49	
Method: 300.0 - Anions, Ion C	`hromatoara	nhv							
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Nitrate as N	3.52		0.10	0.056	mg/L			10/10/19 21:13	
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/10/19 21:13	
Method: 300.0 - Anions, Ion C	Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	32.5	Ð	1.44	0.17	mg/L			10/11/19 00:27	1:

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-103-CA Lab Sample ID: 460-193458-2

Date Collected: 10/09/19 10:25 Date Received: 10/09/19 20:20

Matrix: Water

Method: 200.8 - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Sodium 16800 250 66.8 ug/L 10/14/19 03:50 10/14/19 20:32 250 24.8 ug/L 10/14/19 03:50 10/14/19 20:32 Magnesium 9170 250 Potassium 11200 73.5 ug/L 10/14/19 03:50 10/14/19 20:32 250 Calcium 11700 233 ug/L 10/14/19 03:50 10/14/19 20:32

Method: 6010D - Metals (ICP) - Dissolved Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 1.7 ug/L 50.0 10/14/19 09:44 10/14/19 17:36 Cobalt, Dissolved 7.6 J Iron, Dissolved 76.3 J 150 34.2 ug/L 10/14/19 09:44 10/14/19 17:36 1 15.0 0.99 ug/L 10/14/19 09:44 10/14/19 17:36 1 Manganese, Dissolved 1920

General Chemistry RL MDL Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed 0.10 0.068 mg/L 10/10/19 16:06 Ammonia (as N) 0.20 5.0 Bicarbonate Alkalinity as CaCO3 5.0 mg/L 10/10/19 12:31 29.4 1 Carbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L 10/10/19 12:31 1 Sulfide 1.0 0.58 U 0.58 mg/L 10/15/19 16:45

Client Sample ID: MW-26N Lab Sample ID: 460-193458-3 Date Collected: 10/09/19 11:45 Matrix: Water

Date Received: 10/09/19 20:20

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/12/19 06:42	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/12/19 06:42	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/12/19 06:42	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/12/19 06:42	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/12/19 06:42	1
Acetone	4.4	U	5.0	4.4	ug/L			10/12/19 06:42	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/12/19 06:42	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/12/19 06:42	1
1,1-Dichloroethane	0.47	J	1.0	0.26	ug/L			10/12/19 06:42	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/12/19 06:42	1
cis-1,2-Dichloroethene	0.42	J	1.0	0.22	ug/L			10/12/19 06:42	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/12/19 06:42	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/12/19 06:42	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/12/19 06:42	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/12/19 06:42	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/12/19 06:42	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/12/19 06:42	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/12/19 06:42	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/12/19 06:42	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/12/19 06:42	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/12/19 06:42	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/12/19 06:42	1
Benzene	0.82	J	1.0	0.20	ug/L			10/12/19 06:42	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/12/19 06:42	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/12/19 06:42	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/12/19 06:42	1

Eurofins TestAmerica, Edison

11/11/2019

5

5

5

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N Lab Sample ID: 460-193458-3

Date Collected: 10/09/19 11:45

Date Received: 10/09/19 20:20

Matrix: Water

Analyte	Result	Qualifier	GC/MS (Cor RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/12/19 06:42	
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/12/19 06:42	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/12/19 06:42	
Toluene	0.38	U	1.0	0.38	ug/L			10/12/19 06:42	
Chlorobenzene	2.1		1.0	0.38	ug/L			10/12/19 06:42	
Ethylbenzene	0.30	U	1.0		ug/L			10/12/19 06:42	
Styrene	0.42	U	1.0		ug/L			10/12/19 06:42	
Xylenes, Total	0.65		2.0		ug/L			10/12/19 06:42	
Diethyl ether	1.8		1.0		ug/L			10/12/19 06:42	
MTBE	0.47	U	1.0		ug/L			10/12/19 06:42	
Tetrahydrofuran	4,4		2.0		ug/L			10/12/19 06:42	
Cyclohexane	0.32	U	1.0		ug/L			10/12/19 06:42	
1,4-Dioxane	150	•	50		ug/L			10/12/19 06:42	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/12/19 06:42	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/12/19 06:42	
Isopropylbenzene	0.75		1.0		ug/L			10/12/19 06:42	
N-Propylbenzene	0.73		1.0		ug/L			10/12/19 06:42	
Methylcyclohexane	0.32		1.0		ug/L ug/L			10/12/19 06:42	
Indane	0.26		1.0		ug/L ug/L			10/12/19 06:42	
	2.7	U	1.0		ug/L ug/L			10/12/19 06:42	
Dichlorofluoromethane	2.7 0.36	11			-				
1,2,3-Trimethylbenzene	0.30	U	1.0	0.30	ug/L			10/12/19 06:42	
Tentatively Identified Compound Tentatively Identified Compound	Est. Result None	Qualifier	Unit ug/L	<u>D</u>	RT _	CAS No.	Prepared	Analyzed 10/12/19 06:42	Dil Fa
remaively lacininea Compound	None		ag/L					10/12/13 00:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	97		=						
1,2-Dichioroethane-u4 (Surr)	97		74 - 132					10/12/19 06:42	
Toluene-d8 (Surr)	96		74 - 132 80 - 120					10/12/19 06:42 10/12/19 06:42	
Toluene-d8 (Surr)	96		80 - 120					10/12/19 06:42	
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr)	96 93 92	c Compo	80 - 120 77 - 124 72 - 131	IS SIM)				10/12/19 06:42 10/12/19 06:42	
Toluene-d8 (Surr) 4-Bromofluorobenzene	96 93 92 Iatile Organi Result	Qualifier	80 - 120 77 - 124 72 - 131	MDL	Unit	D	Prepared	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed	
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte	96 93 92 Iatile Organi	Qualifier	80 - 120 77 - 124 72 - 131 unds (GC/N	-		<u>D</u>	Prepared 10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo	96 93 92 Iatile Organi Result	Qualifier U	80 - 120 77 - 124 72 - 131 unds (GC/N RL	MDL	ug/L	<u>D</u>	•	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Malyzed 10/11/19 05:08	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene	96 93 92 latile Organi Result 0.016	Qualifier U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050	MDL 0.016	ug/L ug/L	<u>D</u>	10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Malyzed 10/11/19 05:08	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene	96 93 92 Ilatile Organi Result 0.016 0.022	Qualifier U U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050	0.016 0.022	ug/L ug/L ug/L	<u>D</u>	10/10/19 09:49 10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed 10/11/19 05:08 10/11/19 05:08	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	96 93 92 Matile Organi Result 0.016 0.022 0.024	Qualifier U U U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050	0.016 0.022 0.024 0.013	ug/L ug/L ug/L	<u>D</u>	10/10/19 09:49 10/10/19 09:49 10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08	Dil Fac
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol	96 93 92 Platile Organi Result 0.016 0.022 0.024 0.013 0.15	Qualifier U U U U U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L	<u>D</u>	10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile	96 93 92 Hatile Organi Result 0.016 0.022 0.024 0.013 0.15	Qualifier U U U U U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS)	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L		10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte	96 93 92 Platile Organi Result 0.016 0.022 0.024 0.013 0.15 Porganic Co	Qualifier U U U U U Ompounds Qualifier	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L		10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 Prepared	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol	96 93 92 Matile Organi Result 0.016 0.022 0.024 0.013 0.15 e Organic Corresult 0.29	Qualifier U U U U U U U U U U U U U U U U U U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10	0.016 0.022 0.024 0.013 0.15 MDL 0.29	ug/L ug/L ug/L ug/L ug/L		10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 Prepared 10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol	96 93 92 Natile Organi Result 0.016 0.022 0.024 0.013 0.15 Pe Organic Co Result 0.29 0.38	Qualifier U U U U U Compounds Qualifier U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 Prepared 10/10/19 09:49 10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol	96 93 92 Platile Organi Result 0.016 0.022 0.024 0.013 0.15 Porganic Consesult 0.29 0.38 0.26	Qualifier U U U U U Compounds Qualifier U U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 Prepared 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol	96 93 92 Platile Organi Result 0.016 0.022 0.024 0.013 0.15 Porganic Consessite Result 0.29 0.38 0.26	Qualifier U U U U U O O O O O O O O O O O O O O	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol	96 93 92 Platile Organi Result 0.016 0.022 0.024 0.013 0.15 Porganic Consession Consessi	Qualifier U U U U U Ompounds Qualifier U U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26 0.24 0.75	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol	96 93 92 Platile Organi Result 0.016 0.022 0.024 0.013 0.15 Porganic Co Result 0.29 0.38 0.26 0.24 0.75 0.24	Qualifier U U U U U O O O O O O O O O O O O O O	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04	Dil Fa
Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol	96 93 92 Platile Organi Result 0.016 0.022 0.024 0.013 0.15 Porganic Consession Consessi	Qualifier U U U U U Ompounds Qualifier U U U U U U U U U U U U U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49 10/10/19 09:49	10/12/19 06:42 10/12/19 06:42 10/12/19 06:42 Analyzed 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 05:08 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04 10/11/19 01:04	Dil Fa

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N

Lab Sample ID: 460-193458-3 Date Collected: 10/09/19 11:45

Matrix: Water

Date Received: 10/09/19 20:20

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	0.28 U	10	0.28 ug/L	10/10/19 09:49	10/11/19 01:04	-
2,4-Dinitrophenol	14 U	20	14 ug/L	10/10/19 09:49	10/11/19 01:04	
4-Nitrophenol	0.69 U	20	0.69 ug/L	10/10/19 09:49	10/11/19 01:04	
4,6-Dinitro-2-methylphenol	13 U	20	13 ug/L	10/10/19 09:49	10/11/19 01:04	
Bis(2-chloroethyl)ether	30	1.0	0.30 ug/L	10/10/19 09:49	10/11/19 01:04	
1,3-Dichlorobenzene	2.0 U	10	2.0 ug/L	10/10/19 09:49	10/11/19 01:04	
1,4-Dichlorobenzene	1.3 U	10	1.3 ug/L	10/10/19 09:49	10/11/19 01:04	
1,2-Dichlorobenzene	1.3 U	10	1.3 ug/L	10/10/19 09:49	10/11/19 01:04	
N-Nitrosodi-n-propylamine	0.43 U	1.0	0.43 ug/L	10/10/19 09:49	10/11/19 01:04	
Hexachloroethane	1.2 U	2.0	1.2 ug/L	10/10/19 09:49	10/11/19 01:04	
Nitrobenzene	0.57 U	1.0	0.57 ug/L	10/10/19 09:49	10/11/19 01:04	
Isophorone	0.80 U	10	0.80 ug/L	10/10/19 09:49	10/11/19 01:04	
Bis(2-chloroethoxy)methane	0.24 U	10	0.24 ug/L	10/10/19 09:49	10/11/19 01:04	
1,2,4-Trichlorobenzene	1.3 U	2.0	1.3 ug/L	10/10/19 09:49	10/11/19 01:04	
Naphthalene	1.1 U	10	1.1 ug/L	10/10/19 09:49	10/11/19 01:04	
4-Chloroaniline	1.9 U	10	1.9 ug/L		10/11/19 01:04	
Hexachlorobutadiene	0.78 U	1.0	0.78 ug/L		0 10/11/19 01:04	
2-Methylnaphthalene	1.1 U	10	1.1 ug/L		0 10/11/19 01:04	
Hexachlorocyclopentadiene	1.7 U	10	1.7 ug/L		10/11/19 01:04	
2-Chloronaphthalene	1.2 U	10	1.2 ug/L		0 10/11/19 01:04	
2-Nitroaniline	0.47 U	10	0.47 ug/L		0 10/11/19 01:04	
Dimethyl phthalate	0.77 U	10	0.77 ug/L		10/11/19 01:04	
Acenaphthylene	0.82 U	10	0.82 ug/L		0 10/11/19 01:04	
2.6-Dinitrotoluene	0.39 U	2.0	0.39 ug/L		0 10/11/19 01:04	
3-Nitroaniline	0.96 U	10	0.96 ug/L		0 10/11/19 01:04	
Acenaphthene	1.1 U	10	1.1 ug/L		0 10/11/19 01:04	
Dibenzofuran	1.1 U	10	1.1 ug/L		0 10/11/19 01:04	
2,4-Dinitrotoluene	1.0 U	2.0	1.0 ug/L		0 10/11/19 01:04	
Diethyl phthalate	0.98 U	10	0.98 ug/L		0 10/11/19 01:04	
1-Chlorophenyl phenyl ether	1.3 U	10			0 10/11/19 01:04	
Fluorene	0.91 U	10	1.3 ug/L		0 10/11/19 01:04	
1-Nitroaniline	0.54 U	10	0.91 ug/L		0 10/11/19 01:04	
		10	0.54 ug/L			
N-Nitrosodiphenylamine	0.89 U 0.75 U	10	0.89 ug/L		0 10/11/19 01:04	
1-Bromophenyl phenyl ether	0.75 U		0.75 ug/L			
Phenanthrene		10	0.58 ug/L		0 10/11/19 01:04	
Anthracene	0.63 U	10	0.63 ug/L		10/11/19 01:04	
Carbazole	0.68 U	10	0.68 ug/L		10/11/19 01:04	
Di-n-butyl phthalate	0.84 U	10	0.84 ug/L		0 10/11/19 01:04	
Fluoranthene	0.84 U	10	0.84 ug/L		10/11/19 01:04	
Pyrene	1.6 U	10	1.6 ug/L		10/11/19 01:04	
Butyl benzyl phthalate	0.85 U	10	0.85 ug/L		0 10/11/19 01:04	
3,3'-Dichlorobenzidine	1.4 U	10	1.4 ug/L		0 10/11/19 01:04	
Chrysene	0.91 U	2.0	0.91 ug/L		0 10/11/19 01:04	
Bis(2-ethylhexyl) phthalate	1.7 U	2.0	1.7 ug/L		10/11/19 01:04	
Di-n-octyl phthalate	4.8 U	10	4.8 ug/L	10/10/19 09:49	10/11/19 01:04	
Benzo[k]fluoranthene	0.67 U	1.0	0.67 ug/L	10/10/19 09:49	10/11/19 01:04	
ndeno[1,2,3-cd]pyrene	1.3 U	2.0	1.3 ug/L	10/10/19 09:49	10/11/19 01:04	
Dibenz(a,h)anthracene	0.72 U	1.0	0.72 ug/L	10/10/19 09:49	10/11/19 01:04	
Benzo[g,h,i]perylene	1.4 U	10	1.4 ug/L	10/10/19 09:49	10/11/19 01:04	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N Lab Sample ID: 460-193458-3

Date Collected: 10/09/19 11:45

Date Received: 10/09/19 20:20

Matrix: Water

Analyte	Organic Co Result	Qualifier	RL		, Unit	D	Prepared	Analyzed	Dil Fa
Diphenyl ether	1.2		10		ug/L	<u> </u>		10/11/19 01:04	
n.n'-Dimethylaniline	0.91		1.0		ug/L			10/11/19 01:04	
Caprolactam		V≛UJ	10		ug/L			10/11/19 01:04	
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/11/19 01:04	
Bisphenol-A	9.9	_	10		ug/L			10/11/19 01:04	
N-Methylaniline	0.48	 	5.0		ug/L			10/11/19 01:04	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D .	RT	CAS No.	Prepared	Analyzed	Dil Fa
1,4-Dioxane		JA	ug/L		63		10/10/19 09:49	10/11/19 01:04	
Unknown	35		ug/L		.83	, 20 0 . ,	10/10/19 09:49		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	92		51 - 108				-	10/11/19 01:04	
Phenol-d5 (Surr)	30		14 - 39					10/11/19 01:04	
Terphenyl-d14 (Surr)	82		40 - 148					10/11/19 01:04	
2,4,6-Tribromophenol (Surr)	85		26 - 139					10/11/19 01:04	
2-Fluorophenol (Surr)	46		25 - 58					10/11/19 01:04	
2-Fluorobiphenyl (Surr)	89		45 - 107					10/11/19 01:04	
z-riuorosipnenyi (Sun)	03		45-107				10/10/19 09.49	10/11/19 01:04	
Method: 300.0 - Anions, Ion C						_			D.1 E
\nalyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Nitrate as N	0.16		0.10	0.056				10/10/19 21:28	
Nitrite as N	0.076	U	0.12	0.076	-			10/10/19 21:28	
Sulfate	14.6		0.60	0.35	mg/L			10/10/19 21:28	
Method: 300.0 - Anions, Ion C									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	49.3	D	2.28	0.27	mg/L			10/11/19 00:42	1:
Mathadia 200 8 Matala (ICD)	IS) - Total R	ecoverabl	е						
								Analyzed	
		Qualifier	RL	MDL	Unit	D	Prepared	Milalyzeu	Dil Fa
Analyte		Qualifier	250	66.8	ug/L	<u>D</u>	Prepared 10/14/19 03:50	10/14/19 19:51	
Analyte Sodium	Result	Qualifier		66.8		<u>D</u>	10/14/19 03:50		
Analyte Sodium Magnesium	Result 26400	Qualifier	250	66.8 24.8	ug/L	<u>D</u>	10/14/19 03:50 10/14/19 03:50	10/14/19 19:51	,
Analyte Sodium Magnesium Potassium	Result 26400 11800	Qualifier	250 250	66.8 24.8 73.5	ug/L ug/L	<u>D</u>	10/14/19 03:50 10/14/19 03:50	10/14/19 19:51 10/14/19 19:51 10/14/19 19:51	
Analyte Sodium Magnesium Potassium Calcium	Result 26400 11800 2280 20400	Qualifier	250 250 250	66.8 24.8 73.5	ug/L ug/L ug/L	<u>D</u>	10/14/19 03:50 10/14/19 03:50 10/14/19 03:50	10/14/19 19:51 10/14/19 19:51 10/14/19 19:51	
Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP)	Result 26400 11800 2280 20400 - Dissolved	Qualifier Qualifier	250 250 250	66.8 24.8 73.5 233	ug/L ug/L ug/L	<u>D</u>	10/14/19 03:50 10/14/19 03:50 10/14/19 03:50	10/14/19 19:51 10/14/19 19:51 10/14/19 19:51	
Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte	Result 26400 11800 2280 20400 - Dissolved	Qualifier	250 250 250 250	66.8 24.8 73.5 233	ug/L ug/L ug/L ug/L		10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 Prepared	10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 10/14/19 19:51	Dil Fa
Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved	Result 26400 11800 2280 20400 - Dissolved Result	Qualifier J	250 250 250 250 250	66.8 24.8 73.5 233 MDL	ug/L ug/L ug/L ug/L		10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 Prepared 10/14/19 09:44	10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 Analyzed	Dil Fa
Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved	Result 26400 11800 2280 20400 - Dissolved Result 3.3	Qualifier J	250 250 250 250 250 RL 50.0	66.8 24.8 73.5 233 MDL 1.7 34.2	ug/L ug/L ug/L ug/L		10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 Prepared 10/14/19 09:44 10/14/19 09:44	10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 Analyzed 10/14/19 17:49	Dil Fa
Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved	Result 26400 11800 2280 20400 - Dissolved Result 3.3 34.2	Qualifier J	250 250 250 250 250 RL 50.0	66.8 24.8 73.5 233 MDL 1.7 34.2	ug/L ug/L ug/L ug/L Unit ug/L ug/L		10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 Prepared 10/14/19 09:44 10/14/19 09:44	10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 Analyzed 10/14/19 17:49 10/14/19 17:49	Dil Fa
Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry	Result 26400 11800 2280 20400 - Dissolved Result 3.3 34.2 170	Qualifier J	250 250 250 250 250 RL 50.0	66.8 24.8 73.5 233 MDL 1.7 34.2 0.99	ug/L ug/L ug/L ug/L Unit ug/L ug/L		10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 Prepared 10/14/19 09:44 10/14/19 09:44	10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 Analyzed 10/14/19 17:49 10/14/19 17:49	Dil Fa
Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	Result 26400 11800 2280 20400 - Dissolved Result 3.3 34.2 170 Result	Qualifier J U	250 250 250 250 250 RL 50.0 150 15.0	66.8 24.8 73.5 233 MDL 1.7 34.2 0.99	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 Prepared 10/14/19 09:44 10/14/19 09:44 10/14/19 09:44	10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 Analyzed 10/14/19 17:49 10/14/19 17:49 10/14/19 17:49 Analyzed	Dil Fa
Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	Result 26400 11800 2280 20400 - Dissolved Result 3.3 34.2 170 Result 0.28	Qualifier J U	250 250 250 250 250 RL 50.0 150 15.0	66.8 24.8 73.5 233 MDL 1.7 34.2 0.99 MDL 0.068	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 Prepared 10/14/19 09:44 10/14/19 09:44 10/14/19 09:44	10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 Analyzed 10/14/19 17:49 10/14/19 17:49 10/14/19 17:49 10/14/19 17:49	Dil Fa
Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N) Bicarbonate Alkalinity as CaCO3	Result 26400 11800 2280 20400 - Dissolved Result 3.3 34.2 170 Result	Qualifier J U	250 250 250 250 250 RL 50.0 150 15.0	66.8 24.8 73.5 233 MDL 1.7 34.2 0.99 MDL 0.068 5.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 10/14/19 03:50 Prepared 10/14/19 09:44 10/14/19 09:44 10/14/19 09:44	10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 10/14/19 19:51 Analyzed 10/14/19 17:49 10/14/19 17:49 10/14/19 17:49 Analyzed	Dil Fa

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: GA-101 Lab Sample ID: 460-193458-4

Date Collected: 10/09/19 14:00 Matrix: Water

Date Received: 10/09/19 20:20

Method: 8260C SIM - Volatile C	rganic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	4.1		0.80	0.40	ug/L			10/16/19 09:37	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	86		72 - 133					10/16/19 09:37	2
Method: 8260C - Volatile Orga	nic Compo	unds by G	C/MS						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.80	U	2.0	0.80	ug/L		•	10/12/19 17:55	2
Bromomethane	1.1	U	2.0		ug/L			10/12/19 17:55	2
Vinyl chloride	0.34	U	2.0		ug/L			10/12/19 17:55	2
Chloroethane	0.64	U	2.0	0.64	ug/L			10/12/19 17:55	2
Methylene Chloride	0.63	U	2.0		ug/L			10/12/19 17:55	2
Acetone	13	U	40 13	8.8	ug/L			10/12/19 17:55	2
Carbon disulfide	1.6	U	2.0	1.6	ug/L			10/12/19 17:55	2
1,1-Dichloroethene	0.53	U	2.0		ug/L			10/12/19 17:55	2
1,1-Dichloroethane	0.53	U	2.0	0.53	ug/L			10/12/19 17:55	2
trans-1,2-Dichloroethene	0.47	U	2.0	0.47	ug/L			10/12/19 17:55	2
cis-1,2-Dichloroethene	1.9	J	2.0		ug/L			10/12/19 17:55	2
Chloroform	0.65	U	2.0		ug/L			10/12/19 17:55	2
1,2-Dichloroethane	0.86	U	2.0	0.86	ug/L			10/12/19 17:55	2
2-Butanone (MEK)	3.7	U	10		ug/L			10/12/19 17:55	2
1,1,1-Trichloroethane	0.48	U	2.0		ug/L			10/12/19 17:55	2
Carbon tetrachloride	0.42	U	2.0		ug/L			10/12/19 17:55	2
Bromodichloromethane	0.69	U	2.0		ug/L			10/12/19 17:55	2
1,2-Dichloropropane	0.71	U	2.0		ug/L			10/12/19 17:55	2
cis-1,3-Dichloropropene	0.44	U	2.0	0.44	ug/L			10/12/19 17:55	2
Trichloroethene	1.0	J	2.0		ug/L			10/12/19 17:55	2
Dibromochloromethane	0.56	U	2.0	0.56	ug/L			10/12/19 17:55	2
1,1,2-Trichloroethane	0.87	U	2.0	0.87	ug/L			10/12/19 17:55	2
Benzene	1.6	J	2.0	0.41	ug/L			10/12/19 17:55	2
trans-1,3-Dichloropropene	0.97	U	2.0	0.97	ug/L			10/12/19 17:55	2
Bromoform	1.1	U	2.0	1.1	ug/L			10/12/19 17:55	2
4-Methyl-2-pentanone	2.6	U	10		ug/L			10/12/19 17:55	2
2-Hexanone	2.3	U	10		ug/L			10/12/19 17:55	2
Tetrachloroethene	1.2	J	2.0		ug/L			10/12/19 17:55	2
1,1,2,2-Tetrachloroethane	0.73	U	2.0	0.73	ug/L			10/12/19 17:55	2
Toluene	120		2.0		ug/L			10/12/19 17:55	2
Chlorobenzene	2.8		2.0		ug/L			10/12/19 17:55	2
Ethylbenzene	240		2.0		ug/L			10/12/19 17:55	2
Styrene	0.83	U	2.0	0.83	ug/L			10/12/19 17:55	2
Xylenes, Total	820		4.0	1.3	ug/L			10/12/19 17:55	2
Diethyl ether	0.42	U	2.0		ug/L			10/12/19 17:55	2
MTBE	0.93		2.0		ug/L			10/12/19 17:55	2
Tetrahydrofuran	2.1	U	4.0		ug/L			10/12/19 17:55	2
Cyclohexane	2.8		2.0		ug/L			10/12/19 17:55	2
1,2,4-Trimethylbenzene	600		2.0		ug/L			10/12/19 17:55	2
1,3,5-Trimethylbenzene	180		2.0		ug/L			10/12/19 17:55	2
Isopropylbenzene	43		2.0		ug/L			10/12/19 17:55	2
N-Propylbenzene	120		2.0		ug/L			10/12/19 17:55	2
Methylcyclohexane	21		2.0	0.52	ug/L			10/12/19 17:55	2

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: GA-101 Lab Sample ID: 460-193458-4

Date Collected: 10/09/19 14:00 Matrix: Water Date Received: 10/09/19 20:20

Analyte	Result	Qualifier	RL		MDL	Unit		D	Prepared	Analyzed	Dil Fac
Indane	57		2.0		0.69	ug/L		_		10/12/19 17:55	2
Dichlorofluoromethane	0.68	U	2.0		0.68	ug/L				10/12/19 17:55	2
1,2,3-Trimethylbenzene	190		2.0		0.72	ug/L				10/12/19 17:55	2
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	F	₹7	CAS	lo.	Prepared	Analyzed	Dil Fac
Benzene, 1-ethyl-3-methyl-	500	JN	ug/L	_	9.	26	620-14	-4		10/12/19 17:55	2
Benzene, 1-ethyl-2-methyl-	180	JN	ug/L		9.	69	611-14	!-3		10/12/19 17:55	2
Benzene, 1-methyl-3-propyl-	23	JN	ug/L		11.	12	1074-43	-7		10/12/19 17:55	2
Benzene, 2-ethyl-1,4-dimethyl-	32	JN	ug/L		11.	24	1758-88	3-9		10/12/19 17:55	2
Benzene, 4-ethyl-1,2-dimethyl-	23	JN	ug/L		11.	60	934-80	-5		10/12/19 17:55	2
Benzene, 1-methyl-2-(1-methylethyl)-	21	JN	ug/L		11.	64	527-84	-4		10/12/19 17:55	2
Benzene, 1-ethyl-2,3-dimethyl-	39	JN	ug/L		11.	74	933-98	3-2		10/12/19 17:55	2
Benzene, 1,2,4,5-tetramethyl-	22	JN	ug/L		12.	20	95-93	3-2		10/12/19 17:55	2
Benzene, 1,2,3,5-tetramethyl-	32	JN	ug/L		12.	26	527-53	-7		10/12/19 17:55	2
Benzene, 2-ethenyl-1,4-dimethyl-	32	JN	ug/L		12.	66	2039-89	-6		10/12/19 17:55	2
Surrogate	%Recovery	Qualifier	Limits						Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		74 - 132					-		10/12/19 17:55	2
Toluene-d8 (Surr)	97		80 - 120							10/12/19 17:55	2
4-Bromofluorobenzene	91		77 - 124							10/12/19 17:55	2
Dibromofluoromethane (Surr)	93		72 - 131							10/12/19 17:55	2

Method: 8270D SIM	- Semivolatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/10/19 09:49	10/11/19 05:29	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/10/19 09:49	10/11/19 05:29	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/10/19 09:49	10/11/19 05:29	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/10/19 09:49	10/11/19 05:29	1
Pentachlorophenol	0.15	U	0.20	0.15	ug/L		10/10/19 09:49	10/11/19 05:29	1
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026	ug/L		10/10/19 09:49	10/11/19 05:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/10/19 09:49	10/11/19 01:25	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/10/19 09:49	10/11/19 01:25	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/10/19 09:49	10/11/19 01:25	1
4-Methylphenol	1.3	J	10	0.24	ug/L		10/10/19 09:49	10/11/19 01:25	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/10/19 09:49	10/11/19 01:25	1
2,4-Dimethylphenol	1.9	J	10	0.24	ug/L		10/10/19 09:49	10/11/19 01:25	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/10/19 09:49	10/11/19 01:25	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/10/19 09:49	10/11/19 01:25	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/10/19 09:49	10/11/19 01:25	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/10/19 09:49	10/11/19 01:25	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/10/19 09:49	10/11/19 01:25	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/10/19 09:49	10/11/19 01:25	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/10/19 09:49	10/11/19 01:25	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/10/19 09:49	10/11/19 01:25	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/10/19 09:49	10/11/19 01:25	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/10/19 09:49	10/11/19 01:25	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/10/19 09:49	10/11/19 01:25	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: GA-101

Date Received: 10/09/19 20:20

Lab Sample ID: 460-193458-4 Date Collected: 10/09/19 14:00

Matrix: Water

Method: 8270D - Semivolatile Analyte		Qualifier	RL		, Unit	D	Prepared	Analyzed	Dil Fa
Hexachloroethane	1.2	U	2.0	1.2	ug/L		•	10/11/19 01:25	
Nitrobenzene	0.57	U	1.0		ug/L		10/10/19 09:49	10/11/19 01:25	
Isophorone	0.80		10	0.80			10/10/19 09:49	10/11/19 01:25	
Bis(2-chloroethoxy)methane	0.24	U	10		ug/L		10/10/19 09:49	10/11/19 01:25	
1,2,4-Trichlorobenzene	6.2		2.0				10/10/19 09:49	10/11/19 01:25	
Naphthalene	28		10	1.1	ug/L			10/11/19 01:25	
4-Chloroaniline	1.9	U	10	1.9	ug/L			10/11/19 01:25	
Hexachlorobutadiene	0.78		1.0					10/11/19 01:25	
2-Methylnaphthalene	4.0		10	1.1			10/10/19 09:49	10/11/19 01:25	
Hexachlorocyclopentadiene	1.7		10		ug/L			10/11/19 01:25	
2-Chloronaphthalene	1.2		10		ug/L			10/11/19 01:25	
2-Nitroaniline	0.47		10		ug/L			10/11/19 01:25	
Dimethyl phthalate	0.77		10		ug/L			10/11/19 01:25	
Acenaphthylene	0.82		10		ug/L			10/11/19 01:25	
2.6-Dinitrotoluene	0.39		2.0		ug/L			10/11/19 01:25	
3-Nitroaniline	0.96		10		ug/L ug/L			10/11/19 01:25	
Acenaphthene	1.1		10		ug/L			10/11/19 01:25	
Dibenzofuran	1.1		10		ug/L			10/11/19 01:25	
2,4-Dinitrotoluene	1.0		2.0		_			10/11/19 01:25	
Diethyl phthalate	0.98		10	0.98	•			10/11/19 01:25	
4-Chlorophenyl phenyl ether	1.3		10		ug/L ug/L			10/11/19 01:25	
Fluorene	0.91		10		ug/L ug/L			10/11/19 01:25	
4-Nitroaniline	0.54		10		ug/L ug/L			10/11/19 01:25	
N-Nitrosodiphenylamine	0.89		10		ug/L ug/L			10/11/19 01:25	
• •	0.75		10		ug/L ug/L			10/11/19 01:25	
4-Bromophenyl phenyl ether Phenanthrene	0.73		10		ug/L ug/L			10/11/19 01:25	
	0.63				-				
Anthracene			10		ug/L			10/11/19 01:25	
Carbazole	0.68		10		ug/L			10/11/19 01:25	
Di-n-butyl phthalate	8.7		10		•			10/11/19 01:25	
Fluoranthene	0.84		10		U			10/11/19 01:25	
Pyrene	1.6		10		•			10/11/19 01:25	
Butyl benzyl phthalate	0.85		10		ug/L			10/11/19 01:25	
3,3'-Dichlorobenzidine	1.4		10		ug/L			10/11/19 01:25	
Chrysene	0.91		2.0		ug/L			10/11/19 01:25	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0		ug/L			10/11/19 01:25	
Di-n-octyl phthalate	4.8		10		ug/L			10/11/19 01:25	
Benzo[k]fluoranthene	0.67		1.0		ug/L			10/11/19 01:25	
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/11/19 01:25	
Dibenz(a,h)anthracene	0.72		1.0		ug/L			10/11/19 01:25	
Benzo[g,h,i]perylene	1.4		10		ug/L			10/11/19 01:25	
Diphenyl ether	67		10		ug/L			10/11/19 01:25	
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/11/19 01:25	
Caprolactam		₩± UJ	10		ug/L			10/11/19 01:25	
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/11/19 01:25	
Bisphenol-A	9.9		10		ug/L			10/11/19 01:25	
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/10/19 09:49	10/11/19 01:25	
Tentatively Identified Compound	Est. Result		Unit		RT	CAS No.	Prepared	Analyzed	Dil Fa
Benzene, (1-methylethyl)-		JN	ug/L		.37	98-82-8	10/10/19 09:49	10/11/19 01:25	,
Benzene, propyl-	130	JN	ug/L	3.	.63	103-65-1	10/10/19 09:49	10/11/19 01:25	•

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: GA-101 Lab Sample ID: 460-193458-4

Date Collected: 10/09/19 14:00 Matrix: Water Date Received: 10/09/19 20:20

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Benzene, 1-ethyl-2-methyl-	440	JN	ug/L	3.	69	611-14-3	10/10/19 09:49	10/11/19 01:25	1
Benzene, 1,3,5-trimethyl-	180	JN	ug/L	3.	77	108-67-8	10/10/19 09:49	10/11/19 01:25	
Benzene, 1-ethyl-4-methyl-	180	JN	ug/L	3.	.84	622-96-8	10/10/19 09:49	10/11/19 01:25	1
Benzene, 1,2,3-trimethyl-	510	JN	ug/L	3.	.98	526-73-8	10/10/19 09:49	10/11/19 01:25	1
Benzene, 1,2,4-trimethyl-	190	JN	ug/L	4.	19	95-63-6	10/10/19 09:49	10/11/19 01:25	1
Indane	62	JN	ug/L	4.	31	496-11-7	10/10/19 09:49	10/11/19 01:25	1
Benzene, 4-ethyl-1,2-dimethyl-	93	JN	ug/L	4.	45	934-80-5	10/10/19 09:49	10/11/19 01:25	1
Benzene, 1-methyl-2-(1-methylethyl)-	67	JN	ug/L	4.	61	527-84-4	10/10/19 09:49	10/11/19 01:25	1
Benzene, 2-ethyl-1,4-dimethyl-	17	JN	ug/L	4	.80	1758-88-9	10/10/19 09:49	10/11/19 01:25	1
Benzene, 1,2,4,5-tetramethyl-	68	JN	ug/L	4.	91	95-93-2	10/10/19 09:49	10/11/19 01:25	1
3-Phenylbut-1-ene	23	JN	ug/L	5.	12	934-10-1	10/10/19 09:49	10/11/19 01:25	1
Unknown	20	J	ug/L	5	24		10/10/19 09:49	10/11/19 01:25	1
Biphenyl	23	JN	ug/L	6	50	92-52-4	10/10/19 09:49	10/11/19 01:25	1
Unknown	31	J	ug/L	6	.83		10/10/19 09:49	10/11/19 01:25	1
Unknown	130	J	ug/L	8	.05		10/10/19 09:49	10/11/19 01:25	1
Unknown	74	J	ug/L	8.	.22		10/10/19 09:49	10/11/19 01:25	1
Cyclic octaatomic sulfur	17	J N	ug/L	9.	64	10544-50-0	10/10/19 09:49	10/11/19 01:25	1
Unknown	20	J	ug/L	12.	35		10/10/19 09:49	10/11/19 01:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	112	X	51 - 108				10/10/19 09:49	10/11/19 01:25	1
Phenol-d5 (Surr)	38		14 - 39				10/10/19 09:49	10/11/19 01:25	1
Terphenyl-d14 (Surr)	88		40 - 148				10/10/19 09:49	10/11/19 01:25	1
2,4,6-Tribromophenol (Surr)	107		26 - 139				10/10/19 09:49	10/11/19 01:25	1
2-Fluorophenol (Surr)	59	X	25 - 58				10/10/19 09:49	10/11/19 01:25	1
2-Fluorobiphenyl (Surr)	107		45 - 107				10/10/19 09:49	10/11/19 01:25	1
- Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	1.7	U	50.0	1.7	ug/L		10/14/19 09:44	10/14/19 17:53	1
Iron, Dissolved	7230		150	34.2	ug/L		10/14/19 09:44	10/14/19 17:53	1
Manganese, Dissolved	563		15.0	0.99	ug/L		10/14/19 09:44	10/14/19 17:53	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit		Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.45		0.10	0.068				10/10/19 16:23	1

Client Sample ID: TBGW_100919 Lab Sample ID: 460-193458-5

Date Collected: 10/09/19 14:00 Matrix: Water

Date Received: 10/09/19 20:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/16/19 16:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		72 - 133			-		10/16/19 16:58	1

Method: 8260C - Volatile Organic Compounds by GC/MSAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacChloromethane0.40U1.00.40ug/L10/12/19 11:291

Eurofins TestAmerica, Edison

Page 39 of 2942 11/11/2019

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_100919

Lab Sample ID: 460-193458-5 Date Collected: 10/09/19 14:00

Matrix: Water

Date Received: 10/09/19 20:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	0.55	U	1.0	0.55	ug/L		-	10/12/19 11:29	
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/12/19 11:29	
Chloroethane	0.32	U	1.0		ug/L			10/12/19 11:29	
Methylene Chloride	0.32		1.0	0.32				10/12/19 11:29	
Acetone	19		5.0		ug/L			10/12/19 11:29	
Carbon disulfide	0.82		1.0		ug/L			10/12/19 11:29	
1,1-Dichloroethene	0.26		1.0		ug/L			10/12/19 11:29	
1,1-Dichloroethane	0.26		1.0	0.26	-			10/12/19 11:29	
trans-1,2-Dichloroethene	0.24		1.0		ug/L			10/12/19 11:29	
cis-1,2-Dichloroethene	0.22		1.0		ug/L			10/12/19 11:29	
Chloroform	0.33		1.0	0.33	-			10/12/19 11:29	
1,2-Dichloroethane	0.43		1.0		ug/L			10/12/19 11:29	
2-Butanone (MEK)	1.9		5.0		ug/L			10/12/19 11:29	
1,1,1-Trichloroethane	0.24		1.0	0.24				10/12/19 11:29	
					ug/L ug/L			10/12/19 11:29	
Carbon tetrachloride	0.21		1.0		-				
Bromodichloromethane	0.34		1.0		ug/L			10/12/19 11:29	
1,2-Dichloropropane	0.35		1.0	0.35	-			10/12/19 11:29	
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/12/19 11:29	
Trichloroethene	0.31		1.0		ug/L			10/12/19 11:29	
Dibromochloromethane	0.28		1.0	0.28	-			10/12/19 11:29	
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/12/19 11:29	
Benzene	0.20		1.0	0.20	-			10/12/19 11:29	
trans-1,3-Dichloropropene	0.49		1.0	0.49	-			10/12/19 11:29	
Bromoform	0.54		1.0		ug/L			10/12/19 11:29	
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/12/19 11:29	
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/12/19 11:29	
Tetrachloroethene	0.25	U	1.0		ug/L			10/12/19 11:29	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/12/19 11:29	
Toluene	0.38	U	1.0	0.38	ug/L			10/12/19 11:29	
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/12/19 11:29	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/12/19 11:29	
Styrene	0.42	U	1.0	0.42	ug/L			10/12/19 11:29	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/12/19 11:29	
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/12/19 11:29	
MTBE	0.47	U	1.0	0.47	ug/L			10/12/19 11:29	
Tetrahydrofuran	1.0	U	2.0		ug/L			10/12/19 11:29	
Cyclohexane	0.32		1.0		ug/L			10/12/19 11:29	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/12/19 11:29	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/12/19 11:29	
Isopropylbenzene	0.34		1.0		ug/L			10/12/19 11:29	
N-Propylbenzene	0.32		1.0		ug/L			10/12/19 11:29	
Methylcyclohexane	0.26		1.0		ug/L			10/12/19 11:29	
Indane	0.35		1.0		ug/L			10/12/19 11:29	
Dichlorofluoromethane	0.34		1.0		ug/L			10/12/19 11:29	
1,2,3-Trimethylbenzene	0.36		1.0		ug/L ug/L			10/12/19 11:29	
1,2,0- minemyiberizerie	0.30	J	1.0	0.30	uy/L			10/12/19 11.29	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT C	AS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L				•	10/12/19 11:29	

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_100919

Lab Sample ID: 460-193458-5 Date Collected: 10/09/19 14:00

Matrix: Water

Date Received: 10/09/19 20:20

Surrogate	%Recovery Qualifier	Limits	Prepared Analy	zed Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	74 - 132	10/12/19	11:29 1
Toluene-d8 (Surr)	96	80 - 120	10/12/19	11:29 1
4-Bromofluorobenzene	93	77 - 124	10/12/19	11:29 1
Dibromofluoromethane (Surr)	93	72 - 131	10/12/19	11:29 1

Client Sample ID: UPA-108B-US Lab Sample ID: 460-193634-1

Date Collected: 10/10/19 10:00 Matrix: Water Date Received: 10/10/19 21:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/14/19 08:04	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/14/19 08:04	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/14/19 08:04	1
Chloroethane	0.32	U *	1.0	0.32	ug/L			10/14/19 08:04	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/14/19 08:04	1
Acetone	4.4	U	5.0	4.4	ug/L			10/14/19 08:04	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/14/19 08:04	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/14/19 08:04	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/14/19 08:04	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/14/19 08:04	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/14/19 08:04	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/14/19 08:04	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/14/19 08:04	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/14/19 08:04	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/14/19 08:04	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/14/19 08:04	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/14/19 08:04	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/14/19 08:04	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/14/19 08:04	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/14/19 08:04	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/14/19 08:04	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/14/19 08:04	1
Benzene	0.20	U	1.0	0.20				10/14/19 08:04	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/14/19 08:04	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/14/19 08:04	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/14/19 08:04	1
2-Hexanone	1.1	U	5.0		ug/L			10/14/19 08:04	1
Tetrachloroethene	0.25		1.0	0.25	ug/L			10/14/19 08:04	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37				10/14/19 08:04	1
Toluene	0.38	U	1.0	0.38	ug/L			10/14/19 08:04	1
Chlorobenzene	5,4		1.0		ug/L			10/14/19 08:04	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/14/19 08:04	1
Styrene	0.42	U	1.0	0.42	_			10/14/19 08:04	1
Xylenes, Total	0.65	_U	2.0		ug/L			10/14/19 08:04	1
Diethyl ether	24		1.0		ug/L			10/14/19 08:04	1
MTBE	0.47	U	1.0	0.47				10/14/19 08:04	1
Tetrahydrofuran	1.0		2.0		ug/L			10/14/19 08:04	1
Cyclohexane	0.32		1.0	0.32				10/14/19 08:04	1
1,4-Dioxane	210		50		ug/L			10/14/19 08:04	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108B-US

Lab Sample ID: 460-193634-1 Date Collected: 10/10/19 10:00

Matrix: Water

Date Received: 10/10/19 21:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/14/19 08:04	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/14/19 08:04	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/14/19 08:04	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/14/19 08:04	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/14/19 08:04	1
Indane	0.69	J	1.0	0.35	ug/L			10/14/19 08:04	1
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/14/19 08:04	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/14/19 08:04	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/14/19 08:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		74 - 132					10/14/19 08:04	1
Toluene-d8 (Surr)	99		80 - 120					10/14/19 08:04	1
4-Bromofluorobenzene	97		77 - 124					10/14/19 08:04	1
Dibromofluoromethane (Surr)	101		72 - 131					10/14/19 08:04	1
Method: 8270D SIM - Semivo	latile Organi	c Compo	unds (GC/N	IS SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U *	0.050	0.016	ug/L		10/12/19 07:30	10/13/19 03:58	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/12/19 07:30	10/13/19 03:58	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/12/19 07:30	10/13/19 03:58	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/12/19 07:30	10/13/19 03:58	1
1 ICAGONIO ODCI IZCI IC							40/40/40 07:00	10/10/10 00 50	
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/12/19 07:30	10/13/19 03:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U *	10	0.29	ug/L		10/12/19 07:30	10/13/19 00:59	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/12/19 07:30	10/13/19 00:59	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/12/19 07:30	10/13/19 00:59	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 00:59	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/12/19 07:30	10/13/19 00:59	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 00:59	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/12/19 07:30	10/13/19 00:59	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/12/19 07:30	10/13/19 00:59	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/12/19 07:30	10/13/19 00:59	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/12/19 07:30	10/13/19 00:59	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/12/19 07:30	10/13/19 00:59	1
4-Nitrophenol	0.69	U *	20	0.69	ug/L		10/12/19 07:30	10/13/19 00:59	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/12/19 07:30	10/13/19 00:59	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/12/19 07:30	10/13/19 00:59	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/12/19 07:30	10/13/19 00:59	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/12/19 07:30	10/13/19 00:59	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/12/19 07:30	10/13/19 00:59	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/12/19 07:30	10/13/19 00:59	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/12/19 07:30	10/13/19 00:59	1
Isophorone	0.80	U	10	0.80	ug/L		10/12/19 07:30	10/13/19 00:59	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 00:59	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108B-US

Lab Sample ID: 460-193634-1 Date Collected: 10/10/19 10:00

Matrix: Water

Date Received: 10/10/19 21:00

Method: 8270D - Semivolatile Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/12/19 07:30	10/13/19 00:59	1
Naphthalene	1.1	U	10	1.1	ug/L		10/12/19 07:30	10/13/19 00:59	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/12/19 07:30	10/13/19 00:59	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/12/19 07:30	10/13/19 00:59	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/12/19 07:30	10/13/19 00:59	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/12/19 07:30	10/13/19 00:59	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/12/19 07:30	10/13/19 00:59	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/12/19 07:30	10/13/19 00:59	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/12/19 07:30	10/13/19 00:59	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/12/19 07:30	10/13/19 00:59	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/12/19 07:30	10/13/19 00:59	1
3-Nitroaniline	0.96	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/12/19 07:30	10/13/19 00:59	1
Dibenzofuran	1.1	U	10	1.1	ug/L		10/12/19 07:30	10/13/19 00:59	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	_		10/12/19 07:30	10/13/19 00:59	1
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/12/19 07:30	10/13/19 00:59	1
4-Chlorophenyl phenyl ether	1.3	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
Fluorene	0.91	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
4-Nitroaniline	0.54	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
N-Nitrosodiphenylamine	0.89	U	10	0.89	-		10/12/19 07:30	10/13/19 00:59	1
4-Bromophenyl phenyl ether	0.75	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
Phenanthrene	0.58	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
Anthracene	0.63	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
Carbazole	0.68	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
Di-n-butyl phthalate	0.84	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
Fluoranthene	0.84	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
Pyrene	1.6	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
Butyl benzyl phthalate	0.85	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
3,3'-Dichlorobenzidine	1.4	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
Chrysene	0.91	U	2.0		ug/L		10/12/19 07:30	10/13/19 00:59	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0		ug/L		10/12/19 07:30	10/13/19 00:59	1
Di-n-octyl phthalate	4.8	U	10	4.8	-			10/13/19 00:59	1
Benzo[k]fluoranthene	0.67	U	1.0		ug/L		10/12/19 07:30	10/13/19 00:59	1
Indeno[1,2,3-cd]pyrene	1.3	U	2.0				10/12/19 07:30	10/13/19 00:59	1
Dibenz(a,h)anthracene	0.72		1.0		ug/L		10/12/19 07:30	10/13/19 00:59	1
Benzo[g,h,i]perylene	1.4		10		ug/L		10/12/19 07:30	10/13/19 00:59	1
Diphenyl ether	1.2	U	10		ug/L		10/12/19 07:30	10/13/19 00:59	1
n,n'-Dimethylaniline	0.91		1.0		ug/L		10/12/19 07:30	10/13/19 00:59	1
Caprolactam	0.68		10		ug/L			10/13/19 00:59	1
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/13/19 00:59	1
Bisphenol-A	9.9		10		ug/L			10/13/19 00:59	1
N-Methylaniline	0.48	U	5.0		ug/L			10/13/19 00:59	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D .	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				10/12/19 07:30	10/13/19 00:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	85		51 - 108				10/12/19 07:30	10/13/19 00:59	1
Phenol-d5 (Surr)	32		14 - 39				10/12/19 07:30		1
Terphenyl-d14 (Surr)	85		40 - 148				10/12/19 07:30		1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108B-US

Date Received: 10/10/19 21:00

Lab Sample ID: 460-193634-1 Date Collected: 10/10/19 10:00

Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	98		26 - 139	10/12/19 07:30	10/13/19 00:59	1
2-Fluorophenol (Surr)	45		25 - 58	10/12/19 07:30	10/13/19 00:59	1
2-Fluorobiphenyl (Surr)	76		45 - 107	10/12/19 07:30	10/13/19 00:59	1

Method: 300.0 - Anion	s, Ion Chromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	49.9		2.16	0.25	mg/L			10/12/19 11:09	18
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/12/19 08:09	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/12/19 08:09	1
Sulfate	0.35	U	0.60	0.35	mg/L			10/12/19 08:09	1

Method: 200.8 - Metals (IC	P/MS) - Total Recoverable						
Analyte	Result Qualifier	RL	MDL Ur	nit D	Prepared	Analyzed	Dil Fac
Sodium	32000	250	66.8 ug	g/L	10/16/19 09:08	10/16/19 14:18	5
Magnesium	7710	250	24.8 ug	g/L	10/16/19 09:08	10/16/19 14:18	5
Potassium	11600	250	73.5 ug	g/L	10/16/19 09:08	10/16/19 14:18	5
Calcium	10300	250	233 ug	g/L	10/16/19 09:08	10/16/19 14:18	5

Me	thod: 6010D - Metals (IC	P) - Dissolved								
Ana	lyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cot	oalt, Dissolved	13.6	J	50.0	1.7	ug/L		10/15/19 08:35	10/15/19 18:56	1
Iror	n, Dissolved	32300		150	34.2	ug/L		10/15/19 08:35	10/15/19 18:56	1
Maı	nganese, Dissolved	397		15.0	0.99	ug/L		10/15/19 08:35	10/15/19 18:56	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	16.9		0.10	0.068	mg/L			10/14/19 13:37	1
Bicarbonate Alkalinity as CaCO3	128		5.0	5.0	mg/L			10/15/19 14:38	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/15/19 14:38	1
Sulfide	0.58	. U	1.0	0.58	mg/L			10/15/19 16:45	1

Client Sample ID: UPA-108B-LS Lab Sample ID: 460-193634-2

Date Collected: 10/10/19 10:35 Matrix: Water Date Received: 10/10/19 21:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/14/19 08:27	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/14/19 08:27	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/14/19 08:27	1
Chloroethane	0.32	U ±	1.0	0.32	ug/L			10/14/19 08:27	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/14/19 08:27	1
Acetone	4.4	U	5.0	4.4	ug/L			10/14/19 08:27	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/14/19 08:27	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/14/19 08:27	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/14/19 08:27	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/14/19 08:27	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/14/19 08:27	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/14/19 08:27	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/14/19 08:27	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108B-LS

Lab Sample ID: 460-193634-2 Date Collected: 10/10/19 10:35

Matrix: Water

Date Received: 10/10/19 21:00

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/14/19 08:27	
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/14/19 08:27	
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/14/19 08:27	
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/14/19 08:27	
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/14/19 08:27	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/14/19 08:27	
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/14/19 08:27	
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/14/19 08:27	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/14/19 08:27	
Benzene	0.20	U	1.0	0.20	ug/L			10/14/19 08:27	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/14/19 08:27	
Bromoform	0.54	U	1.0	0.54	ug/L			10/14/19 08:27	
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			10/14/19 08:27	
2-Hexanone	1.1	U	5.0		ug/L			10/14/19 08:27	
Tetrachloroethene	0.25	U	1.0		ug/L			10/14/19 08:27	
1,1,2,2-Tetrachloroethane	0.37	U	1.0		ug/L			10/14/19 08:27	
Toluene	0.38	U	1.0		ug/L			10/14/19 08:27	
Chlorobenzene	5.3		1.0		ug/L			10/14/19 08:27	
Ethylbenzene	0.30	U	1.0		ug/L			10/14/19 08:27	
Styrene	0.42		1.0		ug/L			10/14/19 08:27	
Xylenes, Total	0.65		2.0		ug/L			10/14/19 08:27	
Diethyl ether	21		1.0		ug/L			10/14/19 08:27	
MTBE	0.51	J	1.0		ug/L			10/14/19 08:27	
Tetrahydrofuran	1.0		2.0		ug/L			10/14/19 08:27	
Cyclohexane	0.32		1.0		ug/L			10/14/19 08:27	
1,4-Dioxane	110		50		ug/L			10/14/19 08:27	
1,2,4-Trimethylbenzene	0.37	U	1.0		ug/L			10/14/19 08:27	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/14/19 08:27	
Isopropylbenzene	0.34		1.0		ug/L			10/14/19 08:27	
N-Propylbenzene	0.32		1.0		ug/L			10/14/19 08:27	
Methylcyclohexane	0.26		1.0		ug/L			10/14/19 08:27	
Indane	0.38		1.0		ug/L			10/14/19 08:27	
Dichlorofluoromethane	0.34		1.0		ug/L			10/14/19 08:27	
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/14/19 08:27	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L			 -		10/14/19 08:27	
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	97		74 - 132					10/14/19 08:27	
Toluene-d8 (Surr)	96		80 - 120					10/14/19 08:27	
4-Bromofluorobenzene	95		77 - 124					10/14/19 08:27	
Dibromofluoromethane (Surr)	98		72 - 131					10/14/19 08:27	

Method: 82/UD SIM - Semivo	Diatile Organic	: Compour	ias (GC/M5 S	SINI)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U *	0.050	0.016	ug/L		10/12/19 07:30	10/13/19 04:19	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/12/19 07:30	10/13/19 04:19	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/12/19 07:30	10/13/19 04:19	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/12/19 07:30	10/13/19 04:19	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108B-LS

Lab Sample ID: 460-193634-2 Date Collected: 10/10/19 10:35

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Matrix: Water

Date Received: 10/10/19 21:00

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/12/19 07:30	10/13/19 04:19	1
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026	ug/L		10/12/19 07:30	10/13/19 04:19	1
Method: 8270D - Semivolati			GC/MS)						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Phenol	0.29		10	0.29	ug/L		10/12/19 07:30	10/13/19 01:20	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/12/19 07:30	10/13/19 01:20	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/12/19 07:30	10/13/19 01:20	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 01:20	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/12/19 07:30	10/13/19 01:20	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 01:20	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/12/19 07:30	10/13/19 01:20	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/12/19 07:30	10/13/19 01:20	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/12/19 07:30	10/13/19 01:20	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/12/19 07:30	10/13/19 01:20	1
2,4-Dinitrophenol	14	U	20		ug/L		10/12/19 07:30	10/13/19 01:20	1
4-Nitrophenol	0.69	U ±	20	0.69			10/12/19 07:30	10/13/19 01:20	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/12/19 07:30	10/13/19 01:20	1
1,3-Dichlorobenzene	2.0	U	10		ug/L		10/12/19 07:30	10/13/19 01:20	1
1,4-Dichlorobenzene	1.3	U	10		ug/L		10/12/19 07:30	10/13/19 01:20	1
1,2-Dichlorobenzene	1.3		10		ug/L		10/12/19 07:30		1
N-Nitrosodi-n-propylamine	0.43		1.0	0.43	_		10/12/19 07:30	10/13/19 01:20	1
Hexachloroethane	1.2		2.0		ug/L		10/12/19 07:30	10/13/19 01:20	1
Nitrobenzene	0.57		1.0	0.57	-			10/13/19 01:20	· · · · · · · · · 1
Isophorone	0.80		10	0.80	_		10/12/19 07:30		1
Bis(2-chloroethoxy)methane	0.24		10	0.24	-			10/13/19 01:20	1
1,2,4-Trichlorobenzene	1.3		2.0		ug/L			10/13/19 01:20	
Naphthalene	1.1		10		ug/L		10/12/19 07:30		1
4-Chloroaniline	1.9		10		ug/L			10/13/19 01:20	1
Hexachlorobutadiene	0.78		1.0	0.78				10/13/19 01:20	
	1.1		1.0		_			10/13/19 01:20	1
2-Methylnaphthalene Hexachlorocyclopentadiene	1.7		10		ug/L			10/13/19 01:20	1
	1.2		10		ug/L			10/13/19 01:20	
2-Chloronaphthalene					ug/L				1
2-Nitroaniline	0.47		10	0.47				10/13/19 01:20	1
Dimethyl phthalate	0.77		10	0.77				10/13/19 01:20	
Acenaphthylene	0.82		10	0.82	_			10/13/19 01:20	1
2,6-Dinitrotoluene	0.39		2.0	0.39				10/13/19 01:20	1
3-Nitroaniline	0.96		10	0.96			10/12/19 07:30		1
Acenaphthene	1.1		10		ug/L			10/13/19 01:20	1
Dibenzofuran	1.1		10		ug/L			10/13/19 01:20	1
2,4-Dinitrotoluene	1.0		2.0		ug/L			10/13/19 01:20	1
Diethyl phthalate	0.98		10	0.98	-			10/13/19 01:20	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L			10/13/19 01:20	1
Fluorene	0.91	U	10	0.91			10/12/19 07:30	10/13/19 01:20	1
4-Nitroaniline	0.54	U	10	0.54			10/12/19 07:30	10/13/19 01:20	1
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/12/19 07:30	10/13/19 01:20	1
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/12/19 07:30	10/13/19 01:20	1
Phenanthrene	0.58	U	10	0.58	ug/L		10/12/19 07:30	10/13/19 01:20	1
Anthracene	0.63	U	10	0.63	ug/L		10/12/19 07:30	10/13/19 01:20	1
Carbazole	0.68	U	10	0.68			10/12/19 07:30	10/13/19 01:20	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108B-LS

Lab Sample ID: 460-193634-2 Date Collected: 10/10/19 10:35

Matrix: Water

Date Received: 10/10/19 21:00

Method: 8270D - Semivolatile Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/12/19 07:30	10/13/19 01:20	1
Fluoranthene	0.84	U	10	0.84	ug/L		10/12/19 07:30	10/13/19 01:20	1
Pyrene	1.6	U	10	1.6	ug/L		10/12/19 07:30	10/13/19 01:20	1
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/12/19 07:30	10/13/19 01:20	1
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/12/19 07:30	10/13/19 01:20	1
Chrysene	0.91	U	2.0	0.91	ug/L		10/12/19 07:30	10/13/19 01:20	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/12/19 07:30	10/13/19 01:20	1
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/12/19 07:30	10/13/19 01:20	1
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/12/19 07:30	10/13/19 01:20	1
Indeno[1,2,3-cd]pyrene	1.3	U	2.0	1.3	ug/L		10/12/19 07:30	10/13/19 01:20	1
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/12/19 07:30	10/13/19 01:20	1
Benzo[g,h,i]perylene	1.4	U	10		ug/L		10/12/19 07:30	10/13/19 01:20	1
Diphenyl ether	1.2	U	10		ug/L		10/12/19 07:30	10/13/19 01:20	1
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/13/19 01:20	1
Caprolactam	0.68		10		ug/L			10/13/19 01:20	1
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/13/19 01:20	
Bisphenol-A		U *	10		ug/L			10/13/19 01:20	1
N-Methylaniline	0.48		5.0		ug/L			10/13/19 01:20	. 1
11 Modifylaniino	0.10	Ü	0.0	0. 10	ug/L		10/12/10 01:00	10/10/10 01:20	•
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				10/12/19 07:30	10/13/19 01:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	102		51 - 108				10/12/19 07:30	10/13/19 01:20	1
Phenol-d5 (Surr)	39		14 - 39				10/12/19 07:30	10/13/19 01:20	1
Terphenyl-d14 (Surr)	106		40 - 148				10/12/19 07:30	10/13/19 01:20	1
2,4,6-Tribromophenol (Surr)	119		26 - 139				10/12/19 07:30	10/13/19 01:20	1
2-Fluorophenol (Surr)	56		25 - 58				10/12/19 07:30	10/13/19 01:20	1
2-Fluorobiphenyl (Surr)	93		45 - 107				10/12/19 07:30	10/13/19 01:20	1
Method: 300.0 - Anions, Ion C	:hromatogra	nhv							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	37.6		1.68	0.20	mg/L			10/12/19 11:24	14
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/12/19 08:24	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/12/19 08:24	1
Sulfate	6.15		0.60	0.35	mg/L			10/12/19 08:24	1
Method: 200.8 - Metals (ICP/N	AS) - Total R	ecoverab	le						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	26600		250		ug/L			10/16/19 14:20	5
Magnesium	7710		250		ug/L			10/16/19 14:20	5
Potassium	16100		250		ug/L			10/16/19 14:20	5
Calcium	14200		250		ug/L			10/16/19 14:20	5
· Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
-							-		1
Cobalt, Dissolved	2.1	J	50.0	1.7	ug/L		10/15/19 06.35	10/15/19 19:00	1
Cobalt, Dissolved Iron, Dissolved	2.1 55500	J	150.0		ug/L ug/L			10/15/19 19:00	1

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108B-LS

Lab Sample ID: 460-193634-2

Date Collected: 10/10/19 10:35 Matrix: Water Date Received: 10/10/19 21:00

General Chemistry Analyte	Result Qual	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	15.4	0.10	0.068	mg/L		· ·	10/14/19 13:41	1
Bicarbonate Alkalinity as CaCO3	135	5.0	5.0	mg/L			10/15/19 14:45	1
Carbonate Alkalinity as CaCO3	5.0 U	5.0	5.0	mg/L			10/15/19 14:45	1
Sulfide	0.58 U	1.0	0.58	mg/L			10/15/19 16:45	1

Lab Sample ID: 460-193634-3 Client Sample ID: UPA-108B-TZ

Date Collected: 10/10/19 11:05 Matrix: Water

Date Received: 10/10/19 21:00

Method: 8260C SIM - Volatile	Organic Coı	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	46		2.0	1.0	ug/L			10/16/19 15:17	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102		72 - 133					10/16/19 15:17	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/14/19 08:51	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/14/19 08:51	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/14/19 08:51	1
Chloroethane	0.32	U *	1.0	0.32	ug/L			10/14/19 08:51	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/14/19 08:51	1
Acetone	4.4	U	5.0	4.4	ug/L			10/14/19 08:51	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/14/19 08:51	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/14/19 08:51	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/14/19 08:51	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/14/19 08:51	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/14/19 08:51	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/14/19 08:51	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/14/19 08:51	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/14/19 08:51	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/14/19 08:51	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/14/19 08:51	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/14/19 08:51	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/14/19 08:51	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/14/19 08:51	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/14/19 08:51	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/14/19 08:51	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/14/19 08:51	1
Benzene	0.58	J	1.0	0.20	ug/L			10/14/19 08:51	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/14/19 08:51	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/14/19 08:51	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/14/19 08:51	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/14/19 08:51	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/14/19 08:51	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/14/19 08:51	1
Toluene	0.38	U	1.0	0.38	ug/L			10/14/19 08:51	1
Chlorobenzene	6.1		1.0	0.38	-			10/14/19 08:51	1
Ethylbenzene	0.30	U	1.0	0.30				10/14/19 08:51	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108B-TZ

Lab Sample ID: 460-193634-3 Date Collected: 10/10/19 11:05

Matrix: Water

Date Received: 10/10/19 21:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	0.42	U	1.0	0.42	ug/L			10/14/19 08:51	•
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/14/19 08:51	
Diethyl ether	46		1.0	0.21	ug/L			10/14/19 08:51	
MTBE	0.47	U	1.0	0.47	ug/L			10/14/19 08:51	•
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/14/19 08:51	
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/14/19 08:51	
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/14/19 08:51	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/14/19 08:51	
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/14/19 08:51	
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/14/19 08:51	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/14/19 08:51	
Indane	0.55	J	1.0	0.35	ug/L			10/14/19 08:51	
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/14/19 08:51	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/14/19 08:51	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/14/19 08:51	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99		74 - 132					10/14/19 08:51	
Toluene-d8 (Surr)	98		80 - 120					4044440 00 54	
	00		00 - 120					10/14/19 08:51	
4-Bromofluorobenzene	96		77 ₋ 124					10/14/19 08:51	•
4-Bromofluorobenzene Dibromofluoromethane (Surr)									
Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo	96 100 Iatile Organi		77 - 124 72 - 131 unds (GC/N	•				10/14/19 08:51 10/14/19 08:51	
Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte	96 100 Iatile Organi Result	Qualifier	77 - 124 72 - 131 unds (GC/N RL	MDL	Unit	<u>D</u>	Prepared	10/14/19 08:51 10/14/19 08:51 Analyzed	Dil Fac
Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene	96 100 Iatile Organi Result	Qualifier U *	77 - 124 72 - 131 unds (GC/N RL 0.050	MDL 0.016	ug/L	<u>D</u>	10/12/19 07:30	10/14/19 08:51 10/14/19 08:51 Analyzed 10/14/19 04:13	Dil Fac
Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene	96 100 Ilatile Organi Result 0.016 0.022	Qualifier U * U	77 - 124 72 - 131 unds (GC/N RL 0.050 0.050	0.016 0.022	ug/L ug/L	<u>D</u>	10/12/19 07:30 10/12/19 07:30	10/14/19 08:51 10/14/19 08:51 Analyzed 10/14/19 04:13 10/14/19 04:13	Dil Fac
Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	96 100 Ilatile Organi Result 0.016 0.022 0.024	Qualifier U * U U	77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050	0.016 0.022 0.024	ug/L ug/L ug/L	<u>D</u>	10/12/19 07:30 10/12/19 07:30 10/12/19 07:30	10/14/19 08:51 10/14/19 08:51 Analyzed 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13	Dil Fac
Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene	96 100 Ilatile Organi Result 0.016 0.022 0.024 0.013	Qualifier U * U U U	77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L	<u>D</u>	10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30	10/14/19 08:51 10/14/19 08:51 Analyzed 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13	Dil Fac
Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene	96 100 Ilatile Organi Result 0.016 0.022 0.024 0.013 0.15	Qualifier U * U U U	77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30	10/14/19 08:51 10/14/19 08:51 Analyzed 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13	Dil Fa
Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	96 100 Ilatile Organi Result 0.016 0.022 0.024 0.013	Qualifier U * U U U	77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30	10/14/19 08:51 10/14/19 08:51 Analyzed 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13	Dil Fac
Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile	96 100 Ilatile Organi Result 0.016 0.022 0.024 0.013 0.15 0.61	Qualifier U ± U U U U mpounds	77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30	Analyzed 10/14/19 08:51 Analyzed 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13	Dil Fac
Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte	96 100 Ilatile Organi Result 0.016 0.022 0.024 0.013 0.15 0.61	Qualifier U * U U U U # #########################	77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L	D	10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 Prepared	Analyzed Analyzed 10/14/19 08:51 Analyzed 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13	Dil Fac
Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol	96 100 Ilatile Organi Result 0.016 0.022 0.024 0.013 0.15 0.61 e Organic Co Result 0.29	Qualifier U * U U U U * ** ** ** ** ** ** ** ** ** *	77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 Prepared 10/12/19 07:30	Analyzed 10/14/19 08:51 Analyzed 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13	Dil Fac
Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte	96 100 Ilatile Organi Result 0.016 0.022 0.024 0.013 0.15 0.61	Qualifier U * U U U U U ** ** ** ** **	77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 10/12/19 07:30 Prepared 10/12/19 07:30	Analyzed Analyzed 10/14/19 08:51 Analyzed 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13 10/14/19 04:13	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U *	10	0.29	ug/L		10/12/19 07:30	10/13/19 01:41	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/12/19 07:30	10/13/19 01:41	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/12/19 07:30	10/13/19 01:41	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 01:41	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/12/19 07:30	10/13/19 01:41	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 01:41	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/12/19 07:30	10/13/19 01:41	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/12/19 07:30	10/13/19 01:41	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/12/19 07:30	10/13/19 01:41	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/12/19 07:30	10/13/19 01:41	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/12/19 07:30	10/13/19 01:41	1
4-Nitrophenol	0.69	U *	20	0.69	ug/L		10/12/19 07:30	10/13/19 01:41	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/12/19 07:30	10/13/19 01:41	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/12/19 07:30	10/13/19 01:41	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/12/19 07:30	10/13/19 01:41	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108B-TZ

Date Received: 10/10/19 21:00

Lab Sample ID: 460-193634-3 Date Collected: 10/10/19 11:05

Matrix: Water

Method: 8270D - Semivolatile ^{Analyte}		mpounds (G Qualifier	(C/IVIS) (COI RL	ntinuea MDL		D	Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	1.3		10		ug/L	— –	10/12/19 07:30	10/13/19 01:41	טוורמ
N-Nitrosodi-n-propylamine	0.43		1.0	0.43	-			10/13/19 01:41	
Hexachloroethane	1.2		2.0		ug/L ug/L			10/13/19 01:41	
Nitrobenzene	0.57		1.0	0.57	-			10/13/19 01:41	
sophorone	0.80		1.0	0.80	-		10/12/19 07:30		
•	0.80		10		_		10/12/19 07:30		
Bis(2-chloroethoxy)methane	1.3		2.0	0.24	-			10/13/19 01:41	
1,2,4-Trichlorobenzene					ug/L				
Naphthalene 4-Chloroaniline	1.1		10		ug/L		10/12/19 07:30		
	1.9		10		ug/L		10/12/19 07:30		
Hexachlorobutadiene	0.78		1.0	0.78	-		10/12/19 07:30		
2-Methylnaphthalene	1.1		10		ug/L		10/12/19 07:30		
Hexachlorocyclopentadiene	1.7		10		ug/L			10/13/19 01:41	
2-Chloronaphthalene	1.2		10		ug/L			10/13/19 01:41	
2-Nitroaniline	0.47		10	0.47	=			10/13/19 01:41	
Dimethyl phthalate	0.77		10	0.77	-			10/13/19 01:41	
Acenaphthylene	0.82		10	0.82	=			10/13/19 01:41	
2,6-Dinitrotoluene	0.39		2.0	0.39	-			10/13/19 01:41	
3-Nitroaniline	0.96		10	0.96			10/12/19 07:30	10/13/19 01:41	
Acenaphthene	1.1		10		ug/L		10/12/19 07:30	10/13/19 01:41	
Dibenzofuran	1.1	U	10	1.1	ug/L		10/12/19 07:30	10/13/19 01:41	
2,4-Dinitrotoluene	1.0	U	2.0		ug/L		10/12/19 07:30	10/13/19 01:41	
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/12/19 07:30	10/13/19 01:41	
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/12/19 07:30	10/13/19 01:41	
Fluorene	0.91	U	10	0.91	ug/L		10/12/19 07:30	10/13/19 01:41	
4-Nitroaniline	0.54	U	10	0.54	ug/L		10/12/19 07:30	10/13/19 01:41	
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/12/19 07:30	10/13/19 01:41	
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/12/19 07:30	10/13/19 01:41	
Phenanthrene	0.58	U	10	0.58	ug/L		10/12/19 07:30	10/13/19 01:41	
Anthracene	0.63	U	10	0.63	ug/L		10/12/19 07:30	10/13/19 01:41	
Carbazole	0.68	U	10	0.68	ug/L		10/12/19 07:30	10/13/19 01:41	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/12/19 07:30	10/13/19 01:41	
Fluoranthene	0.84	U	10	0.84	ug/L		10/12/19 07:30	10/13/19 01:41	
Pyrene	1.6	U	10	1.6	ug/L		10/12/19 07:30	10/13/19 01:41	
Butyl benzyl phthalate	0.85	. U	10	0.85	ug/L		10/12/19 07:30	10/13/19 01:41	
3,3'-Dichlorobenzidine	1.4	U	10		ug/L		10/12/19 07:30	10/13/19 01:41	
Chrysene	0.91		2.0	0.91				10/13/19 01:41	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L		10/12/19 07:30	10/13/19 01:41	
Di-n-octyl phthalate	4.8		10		ug/L			10/13/19 01:41	
Benzo[k]fluoranthene	0.67		1.0	0.67	-			10/13/19 01:41	
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/13/19 01:41	
Dibenz(a,h)anthracene	0.72		1.0		ug/L			10/13/19 01:41	
Benzo[g,h,i]perylene	1.4		10		ug/L		10/12/19 07:30		
Diphenyl ether	1.2		10		ug/L		10/12/19 07:30		
n,n'-Dimethylaniline	0.91		1.0	0.91			10/12/19 07:30		
Caprolactam	0.68		1.0	0.68	-		10/12/19 07:30		
	0.63		10		ug/L ug/L		10/12/19 07:30		
bis (2-chloroisopropyl) ether									
Bisphenol-A N-Methylaniline	9.9 0.48	U ±	10 5.0		ug/L ug/L		10/12/19 07:30	10/13/19 01:41	

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108B-TZ

Lab Sample ID: 460-193634-3 Date Collected: 10/10/19 11:05

Matrix: Water

Date Received: 10/10/19 21:00

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L	_				10/12/19 07:30	10/13/19 01:41	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	105		51 - 108					10/12/19 07:30	10/13/19 01:41	
Phenol-d5 (Surr)	36		14 - 39					10/12/19 07:30	10/13/19 01:41	
Terphenyl-d14 (Surr)	108		40 - 148					10/12/19 07:30	10/13/19 01:41	
2,4,6-Tribromophenol (Surr)	121		26 - 139					10/12/19 07:30	10/13/19 01:41	
2-Fluorophenol (Surr)	55		25 - 58					10/12/19 07:30	10/13/19 01:41	
2-Fluorobiphenyl (Surr)	94		45 - 107					10/12/19 07:30	10/13/19 01:41	
Method: 300.0 - Anions, Ion (Chromatogra	iphy								
Analyte	Result	Qualifier	RL	N	DL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	60.5		2.76		.32	mg/L			10/12/19 11:38	2
Nitrate as N	0.056	U	0.10	0.	056	mg/L			10/12/19 08:39	
Nitrite as N	0.076	U	0.12	0.	076	mg/L			10/12/19 08:39	
Sulfate	0.58	J	0.60	(.35	mg/L			10/12/19 08:39	
Method: 200.8 - Metals (ICP/N	MS) - Total R	ecoverab	le							
Analyte		Qualifier	RL	N	DL	Unit	D	Prepared	Analyzed	Dil Fa
Sodium	39800		250	6	6.8	ug/L		10/16/19 09:08	10/16/19 14:23	
Magnesium	13700		250	2	4.8	ug/L		10/16/19 09:08	10/16/19 14:23	
Potassium	5100		250	7	3.5	ug/L		10/16/19 09:08	10/16/19 14:23	
Calcium	29200		250		233	ug/L		10/16/19 09:08	10/16/19 14:23	
· Method: 6010D - Metals (ICP)	- Dissolved									
Analyte		Qualifier	RL	N	DL	Unit	D	Prepared	Analyzed	Dil Fa
Cobalt, Dissolved	189		50.0		1.7	ug/L		10/15/19 08:35	10/15/19 19:04	
Iron, Dissolved	60400		150	3	4.2	ug/L		10/15/19 08:35	10/15/19 19:04	
Manganese, Dissolved	2210		15.0	(.99	ug/L		10/15/19 08:35	10/15/19 19:04	
General Chemistry										
Analyte	Result	Qualifier	RL	N	DL	Unit	D	Prepared	Analyzed	Dil Fa
Ammonia (as N)	2.8		0.10	0.	068	mg/L			10/14/19 13:43	
Bicarbonate Alkalinity as CaCO3	132		5.0		5.0	mg/L			10/15/19 14:52	
Carbonate Alkalinity as CaCO3	5.0	U	5.0		5.0	mg/L			10/15/19 14:52	
Sulfide	0.58	U	1.0		.58	mg/L			10/15/19 16:45	
·liant Samnla ID· IIDA_1/	ነሳ ፕፖ						8 .	h Camala	In. /60-103	621

Client Sample ID: UPA-102-TZ

Date Collected: 10/10/19 14:30

Date Received: 10/10/19 21:00

Lab	Sample	ID:	460-	9000	93	1634-4	
			~ ~				

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U –	1.0	0.40	ug/L			10/14/19 15:31	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/14/19 15:31	1
Vinyl chloride	3.0		1.0	0.17	ug/L			10/14/19 15:31	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/14/19 15:31	1
Methylene Chloride	0.77	J	1.0	0.32	ug/L			10/14/19 15:31	1
Acetone	4.4	U	5.0	4.4	ug/L			10/14/19 15:31	1
Carbon disulfide	3.4		1.0	0.82	ug/L			10/14/19 15:31	1
1,1-Dichloroethene	0.43	J	1.0	0.26	ug/L			10/14/19 15:31	1
1,1-Dichloroethane	2.9		1.0	0.26	ug/L			10/14/19 15:31	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-102-TZ

Lab Sample ID: 460-193634-4 Data Callacted: 10/10/19 14:30

Date Collected: 10/10/19 14:30								Matrix	: vvater
Date Received: 10/10/19 21:00									
Method: 8260C - Volatile Orga	nic Compo	unds by G	iC/MS (Con	tinued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			4.0	2.21				10/11/10 15 01	

Method: 8260C - Volatile Org Analyte		unds by (Qualifier	3C/MS (Cor RL		Unit	D	Prepared	Analyzed	Dil Fac
_	0.49		1.0		ug/L		riepaieu	10/14/19 15:31	Dii Fac
trans-1,2-Dichloroethene					_				
cis-1,2-Dichloroethene	9.6		1.0		ug/L			10/14/19 15:31	1
Chloroform	0.33	U	1.0		ug/L			10/14/19 15:31	1
1,2-Dichloroethane	23		1.0		ug/L			10/14/19 15:31	1
2-Butanone (MEK)	1.9		5.0		ug/L			10/14/19 15:31	1
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/14/19 15:31	1
Carbon tetrachloride	0.21		1.0		ug/L			10/14/19 15:31	1
Bromodichloromethane	0.34		1.0		ug/L			10/14/19 15:31	1
1,2-Dichloropropane	0.35		1.0		ug/L			10/14/19 15:31	1
cis-1,3-Dichloropropene	0.22	U	1.0		ug/L			10/14/19 15:31	1
Trichloroethene	4.9		1.0		ug/L			10/14/19 15:31	1
Dibromochloromethane	0.28		1.0		ug/L			10/14/19 15:31	1
1,1,2-Trichloroethane	0.43	U	1.0		ug/L			10/14/19 15:31	1
Benzene	180		1.0		ug/L			10/14/19 15:31	1
trans-1,3-Dichloropropene	0.49	U	1.0		ug/L			10/14/19 15:31	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/14/19 15:31	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/14/19 15:31	1
2-Hexanone	1.1	U	5.0		ug/L			10/14/19 15:31	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/14/19 15:31	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/14/19 15:31	1
Toluene	0.69	J	1.0	0.38	ug/L			10/14/19 15:31	1
Chlorobenzene	51		1.0	0.38	ug/L			10/14/19 15:31	1
Ethylbenzene	0.55	J	1.0	0.30	ug/L			10/14/19 15:31	1
Styrene	0.42	U	1.0	0.42	ug/L			10/14/19 15:31	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/14/19 15:31	1
Diethyl ether	6.4		1.0	0.21	ug/L			10/14/19 15:31	1
MTBE	0.47	U	1.0	0.47	ug/L			10/14/19 15:31	1
Tetrahydrofuran	73		2.0	1.0	ug/L			10/14/19 15:31	1
Cyclohexane	3.3		1.0	0.32	ug/L			10/14/19 15:31	1
1,4-Dioxane	270		50	28	ug/L			10/14/19 15:31	1
1,2,4-Trimethylbenzene	0.37	. U	1.0	0.37	ug/L			10/14/19 15:31	1
1,3,5-Trimethylbenzene	0.33	U	1.0		ug/L			10/14/19 15:31	1
Isopropylbenzene	4.8		1.0		ug/L			10/14/19 15:31	1
N-Propylbenzene	0.32		1.0		ug/L			10/14/19 15:31	1
Methylcyclohexane	0.99		1.0		ug/L			10/14/19 15:31	1
Indane	2.1		1.0		ug/L			10/14/19 15:31	1
Dichlorofluoromethane	33		1.0		ug/L			10/14/19 15:31	1
1,2,3-Trimethylbenzene	0.36	U	1.0		ug/L			10/14/19 15:31	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Cyclopentane, 1,3-dimethyl-	6.2	JN	ug/L	3	.62	2453-00-1		10/14/19 15:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		74 - 132					10/14/19 15:31	1
Toluene-d8 (Surr)	100		80 - 120					10/14/19 15:31	1
4-Bromofluorobenzene	97		77 - 124					10/14/19 15:31	1
Dibromofluoromethane (Surr)	100		72 - 131					10/14/19 15:31	1

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Result Qualifier

0.16 U *

Client Sample ID: UPA-102-TZ

Lab Sample ID: 460-193634-4 Date Collected: 10/10/19 14:30

RL

0.50

MDL Unit

0.16 ug/L

Prepared

10/12/19 07:30 10/14/19 04:34

Matrix: Water

Dil Fac

10

Analyzed

Date Received: 10/10/19 21:00

Analyte

Benzo[a]anthracene

Dibenzofuran

Fluorene

4-Nitroaniline

2,4-Dinitrotoluene

Diethyl phthalate

4-Chlorophenyl phenyl ether

Don Edfalan and and	5	•	0.00	0	-9		10,122,100,100	10.11.10	
Benzo[a]pyrene	0.22	U	0.50	0.22	ug/L		10/12/19 07:30	10/14/19 04:34	10
Benzo[b]fluoranthene	0.24	U	0.50	0.24	ug/L		10/12/19 07:30	10/14/19 04:34	10
Hexachlorobenzene	0.13	U	0.20	0.13	ug/L		10/12/19 07:30	10/14/19 04:34	10
Pentachlorophenol	1.5	U *	2.0	1.5	ug/L		10/12/19 07:30	10/14/19 04:34	10
Bis(2-chloroethyl)ether	35		0.30	0.26	ug/L		10/12/19 07:30	10/14/19 04:34	10
Method: 8270D - Semivola	ntile Organic Co	mpounds	(GC/MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	1.2	J * J	10	0.29	ug/L		10/12/19 07:30	10/13/19 02:02	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/12/19 07:30	10/13/19 02:02	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/12/19 07:30	10/13/19 02:02	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 02:02	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/12/19 07:30	10/13/19 02:02	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 02:02	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/12/19 07:30	10/13/19 02:02	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/12/19 07:30	10/13/19 02:02	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/12/19 07:30	10/13/19 02:02	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/12/19 07:30	10/13/19 02:02	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/12/19 07:30	10/13/19 02:02	1
4-Nitrophenol	0.69	U *	20	0.69	ug/L		10/12/19 07:30	10/13/19 02:02	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/12/19 07:30	10/13/19 02:02	1
Bis(2-chloroethyl)ether	35		1.0	0.30	ug/L		10/12/19 07:30	10/13/19 02:02	1
1,3-Dichlorobenzene	2.0	U	10		ug/L		10/12/19 07:30	10/13/19 02:02	1
1,4-Dichlorobenzene	1.3	J	10	1.3	ug/L		10/12/19 07:30	10/13/19 02:02	1
1,2-Dichlorobenzene	1.3	U	10		ug/L		10/12/19 07:30	10/13/19 02:02	1
N-Nitrosodi-n-propylamine	0.43	U	1.0		ug/L		10/12/19 07:30	10/13/19 02:02	1
Hexachloroethane	1.2		2.0	1.2	ug/L		10/12/19 07:30	10/13/19 02:02	1
Nitrobenzene	0.57		1.0	0.57	ug/L		10/12/19 07:30	10/13/19 02:02	1
Isophorone	0.80		10		ug/L			10/13/19 02:02	
Bis(2-chloroethoxy)methane	0.24		10		ug/L			10/13/19 02:02	1
1,2,4-Trichlorobenzene	1.3		2.0		ug/L			10/13/19 02:02	1
Naphthalene	1.1		10		ug/L			10/13/19 02:02	1
4-Chloroaniline	1.9		10		ug/L			10/13/19 02:02	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L			10/13/19 02:02	1
2-Methylnaphthalene	1.1		10	1.1				10/13/19 02:02	1
Hexachlorocyclopentadiene	1.7		10		ug/L			10/13/19 02:02	1
2-Chloronaphthalene	1.2		10		ug/L			10/13/19 02:02	1
2-Nitroaniline	0.47		10		ug/L			10/13/19 02:02	1
Dimethyl phthalate	0.77		10		ug/L			10/13/19 02:02	1
Acenaphthylene	0.82		10	0.82				10/13/19 02:02	1
2,6-Dinitrotoluene	0.39		2.0		ug/L		10/12/19 07:30		1
3-Nitroaniline	0.96		10		ug/L			10/13/19 02:02	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/12/19 07:30	10/13/19 02:02	1

Eurofins TestAmerica, Edison

10/12/19 07:30 10/13/19 02:02

10/12/19 07:30 10/13/19 02:02

10/12/19 07:30 10/13/19 02:02

10/12/19 07:30 10/13/19 02:02

10/12/19 07:30 10/13/19 02:02

10/12/19 07:30 10/13/19 02:02

11/11/2019

1

1

10

2.0

10

10

10

10

1.1 ug/L

1.0 ug/L

0.98 ug/L

1.3 ug/L

0.91 ug/L

0.54 ug/L

1.1 U

1.0 U

0.98 U

1.3 U

0.91 U

0.54 U

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-102-TZ

Lab Sample ID: 460-193634-4 Date Collected: 10/10/19 14:30

Matrix: Water

Date Received: 10/10/19 21:00

Method: 8270D - Semivolatile Analyte	Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fa
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/12/19 07:30	10/13/19 02:02	
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/12/19 07:30	10/13/19 02:02	
Phenanthrene	0.58	U	10	0.58	3 ug/L		10/12/19 07:30	10/13/19 02:02	
Anthracene	0.63	U	10	0.63	ug/L		10/12/19 07:30	10/13/19 02:02	
Carbazole	0.68	U	10	0.68	ug/L		10/12/19 07:30	10/13/19 02:02	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/12/19 07:30	10/13/19 02:02	
Fluoranthene	0.84	U	10	0.84	ug/L		10/12/19 07:30	10/13/19 02:02	
Pyrene	1.6	U	10	1.6	ug/L		10/12/19 07:30	10/13/19 02:02	
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/12/19 07:30	10/13/19 02:02	
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/12/19 07:30	10/13/19 02:02	
Chrysene	0.91	U	2.0	0.9	ug/L		10/12/19 07:30	10/13/19 02:02	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/12/19 07:30	10/13/19 02:02	
Di-n-octyl phthalate	4.8	U	10		ug/L		10/12/19 07:30	10/13/19 02:02	
Benzo[k]fluoranthene	0.67	U	1.0		ug/L		10/12/19 07:30	10/13/19 02:02	
Indeno[1,2,3-cd]pyrene	1.3		2.0		3 ug/L		10/12/19 07:30	10/13/19 02:02	
Dibenz(a,h)anthracene	0.72		1.0		ug/L		10/12/19 07:30	10/13/19 02:02	
Benzo[g,h,i]perylene	1.4	U	10		l ug/L		10/12/19 07:30	10/13/19 02:02	
Diphenyl ether	1.7		10		ug/L		10/12/19 07:30	10/13/19 02:02	
n,n'-Dimethylaniline	0.91		1.0		ug/L		10/12/19 07:30	10/13/19 02:02	
Caprolactam	0.68		10		3 ug/L		10/12/19 07:30	10/13/19 02:02	
bis (2-chloroisopropyl) ether	0.63		10		ug/L		10/12/19 07:30		
Bisphenol-A		U ±	10		ug/L		10/12/19 07:30		
N-Methylaniline	1.6		5.0		ug/L			10/13/19 02:02	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	8.6	J	ug/L		2.40		10/12/19 07:30	10/13/19 02:02	
Unknown	13	J	ug/L		2.53		10/12/19 07:30	10/13/19 02:02	
Unknown	6.8	J	ug/L		2.67		10/12/19 07:30	10/13/19 02:02	
2-Isopropoxyphenol	17	JN	ug/L		5.40	4812-20-8	10/12/19 07:30	10/13/19 02:02	
Unknown	6.4	J	ug/L	!	5.03		10/12/19 07:30	10/13/19 02:02	
Unknown	24	J	ug/L		5. <i>14</i>		10/12/19 07:30	10/13/19 02:02	
Unknown	180	J	ug/L		5.99		10/12/19 07:30	10/13/19 02:02	
Unknown	11	J	ug/L		7.28		10/12/19 07:30	10/13/19 02:02	
2(3H)-Benzothiazolone	13	JN	ug/L		3.07	934-34-9		10/13/19 02:02	
Benzenesulfonamide.		JN	ug/L		3.23		10/12/19 07:30		
N-ethyl-4-methyl-			Ü						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	102		51 - 108	-			10/12/19 07:30	10/13/19 02:02	-
Phenol-d5 (Surr)	33		14 - 39				10/12/19 07:30	10/13/19 02:02	
Terphenyl-d14 (Surr)	102		40 - 148				10/12/19 07:30	10/13/19 02:02	
2,4,6-Tribromophenol (Surr)	124		26 - 139				10/12/19 07:30	10/13/19 02:02	
2-Fluorophenol (Surr)	52		25 - 58				10/12/19 07:30	10/13/19 02:02	
2-Fluorobiphenyl (Surr)	96		45 - 107				10/12/19 07:30	10/13/19 02:02	
Method: 300.0 - Anions, Ion C			_				_		
Analyte		Qualifier	RL		. Unit	D	Prepared	Analyzed	Dil Fa
Chloride	106		4.56		mg/L			10/12/19 11:53	38
Nitrate as N	0.056		0.10		mg/L			10/12/19 08:54	
Nitrite as N	0.076		0.12		mg/L			10/12/19 08:54	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-102-TZ

Date Collected: 10/10/19 14:30 Date Received: 10/10/19 21:00 Lab Sample ID: 460-193634-4

Matrix: Water

Job ID: 460-193458-1

Method: 300.0 - Anions, Ion C	hromatogra	phy (Contin	ued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	28.8		22.8	13.1	mg/L			10/12/19 11:53	38
- Method: 200.8 - Metals (ICP/M	S) - Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	75400		250	66.8	ug/L		10/16/19 09:08	10/16/19 14:32	5
Magnesium	34600		250	24.8	ug/L		10/16/19 09:08	10/16/19 14:32	5
Potassium	7230		250	73.5	ug/L		10/16/19 09:08	10/16/19 14:32	5
Calcium	77500		250	233	ug/L		10/16/19 09:08	10/16/19 14:32	5
Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	100		50.0	1.7	ug/L		10/15/19 08:35	10/15/19 19:08	1
Iron, Dissolved	26100		150	34.2	ug/L		10/15/19 08:35	10/15/19 19:08	1
Manganese, Dissolved	5580		15.0	0.99	ug/L		10/15/19 08:35	10/15/19 19:08	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.55		0.10	0.068	mg/L			10/14/19 13:44	1
Bicarbonate Alkalinity as CaCO3	312		5.0	5.0	mg/L			10/15/19 15:01	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/15/19 15:01	1
Sulfide	0.58		1.0		mg/L			10/15/19 16:45	

Client Sample ID: TBGW_101019

Date Collected: 10/10/19 00:00

Date Received: 10/10/19 21:00

Lab Sample ID: 460-193634-5 Matrix: Water

Manux: Aagre

Method: 8260C SIM - Volat	ile Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/16/19 03:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97		72 - 133			-		10/16/19 03:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/14/19 07:39	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/14/19 07:39	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/14/19 07:39	1
Chloroethane	0.32	U *	1.0	0.32	ug/L			10/14/19 07:39	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/14/19 07:39	1
Acetone	15		5.0	4.4	ug/L			10/14/19 07:39	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/14/19 07:39	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/14/19 07:39	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/14/19 07:39	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/14/19 07:39	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/14/19 07:39	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/14/19 07:39	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/14/19 07:39	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/14/19 07:39	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/14/19 07:39	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/14/19 07:39	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_101019

Lab Sample ID: 460-193634-5 Date Collected: 10/10/19 00:00

Matrix: Water

Date Received: 10/10/19 21:00

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/14/19 07:39	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/14/19 07:39	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/14/19 07:39	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/14/19 07:39	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/14/19 07:39	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/14/19 07:39	1
Benzene	0.20	U	1.0	0.20	ug/L			10/14/19 07:39	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/14/19 07:39	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/14/19 07:39	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/14/19 07:39	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/14/19 07:39	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/14/19 07:39	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/14/19 07:39	1
Toluene	0.38	U	1.0	0.38	ug/L			10/14/19 07:39	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/14/19 07:39	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/14/19 07:39	1
Styrene	0.42	U	1.0	0.42	ug/L			10/14/19 07:39	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/14/19 07:39	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/14/19 07:39	1
MTBE	0.47	U	1.0	0.47	ug/L			10/14/19 07:39	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/14/19 07:39	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/14/19 07:39	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/14/19 07:39	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/14/19 07:39	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/14/19 07:39	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/14/19 07:39	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/14/19 07:39	1
Indane	0.35	U	1.0	0.35	ug/L			10/14/19 07:39	1
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/14/19 07:39	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/14/19 07:39	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/14/19 07:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	-	74 - 132					10/14/19 07:39	-
Toluene-d8 (Surr)	99		80 - 120					10/14/19 07:39	1
4-Bromofluorobenzene	97		77 - 124					10/14/19 07:39	1
Dibromofluoromethane (Surr)	99		72 - 131					10/14/19 07:39	

Client Sample ID: BW-2(128) Lab Sample ID: 460-193677-1

Date Collected: 10/11/19 10:25 Matrix: Water

Date Received: 10/11/19 21:00

	latile Organic Com	pounds ((GC/MS)						
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	47		2.0	1.0	ug/L			10/17/19 18:19	5
Surrogate	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	107		72 - 133			-		10/17/19 18:19	- 5

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: BW-2(128)

Date Received: 10/11/19 21:00

Lab Sample ID: 460-193677-1 Date Collected: 10/11/19 10:25

Matrix: Water

nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	0.40	U	1.0	0.40	ug/L			10/16/19 03:21	
Bromomethane	0.55	U	1.0	0.55	ug/L			10/16/19 03:21	
/inyl chloride	0.17	U	1.0	0.17	ug/L			10/16/19 03:21	
Chloroethane	0.32	U	1.0	0.32	ug/L			10/16/19 03:21	
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/16/19 03:21	
Acetone	4.4	U	5.0	4.4	ug/L			10/16/19 03:21	
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/16/19 03:21	
,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/16/19 03:21	
,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/16/19 03:21	
rans-1,2-Dichloroethene	0.24	U	1.0	0.24	_			10/16/19 03:21	
is-1,2-Dichloroethene	0.22		1.0	0.22	_			10/16/19 03:21	
Chloroform	0.33		1.0	0.33	_			10/16/19 03:21	
,2-Dichloroethane	0.43		1.0	0.43	_			10/16/19 03:21	
!-Butanone (MEK)	1.9		5.0		ug/L			10/16/19 03:21	
,1,1-Trichloroethane	0.24		1.0	0.24				10/16/19 03:21	
Carbon tetrachloride	0.21		1.0	0.21	-			10/16/19 03:21	
Bromodichloromethane	0.34		1.0	0.34	-			10/16/19 03:21	
,2-Dichloropropane	0.35		1.0	0.35	-			10/16/19 03:21	
is-1,3-Dichloropropene	0.33		1.0	0.22	-			10/16/19 03:21	
richloroethene	0.22		1.0	0.22	-			10/16/19 03:21	
Dibromochloromethane	0.28		1.0	0.31	-			10/16/19 03:21	
,1,2-Trichloroethane	0.28		1.0	0.28	-			10/16/19 03:21	
	0.43				-				
Benzene			1.0		ug/L			10/16/19 03:21	
rans-1,3-Dichloropropene	0.49		1.0	0.49	-			10/16/19 03:21	
Bromoform	0.54		1.0	0.54	-			10/16/19 03:21	
-Methyl-2-pentanone	1.3		5.0		ug/L			10/16/19 03:21	
-Hexanone	1.1		5.0		ug/L			10/16/19 03:21	
etrachloroethene	0.25		1.0	0.25	-			10/16/19 03:21	
,1,2,2-Tetrachloroethane	0.37		1.0	0.37	_			10/16/19 03:21	
oluene	0.38	U	1.0	0.38	_			10/16/19 03:21	
Chlorobenzene	2.2		1.0	0.38	-			10/16/19 03:21	
Ethylbenzene	0.30		1.0	0.30	-			10/16/19 03:21	
Styrene	0.42		1.0	0.42	-			10/16/19 03:21	
(ylenes, Total	0.65	U	2.0	0.65	ug/L			10/16/19 03:21	
Diethyl ether	5.8		1.0	0.21	_			10/16/19 03:21	
MTBE	0.47	U	1.0	0.47	_			10/16/19 03:21	
etrahydrofuran	1.0	U	2.0	1.0	ug/L			10/16/19 03:21	
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/16/19 03:21	
,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/16/19 03:21	
,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/16/19 03:21	
sopropylbenzene	0.34	U	1.0	0.34	ug/L			10/16/19 03:21	
I-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/16/19 03:21	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/16/19 03:21	
ndane	0.35	U	1.0	0.35				10/16/19 03:21	
Dichlorofluoromethane	0.34	U	1.0	0.34				10/16/19 03:21	
,2,3-Trimethylbenzene	0.36	U	1.0	0.36				10/16/19 03:21	
-					-				
entatively Identified Compound	Est. Result	Ouglifier	Unit I	ו ס	RT C	AS No.	Prepared	Analyzed	Dil Fa

Eurofins TestAmerica, Edison 11/11/2019

Page 57 of 2942

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: BW-2(128)

Lab Sample ID: 460-193677-1

Matrix: Water

Date Collected: 10/11/19 10:25 Date Received: 10/11/19 21:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	74 - 132		10/16/19 03:21	1
Toluene-d8 (Surr)	93	80 - 120		10/16/19 03:21	1
4-Bromofluorobenzene	95	77 - 124		10/16/19 03:21	1
Dibromofluoromethane (Surr)	97	72 - 131		10/16/19 03:21	1

Method: 8270D SIM - Sem	ivolatile Organi	atile Organic Compounds (GC/MS SIM)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U ±	0.050	0.016	ug/L		10/12/19 07:30	10/13/19 05:43	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/12/19 07:30	10/13/19 05:43	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/12/19 07:30	10/13/19 05:43	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/12/19 07:30	10/13/19 05:43	1
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/12/19 07:30	10/13/19 05:43	1
Bis(2-chloroethyl)ether	0.10		0.030	0.026	ug/L		10/12/19 07:30	10/13/19 05:43	1

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U *	10	0.29	ug/L		10/12/19 07:30	10/13/19 05:10	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/12/19 07:30	10/13/19 05:10	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/12/19 07:30	10/13/19 05:10	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 05:10	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/12/19 07:30	10/13/19 05:10	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 05:10	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/12/19 07:30	10/13/19 05:10	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/12/19 07:30	10/13/19 05:10	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/12/19 07:30	10/13/19 05:10	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/12/19 07:30	10/13/19 05:10	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/12/19 07:30	10/13/19 05:10	1
4-Nitrophenol	0.69	U *	20	0.69	ug/L		10/12/19 07:30	10/13/19 05:10	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/12/19 07:30	10/13/19 05:10	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/12/19 07:30	10/13/19 05:10	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/12/19 07:30	10/13/19 05:10	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/12/19 07:30	10/13/19 05:10	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/12/19 07:30	10/13/19 05:10	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/12/19 07:30	10/13/19 05:10	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/12/19 07:30	10/13/19 05:10	
Isophorone	0.80	U	10	0.80	ug/L		10/12/19 07:30	10/13/19 05:10	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 05:10	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/12/19 07:30	10/13/19 05:10	1
Naphthalene	1.1	U	10	1.1	ug/L		10/12/19 07:30	10/13/19 05:10	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/12/19 07:30	10/13/19 05:10	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/12/19 07:30	10/13/19 05:10	
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/12/19 07:30	10/13/19 05:10	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/12/19 07:30	10/13/19 05:10	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/12/19 07:30	10/13/19 05:10	
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/12/19 07:30	10/13/19 05:10	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/12/19 07:30	10/13/19 05:10	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/12/19 07:30	10/13/19 05:10	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/12/19 07:30	10/13/19 05:10	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/12/19 07:30	10/13/19 05:10	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/12/19 07:30	10/13/19 05:10	1

Page 58 of 2942

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: BW-2(128)

Date Received: 10/11/19 21:00

Terphenyl-d14 (Surr)

2-Fluorophenol (Surr)

2-Fluorobiphenyl (Surr)

2,4,6-Tribromophenol (Surr)

Lab Sample ID: 460-193677-1 Date Collected: 10/11/19 10:25

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenzofuran	1.1	U	10	1.1	ug/L		10/12/19 07:30	10/13/19 05:10	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/12/19 07:30	10/13/19 05:10	1
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/12/19 07:30	10/13/19 05:10	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/12/19 07:30	10/13/19 05:10	1
Fluorene	0.91	U	10	0.91	ug/L		10/12/19 07:30	10/13/19 05:10	1
4-Nitroaniline	0.54	U	10	0.54	ug/L		10/12/19 07:30	10/13/19 05:10	1
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/12/19 07:30	10/13/19 05:10	1
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/12/19 07:30	10/13/19 05:10	1
Phenanthrene	0.58	U	10	0.58	ug/L		10/12/19 07:30	10/13/19 05:10	1
Anthracene	0.63	U	10	0.63	ug/L		10/12/19 07:30	10/13/19 05:10	1
Carbazole	0.68	U	10	0.68	ug/L		10/12/19 07:30	10/13/19 05:10	1
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/12/19 07:30	10/13/19 05:10	1
Fluoranthene	0.84	U	10	0.84	ug/L		10/12/19 07:30	10/13/19 05:10	1
Pyrene	1.6	U	10	1.6	ug/L		10/12/19 07:30	10/13/19 05:10	1
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/12/19 07:30	10/13/19 05:10	1
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/12/19 07:30	10/13/19 05:10	1
Chrysene	0.91	U	2.0	0.91	ug/L		10/12/19 07:30	10/13/19 05:10	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/12/19 07:30	10/13/19 05:10	1
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/12/19 07:30	10/13/19 05:10	1
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/12/19 07:30	10/13/19 05:10	1
Indeno[1,2,3-cd]pyrene	1.3	U	2.0	1.3	ug/L		10/12/19 07:30	10/13/19 05:10	1
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/12/19 07:30	10/13/19 05:10	1
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/12/19 07:30	10/13/19 05:10	1
Diphenyl ether	1.2	U	10	1.2	ug/L		10/12/19 07:30	10/13/19 05:10	1
n,n'-Dimethylaniline	0.91	U	1.0	0.91	ug/L		10/12/19 07:30	10/13/19 05:10	1
Caprolactam	0.68	U	10	0.68	ug/L		10/12/19 07:30	10/13/19 05:10	1
bis (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/12/19 07:30	10/13/19 05:10	1
Bisphenol-A	9.9	U	10	9.9	ug/L		10/12/19 07:30	10/13/19 05:10	1
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/12/19 07:30	10/13/19 05:10	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				10/12/19 07:30	10/13/19 05:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	99		51 - 108				10/12/19 07:30	10/13/19 05:10	1
Phenol-d5 (Surr)	34		14 - 39				10/12/19 07:30	10/13/19 05:10	1

Method: 300.0 - Anion Analyte	· -	iphy Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	40.8		1.80	0.21	mg/L		<u> </u>	10/12/19 19:51	15
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/12/19 15:03	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/12/19 15:03	1
Sulfate	7.30		0.60	0.35	mg/L			10/12/19 15:03	1

40 - 148

26 - 139

25 - 58

45 _ 107

98

111

49

87

Eurofins TestAmerica, Edison 11/11/2019

10/12/19 07:30 10/13/19 05:10

10/12/19 07:30 10/13/19 05:10

10/12/19 07:30 10/13/19 05:10

10/12/19 07:30 10/13/19 05:10

Client: Golder Associates Inc.

5.0 U

0.58 U

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: BW-2(128)

Date Collected: 10/11/19 10:25 Date Received: 10/11/19 21:00 Lab Sample ID: 460-193677-1

Matrix: Water

Job ID: 460-193458-1

Method: 200.8 - Metals (ICP/MS	6) - Total R	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	25200		250	66.8	ug/L		10/16/19 09:08	10/16/19 14:44	- 5
Magnesium	10200		250	24.8	ug/L		10/16/19 09:08	10/16/19 14:44	5
Potassium	8890		250	73.5	ug/L		10/16/19 09:08	10/16/19 14:44	5
Calcium	25400		250	233	ug/L		10/16/19 09:08	10/16/19 14:44	į
- Method: 6010D - Metals (ICP) -	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	18.6	J	50.0	1.7	ug/L		10/17/19 08:59	10/17/19 14:49	1
Iron, Dissolved	3040		150	34.2	ug/L		10/17/19 08:59	10/17/19 14:49	1
Manganese, Dissolved	1870		15.0	0.99	ug/L		10/17/19 08:59	10/17/19 14:49	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	7.4		0.10	0.068	mg/L			10/14/19 14:02	1
Bicarbonate Alkalinity as CaCO3	121		5.0	5.0	mg/L			10/15/19 16:47	1

Client Sample ID: BW-2(138)

Date Collected: 10/11/19 11:10

Carbonate Alkalinity as CaCO3

Sulfide

Date Received: 10/11/19 21:00

Lab Sample ID: 460-193677-2

10/15/19 16:47

10/15/19 16:45

Matrix: Water

Method: 8260C SIM - Vol	atile Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	47		0.40	0.20	ug/L			10/17/19 08:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	105		72 - 133					10/17/19 08:13	1

5.0

1.0

5.0 mg/L

0.58 mg/L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/16/19 03:45	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/16/19 03:45	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/16/19 03:45	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/16/19 03:45	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/16/19 03:45	1
Acetone	4.4	U	5.0	4.4	ug/L			10/16/19 03:45	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/16/19 03:45	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/16/19 03:45	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/16/19 03:45	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/16/19 03:45	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/16/19 03:45	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/16/19 03:45	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/16/19 03:45	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/16/19 03:45	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/16/19 03:45	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/16/19 03:45	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/16/19 03:45	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/16/19 03:45	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/16/19 03:45	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/16/19 03:45	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: BW-2(138)

Lab Sample ID: 460-193677-2

Matrix: Water

Date Collected: 10/11/19 11:10 Date Received: 10/11/19 21:00

Method: 8260C - Volatile Org Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/16/19 03:45	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/16/19 03:45	1
Benzene	0.20	U	1.0	0.20	ug/L			10/16/19 03:45	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/16/19 03:45	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/16/19 03:45	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/16/19 03:45	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/16/19 03:45	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/16/19 03:45	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/16/19 03:45	1
Toluene	0.38	U	1.0	0.38	ug/L			10/16/19 03:45	1
Chlorobenzene	3.0		1.0	0.38	ug/L			10/16/19 03:45	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/16/19 03:45	1
Styrene	0.42	U	1.0	0.42	ug/L			10/16/19 03:45	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/16/19 03:45	1
Diethyl ether	7.9		1.0	0.21	ug/L			10/16/19 03:45	1
МТВЕ	0.47	U	1.0		ug/L			10/16/19 03:45	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/16/19 03:45	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/16/19 03:45	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/16/19 03:45	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/16/19 03:45	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/16/19 03:45	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/16/19 03:45	1
Methylcyclohexane	0.26	U	1.0		ug/L			10/16/19 03:45	1
Indane	0.35	U	1.0	0.35	ug/L			10/16/19 03:45	1
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/16/19 03:45	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/16/19 03:45	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/16/19 03:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		74 - 132					10/16/19 03:45	1
Toluene-d8 (Surr)	92		80 - 120					10/16/19 03:45	1
4-Bromofluorobenzene	94		77 - 124					10/16/19 03:45	1
Dibromofluoromethane (Surr) : Method: 8270D SIM - Semivo	96 Iatila Organi	c Compo	72 - 131 unde /GC/N	IC CIMI				10/16/19 03:45	1
Analyte	Result	Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U *	0.050	0.016	ug/L		10/12/19 07:30	10/13/19 06:03	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/12/19 07:30	10/13/19 06:03	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/12/19 07:30	10/13/19 06:03	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/12/19 07:30	10/13/19 06:03	1
Pentachlorophenol	0.15	U ±	0.20	0.15	ug/L		10/12/19 07:30	10/13/19 06:03	1
Bis(2-chloroethyl)ether	0.12		0.030	0.026	ug/L		10/12/19 07:30	10/13/19 06:03	1
Method: 8270D - Semivolatile Apolyte			•	BATA	11,:4	ъ	Dronger	Angless	Dil 5
Analyte		Qualifier	- RL		Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29		10		ug/L		10/12/19 07:30	10/13/19 05:31	1
2-Chlorophenol	0.38		10		ug/L		10/12/19 07:30	10/13/19 05:31	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/12/19 07:30	10/13/19 05:31	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: BW-2(138)

Lab Sample ID: 460-193677-2

Date Collected: 10/11/19 11:10							Matrix	: Water
Date Received: 10/11/19 21:00								
Method: 8270D - Semivolatile	Organic Co	mpounds	(GC/MS) (Con	tinued)				
Analyte	Result	Qualifier	ŔĹ	MDL Unit	D	Prepared	Analyzed	Dil Fac
4-Methylphenol	0.24	TT.	10	0.24 μα/Ι		10/12/19 07:30	10/13/19 05:31	1

Method: 8270D - Semivolati Analyte		Qualifier	ŘĹ	MDL		D	Prepared	Analyzed	Dil Fac
4-Methylphenol	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 05:31	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/12/19 07:30	10/13/19 05:31	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 05:31	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/12/19 07:30	10/13/19 05:31	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/12/19 07:30	10/13/19 05:31	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/12/19 07:30	10/13/19 05:31	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/12/19 07:30	10/13/19 05:31	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/12/19 07:30	10/13/19 05:31	1
4-Nitrophenol	0.69	U *	20	0.69	ug/L		10/12/19 07:30	10/13/19 05:31	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/12/19 07:30	10/13/19 05:31	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/12/19 07:30	10/13/19 05:31	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/12/19 07:30	10/13/19 05:31	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/12/19 07:30	10/13/19 05:31	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/12/19 07:30	10/13/19 05:31	1
Hexachloroethane	1.2	U	2.0		ug/L		10/12/19 07:30	10/13/19 05:31	1
Nitrobenzene	0.57	U	1.0	0.57	-		10/12/19 07:30	10/13/19 05:31	
Isophorone	0.80	U	10	0.80	-		10/12/19 07:30	10/13/19 05:31	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/12/19 07:30	10/13/19 05:31	1
1,2,4-Trichlorobenzene	1.3	U	2.0		ug/L		10/12/19 07:30	10/13/19 05:31	
Naphthalene	1.1	U	10		ug/L		10/12/19 07:30	10/13/19 05:31	1
4-Chloroaniline	1.9		10		ug/L			10/13/19 05:31	1
Hexachlorobutadiene	0.78	U	1.0	0.78	-		10/12/19 07:30	10/13/19 05:31	
2-Methylnaphthalene	1.1		10	1.1	ug/L		10/12/19 07:30	10/13/19 05:31	1
Hexachlorocyclopentadiene	1.7		10		ug/L			10/13/19 05:31	1
2-Chloronaphthalene	1.2		10		ug/L			10/13/19 05:31	1
2-Nitroaniline	0.47		10	0.47	-			10/13/19 05:31	1
Dimethyl phthalate	0.77		10	0.77	-			10/13/19 05:31	1
Acenaphthylene	0.82		10	0.82				10/13/19 05:31	
2,6-Dinitrotoluene	0.39		2.0		ug/L			10/13/19 05:31	1
3-Nitroaniline	0.96		10	0.96	_			10/13/19 05:31	1
Acenaphthene	1.1		10	1.1	ug/L			10/13/19 05:31	
Dibenzofuran	1.1		10	1.1	ug/L			10/13/19 05:31	1
2,4-Dinitrotoluene	1.0		2.0		ug/L			10/13/19 05:31	1
Diethyl phthalate	0.98		10		ug/L			10/13/19 05:31	1
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/13/19 05:31	1
Fluorene	0.91		10	0.91	-			10/13/19 05:31	1
4-Nitroaniline	0.54		10	0.54				10/13/19 05:31	
N-Nitrosodiphenylamine	0.89		10	0.89				10/13/19 05:31	1
4-Bromophenyl phenyl ether	0.75		10	0.75	-			10/13/19 05:31	1
Phenanthrene	0.58		10	0.58	-			10/13/19 05:31	1
Anthracene	0.63		10	0.63	-			10/13/19 05:31	1
Carbazole	0.68		10	0.68	-		10/12/19 07:30		. 1
Di-n-butyl phthalate	0.84		10	0.84	-		10/12/19 07:30		
Fluoranthene	0.84		10	0.84			10/12/19 07:30		1
Pyrene	1.6		10		ug/L		10/12/19 07:30		1
Butyl benzyl phthalate	0.85		10	0.85			10/12/19 07:30		1
3,3'-Dichlorobenzidine	1.4		10		ug/L			10/13/19 05:31	: 1
Chrysene	0.91		2.0	0.91			10/12/19 07:30		1
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/13/19 05:31	1

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: BW-2(138)

Lab Sample ID: 460-193677-2 Date Collected: 10/11/19 11:10

Matrix: Water

Date Received: 10/11/19 21:00

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/12/19 07:30	10/13/19 05:31	
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/12/19 07:30	10/13/19 05:31	
Indeno[1,2,3-cd]pyrene	1.3	U	2.0	1.3	ug/L		10/12/19 07:30	10/13/19 05:31	
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/12/19 07:30	10/13/19 05:31	
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/12/19 07:30	10/13/19 05:31	
Diphenyl ether	1.2	Ü	10	1.2	ug/L		10/12/19 07:30	10/13/19 05:31	
n,n'-Dimethylaniline	0.91	U	1.0	0.91	ug/L		10/12/19 07:30	10/13/19 05:31	
Caprolactam	0.68	U	10	0.68	ug/L		10/12/19 07:30	10/13/19 05:31	
bis (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/12/19 07:30	10/13/19 05:31	
Bisphenol-A	9.9	U ±	10	9.9	ug/L		10/12/19 07:30	10/13/19 05:31	
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/12/19 07:30	10/13/19 05:31	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	· ·	ug/L				10/12/19 07:30	•	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	105		51 - 108				10/12/19 07:30	10/13/19 05:31	
Phenol-d5 (Surr)	38		14 - 39				10/12/19 07:30	10/13/19 05:31	
Terphenyl-d14 (Surr)	108		40 - 148				10/12/19 07:30	10/13/19 05:31	
2,4,6-Tribromophenol (Surr)	122		26 - 139				10/12/19 07:30	10/13/19 05:31	
2-Fluorophenol (Surr)	53		25 - 58				10/12/19 07:30	10/13/19 05:31	
2-Fluorobiphenyl (Surr)	95		45 - 107				10/12/19 07:30	10/13/19 05:31	
Analyte Chloride	42.2 0.056	Qualifier	RL 1.92 0.10	0.22	Unit mg/L	<u>D</u>	Prepared	Analyzed 10/12/19 20:06 10/12/19 15:18	Dil Fac
Chloride	42.2		1.92		_			10/12/19 20:06	16
Nitrate as N					mg/L				•
Nitrite as N	0.076		0.12		mg/L			10/12/19 15:18	
Sulfate	7.45		0.60	0.35	mg/L			10/12/19 15:18	•
Method: 200.8 - Metals (ICP/M				BADI	11:4		D	A madama d	DilEa
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed 10/16/19 14:46	Dil Fa
Sodium	23800		250	66.8	•		10/16/19 09:08		
Magnesium	9700		250	24.8	_		10/16/19 09:08	10/16/19 14:46	
Potassium	7910		250		ug/L		10/16/19 09:08	10/16/19 14:46	į
Calcium	21400		250	233	ug/L		10/16/19 09:08	10/16/19 14:46	Ę
Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Cobalt, Dissolved	21.7	J	50.0	1.7	ug/L		10/17/19 08:59	10/17/19 14:53	•
Iron, Dissolved	4550		150	34.2	ug/L		10/17/19 08:59	10/17/19 14:53	•
Manganese, Dissolved	1940		15.0	0.99	ug/L		10/17/19 08:59	10/17/19 14:53	•
General Chemistry									
y	Pocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte									
	7.6		0.10	0.068	mg/L			10/14/19 14:03	
Analyte		***************************************	0.10 5.0		mg/L mg/L			10/14/19 14:03 10/15/19 16:54	
Analyte Ammonia (as N)	7.6	U		5.0	-				1 1 1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: BW-2(3X)

Lab Sample ID: 460-193677-3

Matrix: Water

Date Collected: 10/11/19 13:30 Date Received: 10/11/19 21:00

Method: 8260C - Volatile Org				p 20 mm -		***	D		pa - s
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	0.40		1.0		ug/L			10/16/19 04:09	
Bromomethane	0.55		1.0		ug/L			10/16/19 04:09	
Vinyl chloride	0.17		1.0		ug/L			10/16/19 04:09	
Chloroethane	0.32		1.0	0.32	ug/L			10/16/19 04:09	
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/16/19 04:09	
Acetone	4.4	U	5.0	4.4	ug/L			10/16/19 04:09	
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/16/19 04:09	
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/16/19 04:09	
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/16/19 04:09	
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/16/19 04:09	
cis-1,2-Dichloroethene	0.35	J	1.0	0.22	ug/L			10/16/19 04:09	
Chloroform	0.33	U	1.0	0.33	ug/L			10/16/19 04:09	
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/16/19 04:09	
2-Butanone (MEK)	1.9	U	5.0		ug/L			10/16/19 04:09	
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/16/19 04:09	
Carbon tetrachloride	0.21		1.0		ug/L			10/16/19 04:09	
Bromodichloromethane	0.34		1.0		ug/L			10/16/19 04:09	
1,2-Dichloropropane	0.35		1.0		ug/L			10/16/19 04:09	
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/16/19 04:09	
Trichloroethene	0.22		1.0		ug/L ug/L			10/16/19 04:09	
					-				
Dibromochloromethane	0.28		1.0		ug/L			10/16/19 04:09	
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/16/19 04:09	
Benzene	0.20		1.0		ug/L			10/16/19 04:09	
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/16/19 04:09	
Bromoform	0.54		1.0		ug/L			10/16/19 04:09	
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/16/19 04:09	
2-Hexanone	1.1		5.0		ug/L			10/16/19 04:09	
Tetrachloroethene	0.25		1.0		ug/L			10/16/19 04:09	
1,1,2,2-Tetrachloroethane	0.37	U	1.0		ug/L			10/16/19 04:09	
Toluene	0.38	U	1.0	0.38	ug/L			10/16/19 04:09	
Chlorobenzene	3.7		1.0	0.38	ug/L			10/16/19 04:09	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/16/19 04:09	
Styrene	0.42	U	1.0	0.42	ug/L			10/16/19 04:09	
Xylenes, Total	0.65	. U	2.0	0.65	ug/L			10/16/19 04:09	
Diethyl ether	9.7		1.0	0.21	ug/L			10/16/19 04:09	
MTBE	0.47	U	1.0	0.47	ug/L			10/16/19 04:09	
Tetrahydrofuran	1.0		2.0		ug/L			10/16/19 04:09	
Cyclohexane	0.32		1.0		ug/L			10/16/19 04:09	
1,4-Dioxane	62		50		ug/L			10/16/19 04:09	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/16/19 04:09	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/16/19 04:09	
lsopropylbenzene	0.34		1.0		ug/L			10/16/19 04:09	
N-Propylbenzene	0.32		1.0		ug/L ug/L			10/16/19 04:09	
Methylcyclohexane	0.32		1.0		ug/L ug/L			10/16/19 04:09	
• •					•				
Indane	0.35		1.0		ug/L			10/16/19 04:09	
Dichlorofluoromethane	0.34		1.0		ug/L			10/16/19 04:09	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/16/19 04:09	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: BW-2(3X)

Lab Sample ID: 460-193677-3

Matrix: Water

Date	Collected:	10/11/19	13:30
Date	Received:	10/11/19	21:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	74 - 132		10/16/19 04:09	
Toluene-d8 (Surr)	93	80 - 120		10/16/19 04:09	1
4-Bromofluorobenzene	95	77 - 124		10/16/19 04:09	1
Dibromofluoromethane (Surr)	97	72 - 131		10/16/19 04:09	1

Method: 8270D SIM - Ser	Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/12/19 10:28	10/13/19 03:37	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/12/19 10:28	10/13/19 03:37	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/12/19 10:28	10/13/19 03:37	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/12/19 10:28	10/13/19 03:37	1
Pentachlorophenol	0.15	U	0.20	0.15	ug/L		10/12/19 10:28	10/13/19 03:37	1
Bis(2-chloroethyl)ether	0.14		0.030	0.026	ug/L		10/12/19 10:28	10/13/19 03:37	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U *	10	0.29	ug/L		10/12/19 10:28	10/13/19 00:48	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/12/19 10:28	10/13/19 00:48	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/12/19 10:28	10/13/19 00:48	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/12/19 10:28	10/13/19 00:48	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/12/19 10:28	10/13/19 00:48	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/12/19 10:28	10/13/19 00:48	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/12/19 10:28	10/13/19 00:48	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/12/19 10:28	10/13/19 00:48	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/12/19 10:28	10/13/19 00:48	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/12/19 10:28	10/13/19 00:48	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/12/19 10:28	10/13/19 00:48	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/12/19 10:28	10/13/19 00:48	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/12/19 10:28	10/13/19 00:48	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/12/19 10:28	10/13/19 00:48	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/12/19 10:28	10/13/19 00:48	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/12/19 10:28	10/13/19 00:48	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/12/19 10:28	10/13/19 00:48	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/12/19 10:28	10/13/19 00:48	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/12/19 10:28	10/13/19 00:48	1
Isophorone	0.80	U	10	0.80	ug/L		10/12/19 10:28	10/13/19 00:48	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/12/19 10:28	10/13/19 00:48	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/12/19 10:28	10/13/19 00:48	1
Naphthalene	1.1	U	10	1.1	ug/L		10/12/19 10:28	10/13/19 00:48	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/12/19 10:28	10/13/19 00:48	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/12/19 10:28	10/13/19 00:48	
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/12/19 10:28	10/13/19 00:48	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/12/19 10:28	10/13/19 00:48	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/12/19 10:28	10/13/19 00:48	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/12/19 10:28	10/13/19 00:48	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/12/19 10:28	10/13/19 00:48	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/12/19 10:28	10/13/19 00:48	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/12/19 10:28	10/13/19 00:48	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/12/19 10:28	10/13/19 00:48	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/12/19 10:28	10/13/19 00:48	1

Page 65 of 2942

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Date Received: 10/11/19 21:00

Client Sample ID: BW-2(3X) Lab Sample ID: 460-193677-3

Date Collected: 10/11/19 13:30

Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dibenzofuran	1.1	U	10	1.1	ug/L		10/12/19 10:28	10/13/19 00:48	
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/12/19 10:28	10/13/19 00:48	
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/12/19 10:28	10/13/19 00:48	
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/12/19 10:28	10/13/19 00:48	
Fluorene	0.91	U	10	0.91	ug/L		10/12/19 10:28	10/13/19 00:48	
4-Nitroaniline	0.54	U	10	0.54	ug/L		10/12/19 10:28	10/13/19 00:48	
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/12/19 10:28	10/13/19 00:48	
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/12/19 10:28	10/13/19 00:48	
Phenanthrene	0.58	U	10	0.58	ug/L		10/12/19 10:28	10/13/19 00:48	
Anthracene	0.63	U	10	0.63	ug/L		10/12/19 10:28	10/13/19 00:48	
Carbazole	0.68	U	10	0.68	ug/L		10/12/19 10:28	10/13/19 00:48	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/12/19 10:28	10/13/19 00:48	
Fluoranthene	0.84	U	10	0.84	ug/L		10/12/19 10:28	10/13/19 00:48	
Pyrene	1.6	U	10	1.6	ug/L		10/12/19 10:28	10/13/19 00:48	
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/12/19 10:28	10/13/19 00:48	
3,3'-Dichlorobenzidine	1.4	U	10		ug/L		10/12/19 10:28	10/13/19 00:48	
Chrysene	0.91	U	2.0		ug/L		10/12/19 10:28	10/13/19 00:48	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/12/19 10:28	10/13/19 00:48	
Di-n-octyl phthalate	4.8	U	10		-		10/12/19 10:28	10/13/19 00:48	
Benzo[k]fluoranthene	0.67	U	1.0		ug/L		10/12/19 10:28	10/13/19 00:48	
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L		10/12/19 10:28	10/13/19 00:48	
Dibenz(a,h)anthracene	0.72	U	1.0		ug/L		10/12/19 10:28	10/13/19 00:48	
Benzo[g,h,i]perylene	1.4	U	10		ug/L		10/12/19 10:28	10/13/19 00:48	
Diphenyl ether	1.2	U	10		ug/L		10/12/19 10:28	10/13/19 00:48	
n,n'-Dimethylaniline	0.91	U	1.0		-		10/12/19 10:28	10/13/19 00:48	
Caprolactam	0.68	U	10		ug/L		10/12/19 10:28	10/13/19 00:48	
bis (2-chloroisopropyl) ether	0.63	U	10		ug/L		10/12/19 10:28	10/13/19 00:48	
Bisphenol-A	9.9	U	10		ug/L		10/12/19 10:28	10/13/19 00:48	
N-Methylaniline	0.48		5.0		ug/L			10/13/19 00:48	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L				10/12/19 10:28	10/13/19 00:48	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	102		51 - 108				10/12/19 10:28	•	
Phenol-d5 (Surr)	33		14 - 39					10/13/19 00:48	
Terphenyl-d14 (Surr)	99		40 - 148					10/13/19 00:48	
2,4,6-Tribromophenol (Surr)	95		26 - 139					10/13/19 00:48	
2-Fluorophenol (Surr)	51		25 - 58					10/13/19 00:48	
2-Fluorobiphenyl (Surr)	99		45 - 107					10/13/19 00:48	
Method: 300.0 - Anions, Ion C			D.	MD:	l les : A	-	Duan	A mal:!	Da F-
Analyte		Qualifier	RL 1.02		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	43.1		1.92		mg/L			10/12/19 21:20	1
Nitrate as N	0.056		0.10	0.056				10/12/19 15:48	
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/12/19 15:48	

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: BW-2(3X)

Lab Sample ID: 460-193677-3

Date Collected: 10/11/19 13:30 Matrix: Water

Date Received: 10/11/19 21:00

Method: 200.8 - Metals (ICP/MS) - Total R	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	24700		250	66.8	ug/L		10/16/19 09:08	10/16/19 14:49	5
Magnesium	9980		250	24.8	ug/L		10/16/19 09:08	10/16/19 14:49	5
Potassium	7710		250	73.5	ug/L		10/16/19 09:08	10/16/19 14:49	5
Calcium	19600		250	233	ug/L		10/16/19 09:08	10/16/19 14:49	5
- Method: 6010D - Metals (ICP) - I	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	22.3	J	50.0	1.7	ug/L		10/17/19 08:59	10/17/19 14:57	1
Iron, Dissolved	5540		150	34.2	ug/L		10/17/19 08:59	10/17/19 14:57	1
Manganese, Dissolved	1940		15.0	0.99	ug/L		10/17/19 08:59	10/17/19 14:57	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	7.8		0.10	0.068	mg/L			10/14/19 14:56	1
Bicarbonate Alkalinity as CaCO3	106		5.0	5.0	mg/L			10/15/19 17:02	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/15/19 17:02	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/15/19 16:45	1

Client Sample ID: TBGW_101119

Date Collected: 10/11/19 13:30

Date Received: 10/11/19 21:00

Lab Sample ID: 460-193677-4

Matrix: Water

Method: 8260C SIM - Vol	atile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/17/19 06:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104		72 - 133			-		10/17/19 06:06	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/15/19 02:14	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/15/19 02:14	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/15/19 02:14	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/15/19 02:14	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/15/19 02:14	1
Acetone	13		5.0	4.4	ug/L			10/15/19 02:14	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/15/19 02:14	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/15/19 02:14	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/15/19 02:14	1
trans-1,2-Dichloroethene	0.24	U *	1.0	0.24	ug/L			10/15/19 02:14	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/15/19 02:14	1
Chloroform	0.33	U *	1.0	0.33	ug/L			10/15/19 02:14	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/15/19 02:14	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/15/19 02:14	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/15/19 02:14	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/15/19 02:14	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/15/19 02:14	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/15/19 02:14	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/15/19 02:14	
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/15/19 02:14	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_101119

Lab Sample ID: 460-193677-4 Date Collected: 10/11/19 13:30

Matrix: Water

Date Received: 10/11/19 21:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/15/19 02:14	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/15/19 02:14	1
Benzene	0.20	U	1.0	0.20	ug/L			10/15/19 02:14	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/15/19 02:14	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/15/19 02:14	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/15/19 02:14	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/15/19 02:14	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/15/19 02:14	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/15/19 02:14	1
Toluene	0.38	U	1.0	0.38	ug/L			10/15/19 02:14	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/15/19 02:14	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/15/19 02:14	1
Styrene	0.42	U	1.0	0.42	ug/L			10/15/19 02:14	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/15/19 02:14	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/15/19 02:14	1
MTBE	0.47	U	1.0	0.47	ug/L			10/15/19 02:14	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/15/19 02:14	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/15/19 02:14	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/15/19 02:14	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/15/19 02:14	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/15/19 02:14	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/15/19 02:14	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/15/19 02:14	1
Indane	0.35	U	1.0	0.35	ug/L			10/15/19 02:14	1
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/15/19 02:14	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/15/19 02:14	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/15/19 02:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		74 - 132					10/15/19 02:14	1
Toluene-d8 (Surr)	95		80 - 120					10/15/19 02:14	1
4-Bromofluorobenzene	91		77 - 124					10/15/19 02:14	1
Dibromofluoromethane (Surr)	94		72 - 131					10/15/19 02:14	1

Client Sample ID: UPA-03D

Date Collected: 10/14/19 09:55

Date Received: 10/14/19 20:20

Lab	Sample	ID:	460-193869-1
			Matrix: Water

Method: 8260C SIM - Vola	itile Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	39		0.40	0.20	ug/L			10/18/19 02:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		72 - 133			-		10/18/19 02:48	1

Method: 8260C - Volatile Organic Compounds by GC/MS										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloromethane	0.40	U	1.0	0.40	ug/L			10/17/19 17:37	1	
Bromomethane	0.55	U	1.0	0.55	ug/L			10/17/19 17:37	1	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-03D

Lab Sample ID: 460-193869-1

Matrix: Water

Date Collected: 10/14/19 09:55 Date Received: 10/14/19 20:20

Method: 8260C - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Vinyl chloride	0.17	U	1.0	0.17	ug/L		<u> </u>	10/17/19 17:37	
Chloroethane	0.32	U	1.0		ug/L			10/17/19 17:37	
Methylene Chloride	0.32		1.0		ug/L			10/17/19 17:37	
Acetone	4.4	U	5.0		ug/L			10/17/19 17:37	
Carbon disulfide	0.82	U	1.0		ug/L			10/17/19 17:37	
1,1-Dichloroethene	0.26		1.0		ug/L			10/17/19 17:37	
1,1-Dichloroethane	0.26		1.0		ug/L			10/17/19 17:37	
trans-1.2-Dichloroethene	0.24		1.0		ug/L			10/17/19 17:37	
cis-1.2-Dichloroethene	0.22		1.0		ug/L			10/17/19 17:37	
Chloroform	0.33		1.0		ug/L			10/17/19 17:37	
1,2-Dichloroethane	0.43		1.0		ug/L			10/17/19 17:37	
2-Butanone (MEK)		U ±	5.0		ug/L			10/17/19 17:37	
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/17/19 17:37	
Carbon tetrachloride	0.21		1.0		ug/L			10/17/19 17:37	
Bromodichloromethane	0.34		1.0		ug/L			10/17/19 17:37	
1,2-Dichloropropane	0.35		1.0		ug/L			10/17/19 17:37	
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/17/19 17:37	
Trichloroethene	0.31		1.0		ug/L			10/17/19 17:37	•
Dibromochloromethane	0.28		1.0		ug/L			10/17/19 17:37	
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/17/19 17:37	
Benzene	0.20		1.0		ug/L			10/17/19 17:37	
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/17/19 17:37	
Bromoform	0.54		1.0		ug/L			10/17/19 17:37	
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/17/19 17:37	
2-Hexanone	1.1		5.0		ug/L			10/17/19 17:37	
Z-nexamone Tetrachloroethene	0.25		1.0		ug/L			10/17/19 17:37	
1,1,2,2-Tetrachloroethane	0.23		1.0		ug/L			10/17/19 17:37	
Toluene	0.37		1.0		ug/L ug/L			10/17/19 17:37	
		U			-				
Chlorobenzene	2.0		1.0		ug/L			10/17/19 17:37	
Ethylbenzene	0.30		1.0		ug/L			10/17/19 17:37	
Styrene	0.42		1.0		ug/L			10/17/19 17:37	
Xylenes, Total	0.65		2.0		ug/L			10/17/19 17:37	,
Diethyl ether	0.59		1.0		ug/L			10/17/19 17:37	
MTBE	0.75		1.0		ug/L			10/17/19 17:37	
Tetrahydrofuran	1.0		2.0		ug/L			10/17/19 17:37	
Cyclohexane	0.32		1.0		ug/L			10/17/19 17:37	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/17/19 17:37	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/17/19 17:37	
Isopropylbenzene	0.34		1.0		ug/L			10/17/19 17:37	
N-Propylbenzene	0.32		1.0		ug/L			10/17/19 17:37	
Methylcyclohexane 	0.26		1.0		ug/L			10/17/19 17:37	
Indane	0.35		1.0		ug/L			10/17/19 17:37	
Dichlorofluoromethane	0.53		1.0		ug/L			10/17/19 17:37	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/17/19 17:37	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/17/19 17:37	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-03D

Lab Sample ID: 460-193869-1

Matrix: Water

Date Collected: 10/14/19 09:55 Date Received: 10/14/19 20:20

Method: 8260C - Volatile Or	Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)									
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac					
Toluene-d8 (Surr)	87	80 - 120		10/17/19 17:37	1					
4-Bromofluorobenzene	107	77 - 124		10/17/19 17:37	1					
Dibromofluoromethane (Surr)	102	72 - 131		10/17/19 17:37	1					

Method: 8270D SIM - Semi								
Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016 U	0.050	0.016 u	ıg/L		10/15/19 15:20	10/16/19 09:37	1
Benzo[a]pyrene	0.022 U	0.050	0.022 u	ıg/L		10/15/19 15:20	10/16/19 09:37	1
Benzo[b]fluoranthene	0.024 U *	0.050	0.024 u	ıg/L		10/15/19 15:20	10/16/19 09:37	1
Hexachlorobenzene	0.013 U	0.020	0.013 u	ıg/L		10/15/19 15:20	10/16/19 09:37	1
Pentachlorophenol	0.15 U	0.20	0.15 u	ıg/L		10/15/19 15:20	10/16/19 09:37	1
Bis(2-chloroethyl)ether	6.6	0.030	0.026 u	ıg/L		10/15/19 15:20	10/16/19 09:37	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/16/19 09:03	10/17/19 01:26	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/16/19 09:03	10/17/19 01:26	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/16/19 09:03	10/17/19 01:26	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/16/19 09:03	10/17/19 01:26	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/16/19 09:03	10/17/19 01:26	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/16/19 09:03	10/17/19 01:26	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/16/19 09:03	10/17/19 01:26	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/16/19 09:03	10/17/19 01:26	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/16/19 09:03	10/17/19 01:26	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/16/19 09:03	10/17/19 01:26	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/16/19 09:03	10/17/19 01:26	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/16/19 09:03	10/17/19 01:26	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/16/19 09:03	10/17/19 01:26	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/16/19 09:03	10/17/19 01:26	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/16/19 09:03	10/17/19 01:26	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/16/19 09:03	10/17/19 01:26	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/16/19 09:03	10/17/19 01:26	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/16/19 09:03	10/17/19 01:26	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/16/19 09:03	10/17/19 01:26	1
Isophorone	0.80	U	10	0.80	ug/L		10/16/19 09:03	10/17/19 01:26	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/16/19 09:03	10/17/19 01:26	1
1,2,4-Trichlorobenzene	1.3	. U	2.0	1.3	ug/L		10/16/19 09:03	10/17/19 01:26	1
Naphthalene	1.1	U	10	1.1	ug/L		10/16/19 09:03	10/17/19 01:26	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/16/19 09:03	10/17/19 01:26	1
Hexachlorobutadiene	0.78	. U	1.0	0.78	ug/L		10/16/19 09:03	10/17/19 01:26	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/16/19 09:03	10/17/19 01:26	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/16/19 09:03	10/17/19 01:26	1
2-Chloronaphthalene	1.2		10	1.2	ug/L		10/16/19 09:03	10/17/19 01:26	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/16/19 09:03	10/17/19 01:26	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/16/19 09:03	10/17/19 01:26	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/16/19 09:03	10/17/19 01:26	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/16/19 09:03	10/17/19 01:26	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/16/19 09:03	10/17/19 01:26	1
Acenaphthene	1.1	U	10		ug/L		10/16/19 09:03	10/17/19 01:26	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-03D Lab Sample ID: 460-193869-1

Date Collected: 10/14/19 09:55 Matrix: Water Date Received: 10/14/19 20:20

Analyte		Qualifier	RL	MI	DL	Unit		D	Prepared	Analyzed	Dil Fa
Dibenzofuran	1.1	U	10	1	1.1	ug/L		_	10/16/19 09:03	10/17/19 01:26	
2,4-Dinitrotoluene	1.0	U	2.0	1	0.1	ug/L			10/16/19 09:03	10/17/19 01:26	
Diethyl phthalate	0.98	U	10	0.	98	ug/L			10/16/19 09:03	10/17/19 01:26	
4-Chlorophenyl phenyl ether	1.3	U	10	1	1.3	ug/L			10/16/19 09:03	10/17/19 01:26	
Fluorene	0.91	U	10	0.	91	ug/L			10/16/19 09:03	10/17/19 01:26	
4-Nitroaniline	0.54	U	10	0.	54	ug/L			10/16/19 09:03	10/17/19 01:26	
N-Nitrosodiphenylamine	0.89	U	10	0.	89	ug/L			10/16/19 09:03	10/17/19 01:26	
4-Bromophenyl phenyl ether	0.75	U	10	0.	75	ug/L			10/16/19 09:03	10/17/19 01:26	
Phenanthrene	0.58	U	10	0.	58	ug/L			10/16/19 09:03	10/17/19 01:26	
Anthracene	0.63	U	10	0.	63	ug/L			10/16/19 09:03	10/17/19 01:26	
Carbazole	0.68	U	10	0.	68	ug/L			10/16/19 09:03	10/17/19 01:26	
Di-n-butyl phthalate	0.84	U	10	0.	84	ug/L			10/16/19 09:03	10/17/19 01:26	
Fluoranthene	0.84	U	10	0.	84	ug/L			10/16/19 09:03	10/17/19 01:26	
Pyrene	1.6	U	10	1	1.6	ug/L			10/16/19 09:03	10/17/19 01:26	
Butyl benzyl phthalate	0.85	U	10	0.	85	ug/L			10/16/19 09:03	10/17/19 01:26	
3,3'-Dichlorobenzidine	1.4	U	10	1	1.4	ug/L			10/16/19 09:03	10/17/19 01:26	
Chrysene	0.91	U	2.0			ug/L			10/16/19 09:03	10/17/19 01:26	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0		1.7	ug/L			10/16/19 09:03	10/17/19 01:26	
Di-n-octyl phthalate	4.8	U	10			ug/L			10/16/19 09:03	10/17/19 01:26	
Benzo[k]fluoranthene	0.67	U	1.0	0.		ug/L			10/16/19 09:03	10/17/19 01:26	
Indeno[1,2,3-cd]pyrene	1.3		2.0			ug/L			10/16/19 09:03	10/17/19 01:26	
Dibenz(a,h)anthracene	0.72	U	1.0			ug/L			10/16/19 09:03	10/17/19 01:26	
Benzo[g,h,i]perylene	1.4	U	10			ug/L			10/16/19 09:03	10/17/19 01:26	
Diphenyl ether	1.2	U	10		1.2	ug/L			10/16/19 09:03	10/17/19 01:26	
n,n'-Dimethylaniline	0.91	U	1.0			ug/L			10/16/19 09:03	10/17/19 01:26	
Caprolactam	0.68	U	10			ug/L			10/16/19 09:03	10/17/19 01:26	
bis (2-chloroisopropyl) ether	0.63	U	10			ug/L			10/16/19 09:03	10/17/19 01:26	
Bisphenol-A	9.9	U	10			ug/L			10/16/19 09:03	10/17/19 01:26	
N-Methylaniline	0.48	U	5.0			ug/L			10/16/19 09:03	10/17/19 01:26	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	,	₹ <i>T</i>	CAS N	о.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					_	10/16/19 09:03	10/17/19 01:26	
Surrogate	%Recovery	Qualifier	Limits						Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	101		51 - 108						10/16/19 09:03	10/17/19 01:26	
Phenol-d5 (Surr)	35		14 - 39						10/16/19 09:03	10/17/19 01:26	
Terphenyl-d14 (Surr)	114		40 - 148						10/16/19 09:03	10/17/19 01:26	
2,4,6-Tribromophenol (Surr)	91		26 - 139						10/16/19 09:03	10/17/19 01:26	
2-Fluorophenol (Surr)	52		25 - 58						10/16/19 09:03	10/17/19 01:26	
2-Fluorobiphenyl (Surr)	99		45 - 107						10/16/19 09:03	10/17/19 01:26	
Method: 300.0 - Anions, Ion C	Chromatogra	phy									
Analyte		Qualifier	RL			Unit		D	Prepared	Analyzed	Dil Fa
Chloride	33.7		1.56			mg/L				10/16/19 01:25	1:
Nitrate as N	0.65		0.10	0.0	56	mg/L				10/15/19 19:13	
Nitrite as N	0.076	П	0.12	0.0	76	mg/L				10/15/19 19:13	

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-03D Lab Sample ID: 460-193869-1

Date Collected: 10/14/19 09:55 Matrix: Water

Date Received: 10/14/19 20:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	17200		250	66.8	ug/L		10/17/19 08:47	10/18/19 11:35	5
Magnesium	5070		250				10/17/19 08:47	10/18/19 11:35	5
Potassium	2200		250	73.5	ug/L		10/17/19 08:47	10/18/19 11:35	5
Calcium	12700		250	233	ug/L		10/17/19 08:47	10/18/19 11:35	5
Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	34.2	U	150	34.2	ug/L		11/05/19 05:09	11/06/19 16:27	1
Manganese	7.1	J	15.0	0.99	ug/L		11/05/19 05:09	11/06/19 16:27	1
Cobalt	2.5	J	50.0	1.7	ug/L		11/05/19 05:09	11/06/19 16:27	1
ː Method: 6010D - Metals (ICP) -	Discolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	2.7	J	50.0	1.7	ug/L		10/17/19 10:43	10/18/19 02:04	1
Iron, Dissolved	34.2	U	150	34.2	ug/L		10/17/19 10:43	10/18/19 02:04	1
ITOH, Dissolved									
Manganese, Dissolved	7.9	J	15.0	0.99	ug/L		10/17/19 10:43	10/18/19 02:04	1
Manganese, Dissolved	7.9	J	15.0	0.99	ug/L		10/17/19 10:43	10/18/19 02:04	1
,		J Qualifier	15.0 R L	0.99 MD L	J	D	10/17/19 10:43 Prepared	10/18/19 02:04 Analyzed	1 Dil Fac
Manganese, Dissolved General Chemistry		Qualifier			Unit	D			·
Manganese, Dissolved General Chemistry Analyte	Result	Qualifier	RL	MDL 0.068	Unit	D		Analyzed	·
Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	Result 0.068	Qualifier	RL 0.10	MDL 0.068 5.0	Unit mg/L	D		Analyzed 10/17/19 17:02	·

Client Sample ID: DGC-8D

Date Collected: 10/14/19 15:15

Date Received: 10/14/19 20:20

Lab Sample ID: 460-193869-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	33.3		1.56	0.18	mg/L			10/16/19 01:40	13
Nitrate as N	0.56		0.10	0.056	mg/L			10/15/19 19:28	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/15/19 19:28	1
Sulfate	4.18		0.60	0.35	mg/L			10/15/19 19:28	1
- Method: 200.8 - Metals (ICP/MS)) - Total R	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	13200		250	66.8	ug/L		10/17/19 08:47	10/18/19 11:38	- 5
Magnesium	3250		250	24.8	ug/L		10/17/19 08:47	10/18/19 11:38	5
Potassium	2940		250	73.5	ug/L		10/17/19 08:47	10/18/19 11:38	5
Calcium	17200		250	233	ug/L		10/17/19 08:47	10/18/19 11:38	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.81		0.10	0.068	mg/L			10/17/19 17:07	1
Bicarbonate Alkalinity as CaCO3	31.6		5.0	5.0	mg/L			10/17/19 11:41	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/17/19 11:41	1
Sulfide	0.58	. U	1.0	0.58	mg/L			10/17/19 18:45	1

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Lab Sample ID: 460-193869-3 **Client Sample ID: DGC-8S**

Date Collected: 10/14/19 15:20 Matrix: Water

Date Received: 10/14/19 20:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	17.4	0.72	0.084	mg/L			10/16/19 01:55	6
Nitrate as N	0.097 J	0.10	0.056	mg/L			10/15/19 19:43	1
Nitrite as N	0.076 U	0.12	0.076	mg/L			10/15/19 19:43	1
Sulfate	4.29	0.60	0.35	mg/L			10/15/19 19:43	1

Method: 200.8	- Metals (ICP/MS) - Total F	Recoverable						
Analyte	Resul	t Qualifier R	_ MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	8280	25	66.8	ug/L		10/17/19 08:47	10/18/19 11:40	5
Magnesium	73000	25	24.8	ug/L		10/17/19 08:47	10/18/19 11:40	5
Potassium	5520	25	73.5	ug/L		10/17/19 08:47	10/18/19 11:40	5
Calcium	40000	25	233	ug/L		10/17/19 08:47	10/18/19 11:40	5

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.89		0.10	0.068	mg/L			10/17/19 17:08	1
Bicarbonate Alkalinity as CaCO3	387		5.0	5.0	mg/L			10/17/19 11:51	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/17/19 11:51	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/17/19 18:45	1

Client Sample ID: UPA-02D Lab Sample ID: 460-193869-4

Date Collected: 10/14/19 12:25	Matrix: Water
Date Received: 10/14/19 20:20	

Method: 8260C SIM - Volatile	e Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	28		0.40	0.20	ug/L			10/18/19 03:11	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		72 - 133					10/18/19 03:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/17/19 18:01	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/17/19 18:01	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/17/19 18:01	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/17/19 18:01	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/17/19 18:01	1
Acetone	4.4	U	5.0	4.4	ug/L			10/17/19 18:01	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/17/19 18:01	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/17/19 18:01	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/17/19 18:01	1
trans-1,2-Dichloroethene	0.24	U *	1.0	0.24	ug/L			10/17/19 18:01	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/17/19 18:01	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/17/19 18:01	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/17/19 18:01	1
2-Butanone (MEK)	1.9	U *	5.0	1.9	ug/L			10/17/19 18:01	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/17/19 18:01	1
Carbon tetrachloride	0.21	Ú	1.0	0.21	ug/L			10/17/19 18:01	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/17/19 18:01	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/17/19 18:01	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/17/19 18:01	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-02D

Lab Sample ID: 460-193869-4 Date Collected: 10/14/19 12:25

Matrix: Water

Date Received: 10/14/19 20:20

Method: 8260C - Volatile Org Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Trichloroethene	0.31	U	1.0	0.31	ug/L		·	10/17/19 18:01	-
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/17/19 18:01	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/17/19 18:01	
Benzene	0.20	U	1.0	0.20	-			10/17/19 18:01	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/17/19 18:01	
Bromoform	0.54	U	1.0	0.54	-			10/17/19 18:01	
4-Methyl-2-pentanone	1.3	U	5.0	1.3	-			10/17/19 18:01	
2-Hexanone	1.1	U	5.0	1.1	•			10/17/19 18:01	
Tetrachloroethene	0.26		1.0	0.25	ug/L			10/17/19 18:01	
1,1,2,2-Tetrachloroethane	0.37		1.0	0.37	-			10/17/19 18:01	
Toluene	0.38	U	1.0	0.38	ug/L			10/17/19 18:01	
Chlorobenzene	5.5		1.0		ug/L			10/17/19 18:01	
Ethylbenzene	0.30	U	1.0		ug/L			10/17/19 18:01	
Styrene	0.42		1.0		ug/L			10/17/19 18:01	
Xylenes, Total	0.65		2.0		ug/L			10/17/19 18:01	
Diethyl ether	3.1	-	1.0	0.21	-			10/17/19 18:01	
MTBE	2.5		1.0		ug/L			10/17/19 18:01	
Tetrahydrofuran	2.7		2.0	1.0				10/17/19 18:01	
Cyclohexane	0.32	П	1.0		ug/L			10/17/19 18:01	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/17/19 18:01	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/17/19 18:01	
Isopropylbenzene	0.34		1.0		ug/L			10/17/19 18:01	
N-Propylbenzene	0.32		1.0		ug/L			10/17/19 18:01	
Methylcyclohexane	0.26		1.0		ug/L			10/17/19 18:01	
Indane	0.35		1.0		ug/L			10/17/19 18:01	
Dichlorofluoromethane	0.34		1.0		ug/L			10/17/19 18:01	
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/17/19 18:01	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/17/19 18:01	
Surrogate	%Recovery	Ouglifion	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99	Quanner	74 - 132					10/17/19 18:01	Diria
Toluene-d8 (Surr)	86		80 ₋ 120					10/17/19 18:01	
4-Bromofluorobenzene	105		77 ₋ 124					10/17/19 18:01	
Dibromofluoromethane (Surr)	103							10/17/19 18:01	
- - -	703		72 - 131					10/11/19 10.01	
Method: 8270D SIM - Semivo	latile Organi	c Compo	unds (GC/N	IS SIM)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/15/19 15:20	10/16/19 09:58	
Benzo[a]pyrene	0.022		0.050	0.022	-		10/15/19 15:20	10/16/19 09:58	
Benzo[b]fluoranthene	0.024	U *	0.050	0.024	ug/L		10/15/19 15:20	10/16/19 09:58	
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/15/19 15:20	10/16/19 09:58	
Pentachlorophenol	0.15	U	0.20	0.15	ug/L		10/15/19 15:20	10/16/19 09:58	
Bis(2-chloroethyl)ether	4.6		0.030	0.026	ug/L		10/15/19 15:20	10/16/19 09:58	
Method: 8270D - Semivolatile	Organic Co	mpounds	(GC/MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Phenol	0.29		10		ug/L		10/16/19 09:03	10/17/19 01:47	
			. •		J				

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-02D

Lab Sample ID: 460-193869-4

Matrix: Water

Date Collected: 10/14/19 12:25 Date Received: 10/14/19 20:20

Method: 8270D - Semivolatil ^{Analyte}	Result	Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylphenol	0.26	U	10	0.26	ug/L		10/16/19 09:03	10/17/19 01:47	
4-Methylphenol	0.24	U	10	0.24	ug/L		10/16/19 09:03	10/17/19 01:47	
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/16/19 09:03	10/17/19 01:47	
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/16/19 09:03	10/17/19 01:47	
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/16/19 09:03	10/17/19 01:47	
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/16/19 09:03	10/17/19 01:47	
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/16/19 09:03	10/17/19 01:47	
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/16/19 09:03	10/17/19 01:47	
2,4-Dinitrophenol	14	U	20	14	ug/L		10/16/19 09:03	10/17/19 01:47	
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/16/19 09:03	10/17/19 01:47	
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/16/19 09:03	10/17/19 01:47	
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/16/19 09:03	10/17/19 01:47	
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/16/19 09:03	10/17/19 01:47	
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/16/19 09:03	10/17/19 01:47	
N-Nitrosodi-n-propylamine	0.43	U	1.0		ug/L		10/16/19 09:03	10/17/19 01:47	
Hexachloroethane	1.2	U	2.0		ug/L		10/16/19 09:03		
Nitrobenzene	0.57		1.0		ug/L		10/16/19 09:03	10/17/19 01:47	
Isophorone	0.80	U	10	0.80	-		10/16/19 09:03	10/17/19 01:47	
Bis(2-chloroethoxy)methane	0.24	U	10		ug/L		10/16/19 09:03	10/17/19 01:47	
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	-		10/16/19 09:03	10/17/19 01:47	
Naphthalene	1.1	U	10	1.1	ug/L		10/16/19 09:03	10/17/19 01:47	
4-Chloroaniline	1.9		10	1.9	ug/L		10/16/19 09:03	10/17/19 01:47	
Hexachlorobutadiene	0.78		1.0	0.78	ug/L		10/16/19 09:03	10/17/19 01:47	
2-Methylnaphthalene	1.1		10	1.1	ug/L		10/16/19 09:03	10/17/19 01:47	
Hexachlorocyclopentadiene	1.7	U	10	1.7	-		10/16/19 09:03	10/17/19 01:47	
2-Chloronaphthalene	1.2		10	1.2	•		10/16/19 09:03	10/17/19 01:47	
2-Nitroaniline	0.47		10		ug/L		10/16/19 09:03	10/17/19 01:47	
Dimethyl phthalate	0.77		10		ug/L		10/16/19 09:03	10/17/19 01:47	
Acenaphthylene	0.82		10		ug/L		10/16/19 09:03	10/17/19 01:47	
2.6-Dinitrotoluene	0.39		2.0	0.39	ug/L		10/16/19 09:03	10/17/19 01:47	
3-Nitroaniline	0.96		10		ug/L		10/16/19 09:03		
Acenaphthene		. U	10	1.1	ug/L			10/17/19 01:47	
Dibenzofuran		U	10	1.1	ug/L ug/L			10/17/19 01:47	
2,4-Dinitrotoluene	1.0	U	2.0		ug/L ug/L			10/17/19 01:47	
Diethyl phthalate	0.98		10		ug/L ug/L			10/17/19 01:47	
	1.3		10		ug/L ug/L			10/17/19 01:47	
4-Chlorophenyl phenyl ether			10		-			10/17/19 01:47	
Fluorene	0.91				ug/L				
4-Nitroaniline	0.54		10		ug/L			10/17/19 01:47	
N-Nitrosodiphenylamine	0.89		10		ug/L			10/17/19 01:47	
4-Bromophenyl phenyl ether	0.75		10		ug/L			10/17/19 01:47	
Phenanthrene	0.58		10		ug/L			10/17/19 01:47	
Anthracene	0.63		10		ug/L			10/17/19 01:47	
Carbazole	0.68		10		ug/L			10/17/19 01:47	
Di-n-butyl phthalate	0.84		10		ug/L			10/17/19 01:47	
Fluoranthene	0.84		10		ug/L			10/17/19 01:47	
Pyrene	1.6		10		ug/L			10/17/19 01:47	
Butyl benzyl phthalate	0.85		10		ug/L			10/17/19 01:47	
3,3'-Dichlorobenzidine	1.4		10		ug/L			10/17/19 01:47	
Chrysene	0.91	U	2.0	0.91	ug/L		10/16/19 09:03	10/17/19 01:47	

Eurofins TestAmerica, Edison

Page 75 of 2942 11/11/2019

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-02D Lab Sample ID: 460-193869-4

Date Collected: 10/14/19 12:25 Matrix: Water Date Received: 10/14/19 20:20

Analyte	Organic Co Result	Qualifier	RL		<i>)</i> Unit	D	Prepared	Analyzed	Dil Fa
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L		10/16/19 09:03	10/17/19 01:47	- Dir r
Di-n-octyl phthalate	4.8		10		ug/L		10/16/19 09:03	10/17/19 01:47	
Benzo[k]fluoranthene	0.67		1.0	0.67	-		10/16/19 09:03	10/17/19 01:47	
Indeno[1,2,3-cd]pyrene	1.3		2.0	1.3	•		10/16/19 09:03	10/17/19 01:47	
Dibenz(a,h)anthracene	0.72		1.0	0.72			10/16/19 09:03	10/17/19 01:47	
, ,	1.4		1.0	1.4			10/16/19 09:03	10/17/19 01:47	
Benzo[g,h,i]perylene					•				
Diphenyl ether	2.4		10		ug/L		10/16/19 09:03	10/17/19 01:47	
n,n'-Dimethylaniline	0.91	_	1.0	0.91	•		10/16/19 09:03	10/17/19 01:47	
Caprolactam	0.68		10	0.68	•		10/16/19 09:03	10/17/19 01:47	
bis (2-chloroisopropyl) ether	0.63		10	0.63	•		10/16/19 09:03	10/17/19 01:47	
Bisphenol-A	9.9		10	9.9	ug/L		10/16/19 09:03	10/17/19 01:47	
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/16/19 09:03	10/17/19 01:47	
Tentatively Identified Compound	Est. Result	•	Unit		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	16	J	ug/L	9.	.68		10/16/19 09:03	10/17/19 01:47	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	98		51 - 108				10/16/19 09:03	10/17/19 01:47	
Phenol-d5 (Surr)	35		14 - 39				10/16/19 09:03	10/17/19 01:47	
Terphenyl-d14 (Surr)	106		40 - 148				10/16/19 09:03	10/17/19 01:47	
2,4,6-Tribromophenol (Surr)	94		26 - 139				10/16/19 09:03	10/17/19 01:47	
2-Fluorophenol (Surr)	51		25 ₋ 58				10/16/19 09:03	10/17/19 01:47	
2-Fluorobiphenyl (Surr)	95		45 - 107				10/16/19 09:03	10/17/19 01:47	
1 2 1 2 200 27									
Method: 300.0 - Anions, Ion C									
	Result	phy Qualifier	RL		Unit	D	Prepared	Analyzed	
Method: 300.0 - Anions, Ion C			RL 1.68	0.20	mg/L	<u>D</u>	Prepared	Analyzed 10/16/19 02:10	
Method: 300.0 - Anions, Ion C Analyte	Result	Qualifier		0.20 0.056	mg/L mg/L	<u>D</u>	Prepared		1.
Method: 300.0 - Anions, Ion C Analyte Chloride	Result 37.9	Qualifier U	1.68	0.20	mg/L mg/L	<u>D</u>	Prepared	10/16/19 02:10	1.
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N	Result 37.9 0.056	Qualifier U	1.68 0.10	0.20 0.056 0.076	mg/L mg/L	<u>D</u>	Prepared	10/16/19 02:10 10/15/19 19:58	14
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate	Result 37.9 0.056 0.076 22.1	Qualifier U U	1.68 0.10 0.12 0.60	0.20 0.056 0.076	mg/L mg/L mg/L	<u>D</u>	Prepared	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58	1.
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N	Result 37.9 0.056 0.076 22.1 IS) - Total Re	Qualifier U U	1.68 0.10 0.12 0.60	0.20 0.056 0.076 0.35	mg/L mg/L mg/L	<u>D</u> _	Prepared Prepared	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58	1.
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M	Result	Qualifier U U ecoverable	1.68 0.10 0.12 0.60	0.20 0.056 0.076 0.35	mg/L mg/L mg/L mg/L			10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58	Dil Fac
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800	Qualifier U U ecoverable	1.68 0.10 0.12 0.60	0.20 0.056 0.076 0.35 MDL 66.8	mg/L mg/L mg/L mg/L		Prepared 10/17/19 08:47	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 Analyzed	Dil Fac
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800 12700	Qualifier U U ecoverable	1.68 0.10 0.12 0.60 e RL 250 250	0.20 0.056 0.076 0.35 MDL 66.8 24.8	mg/L mg/L mg/L mg/L Unit ug/L		Prepared 10/17/19 08:47 10/17/19 08:47	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 10/15/19 11:43 10/18/19 11:43	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800	Qualifier U U ecoverable	1.68 0.10 0.12 0.60 e RL 250	0.20 0.056 0.076 0.35 MDL 66.8 24.8 73.5	mg/L mg/L mg/L mg/L		Prepared 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 Malyzed 10/18/19 11:43	Dil Fac
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800 12700 5250 24200	Qualifier U U ecoverable Qualifier	1.68 0.10 0.12 0.60 e RL 250 250 250	0.20 0.056 0.076 0.35 MDL 66.8 24.8 73.5	mg/L mg/L mg/L mg/L Unit ug/L ug/L ug/L		Prepared 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 Analyzed 10/18/19 11:43 10/18/19 11:43	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800 12700 5250 24200	Qualifier U U ecoverable Qualifier	1.68 0.10 0.12 0.60 e RL 250 250 250	0.20 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233	mg/L mg/L mg/L mg/L Unit ug/L ug/L ug/L		Prepared 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 Analyzed 10/18/19 11:43 10/18/19 11:43	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800 12700 5250 24200 - Dissolved Result	Qualifier U Coverable Qualifier	1.68 0.10 0.12 0.60 le RL 250 250 250	0.20 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233	mg/L mg/L mg/L ug/L ug/L ug/L ug/L	D	Prepared 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 Analyzed 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800 12700 5250 24200 - Dissolved Result 24.2	Qualifier U Coverable Qualifier	1.68 0.10 0.12 0.60 RL 250 250 250 250	0.20 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233	mg/L mg/L mg/L mg/L ug/L ug/L ug/L	D	Prepared 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 Prepared 10/17/19 10:43	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 Analyzed 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800 12700 5250 24200 - Dissolved Result	Qualifier U Coverable Qualifier	1.68 0.10 0.12 0.60 le RL 250 250 250	0.20 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2	mg/L mg/L mg/L ug/L ug/L ug/L ug/L	D	Prepared 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 Prepared 10/17/19 10:43 10/17/19 10:43	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 Analyzed 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800 12700 5250 24200 - Dissolved Result 24.2 10200	Qualifier U Coverable Qualifier	1.68 0.10 0.12 0.60 Pe RL 250 250 250 250 250 150	0.20 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2	mg/L mg/L mg/L mg/L ug/L ug/L ug/L ug/L	D	Prepared 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 Prepared 10/17/19 10:43 10/17/19 10:43	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 Analyzed 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43 10/18/19 02:08 10/18/19 02:08	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800 12700 5250 24200 - Dissolved Result 24.2 10200 2010	Qualifier U Coverable Qualifier Qualifier	1.68 0.10 0.12 0.60 e RL 250 250 250 250 RL 50.0 150	0.20 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 Prepared 10/17/19 10:43 10/17/19 10:43 10/17/19 10:43	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 Analyzed 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43 Analyzed 10/18/19 02:08 10/18/19 02:08 10/18/19 02:08	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800 12700 5250 24200 - Dissolved Result 24.2 10200 2010 Result	Qualifier U Coverable Qualifier	1.68 0.10 0.12 0.60 RL 250 250 250 250 150 150 RL	0.20 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 Prepared 10/17/19 10:43 10/17/19 10:43	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 Analyzed 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43 10/18/19 02:08 10/18/19 02:08 10/18/19 02:08	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800 12700 5250 24200 - Dissolved Result 24.2 10200 2010 Result 1.6	Qualifier U Coverable Qualifier Qualifier	1.68 0.10 0.12 0.60 RL 250 250 250 250 150 150 15.0 RL 0.10	0.20 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99 MDL 0.068	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	D	Prepared 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 Prepared 10/17/19 10:43 10/17/19 10:43 10/17/19 10:43	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 Analyzed 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43 10/18/19 02:08 10/18/19 02:08 10/18/19 02:08 10/18/19 02:08	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	Result 37.9 0.056 0.076 22.1 IS) - Total Result 23800 12700 5250 24200 - Dissolved Result 24.2 10200 2010 Result	Qualifier U U ecoverable Qualifier J Qualifier	1.68 0.10 0.12 0.60 RL 250 250 250 250 150 150 RL	0.20 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99 MDL 0.068 5.0	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 10/17/19 08:47 Prepared 10/17/19 10:43 10/17/19 10:43 10/17/19 10:43	10/16/19 02:10 10/15/19 19:58 10/15/19 19:58 10/15/19 19:58 Analyzed 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43 10/18/19 11:43 10/18/19 02:08 10/18/19 02:08 10/18/19 02:08	Dil Fa

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-02S Lab Sample ID: 460-193869-5

Date Collected: 10/14/19 12:25 Matrix: Water Date Received: 10/14/19 20:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	50.4		2.40	0.28	mg/L			10/16/19 02:24	20
Nitrate as N	0.64		0.10	0.056	mg/L			10/15/19 20:43	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/15/19 20:43	1
Sulfate	26.7		12.0	6.92	mg/L			10/16/19 02:24	20
- Method: 200.8 - Metals (ICP/MS)	- Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	29300		250	66.8	ug/L		10/17/19 08:47	10/18/19 11:50	5
Magnesium	8150		250	24.8	ug/L		10/17/19 08:47	10/18/19 11:50	5
Potassium	1770		250	73.5	ug/L		10/17/19 08:47	10/18/19 11:50	5
Calcium	13400		250	233	ug/L		10/17/19 08:47	10/18/19 11:50	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			10/17/19 17:11	1
Bicarbonate Alkalinity as CaCO3	21.5		5.0	5.0	mg/L			10/17/19 12:04	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/17/19 12:04	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/17/19 18:45	1

Client Sample ID: UPA-102-US Lab Sample ID: 460-193869-6

Date Collected: 10/14/19 09:50 Matrix: Water

Date Received: 10/14/19 20:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/17/19 18:25	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/17/19 18:25	1
Vinyl chloride	0.62	J	1.0	0.17	ug/L			10/17/19 18:25	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/17/19 18:25	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/17/19 18:25	1
Acetone	4.4	U	5.0	4.4	ug/L			10/17/19 18:25	1
Carbon disulfide	2.9		1.0	0.82	ug/L			10/17/19 18:25	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/17/19 18:25	1
1,1-Dichloroethane	0.84	J	1.0	0.26	ug/L			10/17/19 18:25	1
trans-1,2-Dichloroethene	0.24	U ≛	1.0	0.24	ug/L			10/17/19 18:25	1
cis-1,2-Dichloroethene	2.1		1.0	0.22	ug/L			10/17/19 18:25	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/17/19 18:25	1
1,2-Dichloroethane	1.6		1.0	0.43	ug/L			10/17/19 18:25	1
2-Butanone (MEK)	1.9	U *	5.0	1.9	ug/L			10/17/19 18:25	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/17/19 18:25	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/17/19 18:25	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/17/19 18:25	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/17/19 18:25	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/17/19 18:25	1
Trichloroethene	0.69	J	1.0	0.31	ug/L			10/17/19 18:25	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/17/19 18:25	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/17/19 18:25	1
Benzene	31		1.0	0.20	ug/L			10/17/19 18:25	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/17/19 18:25	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/17/19 18:25	1

Page 77 of 2942

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-102-US

Lab Sample ID: 460-193869-6 Date Collected: 10/14/19 09:50

Matrix: Water

Date Received: 10/14/19 20:20

Method: 8260C - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/17/19 18:25	
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/17/19 18:25	
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/17/19 18:25	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/17/19 18:25	
Toluene	0.38	U	1.0	0.38	ug/L			10/17/19 18:25	
Chlorobenzene	65		1.0	0.38	ug/L			10/17/19 18:25	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/17/19 18:25	
Styrene	0.42	U	1.0	0.42	ug/L			10/17/19 18:25	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/17/19 18:25	
Diethyl ether	3.4		1.0	0.21	ug/L			10/17/19 18:25	
MTBE	0.88	J	1.0	0.47	ug/L			10/17/19 18:25	
Tetrahydrofuran	16		2.0	1.0	ug/L			10/17/19 18:25	
Cyclohexane	0.52	J	1.0	0.32				10/17/19 18:25	
1,4-Dioxane	170		50		ug/L			10/17/19 18:25	
1,2,4-Trimethylbenzene	0.37	U	1.0		ug/L			10/17/19 18:25	
1,3,5-Trimethylbenzene	0.33		1.0	0.33	-			10/17/19 18:25	
Isopropylbenzene	0.39	J	1.0	0.34	-			10/17/19 18:25	
N-Propylbenzene	0.32		1.0		ug/L			10/17/19 18:25	
Methylcyclohexane	0.31	J	1.0	0.26	-			10/17/19 18:25	
Indane	2.7		1.0	0.35	-			10/17/19 18:25	
Dichlorofluoromethane	6.3		1.0		ug/L			10/17/19 18:25	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36				10/17/19 18:25	
Tentatively Identified Compound	Est. Result	Qualifier	Unit I	, כ	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/17/19 18:25	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99		74 - 132					10/17/19 18:25	
Toluene-d8 (Surr)	87		80 - 120					10/17/19 18:25	
4-Bromofluorobenzene	105		77 - 124					10/17/19 18:25	
Dibromofluoromethane (Surr)	102		72 - 131					10/17/19 18:25	
			, , , , , ,						
Method: 8270D SIM - Semivo	latile Organi	c Compoi		SSIM)					
	Result	Qualifier		SSIM) MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte		Qualifier	unds (GC/MS			D	•	Analyzed 10/16/19 10:19	Dil Fa
Analyte	Result	Qualifier U	unds (GC/MS RL	MDL	ug/L	D	10/15/19 15:20	-	
Analyte Benzo[a]anthracene	Result 0.016	Qualifier U U	unds (GC/MS RL 0.050	MD L 0.016	ug/L ug/L	D	10/15/19 15:20 10/15/19 15:20	10/16/19 10:19	
	Result 0.016 0.022	Qualifier U U U *	unds (GC/MS RL 0.050 0.050	MDL 0.016 0.022	ug/L ug/L ug/L	D	10/15/19 15:20 10/15/19 15:20 10/15/19 15:20	10/16/19 10:19 10/16/19 10:19	
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	Result 0.016 0.022 0.024	Qualifier U U U U *	unds (GC/MS RL 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.013	ug/L ug/L ug/L	<u>D</u>	10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20	10/16/19 10:19 10/16/19 10:19 10/16/19 10:19	
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol	Result 0.016 0.022 0.024 0.013 0.15	Qualifier U U U ± U U	0.050 0.050 0.050 0.050 0.020 0.20	MDL 0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L	D	10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20	10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19	
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol	Result 0.016 0.022 0.024 0.013 0.15 Corganic Co	Qualifier U U U ± U U	0.050 0.050 0.050 0.050 0.020 0.20	MDL 0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L ug/L	D	10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20	10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19	
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte	Result 0.016 0.022 0.024 0.013 0.15 Corganic Co	Qualifier U U U * U U * * ** ** ** ** ** ** ** **	unds (GC/MS RL 0.050 0.050 0.050 0.020 0.20	MDL 0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L		10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 Prepared	10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19	Dil Fa
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol	Result 0.016 0.022 0.024 0.013 0.15 Corganic Cor	Qualifier U U ± U U mpounds Qualifier U	unds (GC/MS RL 0.050 0.050 0.050 0.020 0.20 6 (GC/MS) RL	0.016 0.022 0.024 0.013 0.15 MDL 0.29	ug/L ug/L ug/L ug/L ug/L		10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 Prepared 10/16/19 09:03	10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 Analyzed	
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol	Result 0.016 0.022 0.024 0.013 0.15 Corporate	Qualifier U U ± U U mpounds Qualifier U U	0.050 0.050 0.050 0.050 0.020 0.20 0.20	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38	ug/L ug/L ug/L ug/L ug/L		10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 Prepared 10/16/19 09:03 10/16/19 09:03	10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 Analyzed 10/17/19 02:08	Dil Fa
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol	Result 0.016 0.022 0.024 0.013 0.15 Corganic Cor	Qualifier U U U ± U U mpounds Qualifier U U	0.050 0.050 0.050 0.050 0.020 0.20 0.20	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26	ug/L ug/L ug/L ug/L ug/L ug/L		10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 Prepared 10/16/19 09:03 10/16/19 09:03 10/16/19 09:03	10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 Analyzed 10/17/19 02:08 10/17/19 02:08	Dil Fa
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol	Result 0.016 0.022 0.024 0.013 0.15 e Organic Co Result 0.29 0.38 0.26	Qualifier U U U * U U mpounds Qualifier U U U	0.050 0.050 0.050 0.050 0.020 0.20 0.20	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 Prepared 10/16/19 09:03 10/16/19 09:03 10/16/19 09:03 10/16/19 09:03	10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 Analyzed 10/17/19 02:08 10/17/19 02:08 10/17/19 02:08	Dil Fa
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile	Result 0.016 0.022 0.024 0.013 0.15 Companie Com	Qualifier U U U ± U U mpounds Qualifier U U U	0.050 0.050 0.050 0.050 0.020 0.20 6 (GC/MS) RL 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26 0.24 0.75	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/16/19 09:03 10/16/19 09:03 10/16/19 09:03 10/16/19 09:03 10/16/19 09:03	10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 Analyzed 10/17/19 02:08 10/17/19 02:08 10/17/19 02:08 10/17/19 02:08	Dil Fa
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol	Result 0.016 0.022 0.024 0.013 0.15 Corganic Cor	Qualifier U U ± U mpounds Qualifier U U U U U U U U U U	unds (GC/MS RL 0.050 0.050 0.020 0.20 6 (GC/MS) RL 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 15:20 10/15/19 09:03 10/16/19 09:03 10/16/19 09:03 10/16/19 09:03 10/16/19 09:03 10/16/19 09:03	10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 10/16/19 10:19 Analyzed 10/17/19 02:08 10/17/19 02:08 10/17/19 02:08 10/17/19 02:08 10/17/19 02:08	Dil Fa

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-102-US

Lab Sample ID: 460-193869-6 Date Collected: 10/14/19 09:50

Matrix: Water

mace actioned total to acted								1816661374	* *******
Date Received: 10/14/19 20:20									
BOT WE WIND TO WE SO WE WAS SO WE SO									
Method: 8270D - Semivolatile	Organic Co	mpounds (G	iC/MS) (Cor	itinued))				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte 2.4.6-Trichlorophenol	Result 0.30		RL 10	MDL 0.30		D	Prepared 10/16/19 09:03	Analyzed	Dil Fac

Method: 8270D - Semivolatile Analyte	Result Q	ualifier R	L MDL	Unit E	Prepared	Analyzed	Dil Fa
2,4,6-Trichlorophenol	0.30 U		0.30	ug/L	10/16/19 09:03	10/17/19 02:08	
2,4,5-Trichlorophenol	0.28 U	1	0.28	ug/L	10/16/19 09:03	10/17/19 02:08	
2,4-Dinitrophenol	14 U	2	0 14	ug/L	10/16/19 09:03	10/17/19 02:08	
1-Nitrophenol	0.69 U	2	0.69	ug/L	10/16/19 09:03	10/17/19 02:08	
1,6-Dinitro-2-methylphenol	13 U	2	0 13	ug/L	10/16/19 09:03	10/17/19 02:08	
3is(2-chloroethyl)ether	21	1.			10/16/19 09:03	10/17/19 02:08	
I,3-Dichlorobenzene	2.0 U	1	0 2.0	ug/L	10/16/19 09:03	10/17/19 02:08	
1,4-Dichlorobenzene	1.8 J	1	0 1.3	ug/L	10/16/19 09:03	10/17/19 02:08	
1,2-Dichlorobenzene	1.3 U	1	0 1.3	ug/L	10/16/19 09:03	10/17/19 02:08	
N-Nitrosodi-n-propylamine	0.43 U	1.	0 0.43	ug/L	10/16/19 09:03	10/17/19 02:08	
Hexachloroethane	1.2 U	2.	0 1.2	ug/L	10/16/19 09:03	10/17/19 02:08	
Nitrobenzene	0.57 U	1.		ug/L	10/16/19 09:03	10/17/19 02:08	
sophorone	0.80 U	1	0.80	ug/L	10/16/19 09:03	10/17/19 02:08	
Bis(2-chloroethoxy)methane	0.24 U	1	0.24	ug/L	10/16/19 09:03	10/17/19 02:08	
1,2,4-Trichlorobenzene	1.3 U			=	10/16/19 09:03	10/17/19 02:08	
Naphthalene	1.1 U			ug/L	10/16/19 09:03	10/17/19 02:08	
- 1-Chloroaniline	1.9 U	1		ug/L	10/16/19 09:03	10/17/19 02:08	
Hexachlorobutadiene	0.78 U	1.	0 0.78	=	10/16/19 09:03	10/17/19 02:08	
2-Methylnaphthalene	1.1 U	1	0 1.1	ug/L	10/16/19 09:03	10/17/19 02:08	
	1.7 U	1	0 1.7	•	10/16/19 09:03	10/17/19 02:08	
2-Chloronaphthalene	1.2 U	1	0 1.2	ug/L	10/16/19 09:03	10/17/19 02:08	
-Nitroaniline	0.47 U	1		ug/L	10/16/19 09:03	10/17/19 02:08	
Dimethyl phthalate	0.77 U	1		ug/L	10/16/19 09:03	10/17/19 02:08	
Acenaphthylene	0.82 U	1		ug/L	10/16/19 09:03	10/17/19 02:08	
2.6-Dinitrotoluene	0.39 U	2.		=	10/16/19 09:03	10/17/19 02:08	
B-Nitroaniline	0.96 U	1		· ·	10/16/19 09:03	10/17/19 02:08	
Acenaphthene	1.1 U	1		ug/L	10/16/19 09:03	10/17/19 02:08	
Dibenzofuran	1.1 U	1		ug/L	10/16/19 09:03	10/17/19 02:08	
2,4-Dinitrotoluene	1.0 U	2.		ug/L		10/17/19 02:08	
Diethyl phthalate	0.98 U	1				10/17/19 02:08	
4-Chlorophenyl phenyl ether	1.3 U	1		ug/L		10/17/19 02:08	
Fluorene	0.91 U			ug/L		10/17/19 02:08	
4-Nitroaniline	0.54 U			ug/L		10/17/19 02:08	
N-Nitrosodiphenylamine	0.89 U	1		ug/L		10/17/19 02:08	
1-Bromophenyl phenyl ether	0.75 U	1		ug/L		10/17/19 02:08	
Phenanthrene	0.58 U			ug/L		10/17/19 02:08	
Anthracene	0.63 U			ug/L		10/17/19 02:08	
Carbazole	0.68 U			ug/L		10/17/19 02:08	
Di-n-butyl phthalate	0.84 U			ug/L		10/17/19 02:08	
Fluoranthene	0.84 U			ug/L		10/17/19 02:08	
Pyrene	1.6 U			ug/L		10/17/19 02:08	
Butyl benzyl phthalate	0.85 U			ug/L		10/17/19 02:08	
3,3'-Dichlorobenzidine	1.4 U			ug/L		10/17/19 02:08	
Chrysene	0.91 U			ug/L		10/17/19 02:08	
Bis(2-ethylhexyl) phthalate	1.7 U			ug/L ug/L		10/17/19 02:08	
Di-n-octyl phthalate	4.8 U			ug/L		10/17/19 02:08	
Benzo[k]fluoranthene	0.67 U			ug/L		10/17/19 02:08	
ndeno[1,2,3-cd]pyrene	1.3 U			ug/L ug/L		10/17/19 02:08	
Dibenz(a,h)anthracene	0.72 U			ug/L ug/L		10/17/19 02:08	

Eurofins TestAmerica, Edison 11/11/2019

Page 79 of 2942

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-102-US

Lab Sample ID: 460-193869-6 Date Collected: 10/14/19 09:50

Matrix: Water

Date Received: 10/14/19 20:20

Method: 8270D - Semivolatile Analyte	Result	Qualifier	RL	MD	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[g,h,i]perylene	1.4	U	10	1.	4 ug/L		10/16/19 09:03	10/17/19 02:08	1
Diphenyl ether	1.9	J	10	1.	2 ug/L		10/16/19 09:03	10/17/19 02:08	1
n,n'-Dimethylaniline	0.95	J	1.0	0.9	1 ug/L		10/16/19 09:03	10/17/19 02:08	1
Caprolactam	0.68	U	10	0.6	3 ug/L		10/16/19 09:03	10/17/19 02:08	1
bis (2-chloroisopropyl) ether	0.63	U	10	0.6	3 ug/L		10/16/19 09:03	10/17/19 02:08	1
Bisphenol-A	31		10	9.	g ug/L		10/16/19 09:03	10/17/19 02:08	1
N-Methylaniline	0.48	U	5.0	0.4	3 ug/L		10/16/19 09:03	10/17/19 02:08	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
1,4-Dioxane	16	JN	ug/L		1.59	123-91-1	10/16/19 09:03	10/17/19 02:08	1
Unknown	10	J	ug/L		2.26		10/16/19 09:03	10/17/19 02:08	1
Benzene, chloro-	37	JN	ug/L		2.65	108-90-7	10/16/19 09:03	10/17/19 02:08	1
Benzenemethanamine, N,N-dimethyl-	31	JN	ug/L		4.29	103-83-3	10/16/19 09:03	10/17/19 02:08	1
Unknown	8.9	J	ug/L		5.95		10/16/19 09:03	10/17/19 02:08	1
Unknown	43	J	ug/L		6.80		10/16/19 09:03	10/17/19 02:08	1
2(3H)-Benzothiazolone	7.9	JN	ug/L		7.89	934-34-9	10/16/19 09:03	10/17/19 02:08	1
Benzenesulfonamide, N-ethyl-4-methyl-	7.6	JN	ug/L		8.05	80-39-7	10/16/19 09:03	10/17/19 02:08	1
Cyclic octaatomic sulfur	9.8	JN	ug/L		9.61	10544-50-0	10/16/19 09:03	10/17/19 02:08	1
Unknown	26	J	ug/L		9.68		10/16/19 09:03	10/17/19 02:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	104		51 - 108				10/16/19 09:03	10/17/19 02:08	1
Phenol-d5 (Surr)	36		14 - 39				10/16/19 09:03	10/17/19 02:08	1
Terphenyl-d14 (Surr)	114		40 - 148				10/16/19 09:03	10/17/19 02:08	1
2,4,6-Tribromophenol (Surr)	102		26 - 139				10/16/19 09:03	10/17/19 02:08	1
2-Fluorophenol (Surr)	52		25 - 58				10/16/19 09:03	10/17/19 02:08	1
2-Fluorobiphenyl (Surr)	101		45 - 107				10/16/19 09:03	10/17/19 02:08	1
Method: 300.0 - Anions, Ion C			D.	MD	51:A		Duanavad	Anahmad	Dil 5
Analyte		Qualifier	RL 2.04		_ Unit		Prepared	Analyzed 10/16/19 02:39	Dil Fac
Chloride	45.0	1.1			4 mg/L				
Nitrate as N	0.056		0.10		mg/L			10/15/19 20:58	1
Nitrite as N	0.076		0.12		mg/L			10/15/19 20:58	1
Sulfate	19.4		0.60	0.3	5 mg/L	•		10/15/19 20:58	1
Method: 200.8 - Metals (ICP/M						_	_		
Analyte		Qualifier	RL		Unit		Prepared	Analyzed	Dil Fac
Sodium	56900		250		3 ug/L		10/17/19 08:47	10/18/19 11:33	5
Magnesium	23800		250		3 ug/L			10/18/19 11:33	5
Potassium	3320		250		5 ug/L			10/18/19 11:33	5
Calcium	51200		250	23	3 ug/L		10/17/19 08:47	10/18/19 11:33	5
Method: 6010D - Metals (ICP)									
Analyte		Qualifier	RL		_ Unit		Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	10.8	J	50.0	1.	7 ug/L		10/17/19 10:43	10/18/19 02:20	1
Iron, Dissolved	42400		150	34.	2 ug/L		10/17/19 10:43	10/18/19 02:20	1
,									

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc. Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-102-US

Lab Sample ID: 460-193869-6 Date Collected: 10/14/19 09:50

Matrix: Water

Date Received: 10/14/19 20:20

General Analyte	Chemistry	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia	(as N)	1.7		0.10	0.068	mg/L			10/17/19 17:23	1
Bicarbon	ate Alkalinity as CaCO3	246		5.0	5.0	mg/L			10/17/19 12:12	1
Carbonate	Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/17/19 12:12	1
Sulfide		0.58	U	1.0	0.58	mg/L			10/17/19 18:45	1

Lab Sample ID: 460-193869-7 Client Sample ID: TBGW_101419

Date Collected: 10/14/19 15:20 Matrix: Water

Date Received: 10/14/19 20:20

Method: 8260C SIM - Volatile C	Organic Co	mpounds ((GC/MS)					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20 ug/L			10/18/19 00:50	1
Surrogate 4-Bromofluorobenzene	%Recovery	Qualifier	Limits 72 - 133			Prepared	Analyzed 10/18/19 00:50	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/17/19 16:49	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/17/19 16:49	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/17/19 16:49	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/17/19 16:49	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/17/19 16:49	1
Acetone	14		5.0	4.4	ug/L			10/17/19 16:49	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/17/19 16:49	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/17/19 16:49	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/17/19 16:49	1
trans-1,2-Dichloroethene	0.24	U *	1.0	0.24	ug/L			10/17/19 16:49	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/17/19 16:49	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/17/19 16:49	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/17/19 16:49	1
2-Butanone (MEK)	1.9	U *	5.0	1.9	ug/L			10/17/19 16:49	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/17/19 16:49	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/17/19 16:49	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/17/19 16:49	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/17/19 16:49	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/17/19 16:49	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/17/19 16:49	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/17/19 16:49	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/17/19 16:49	1
Benzene	0.20	U	1.0	0.20	ug/L			10/17/19 16:49	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/17/19 16:49	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/17/19 16:49	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/17/19 16:49	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/17/19 16:49	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/17/19 16:49	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/17/19 16:49	1
Toluene	0.38	U	1.0	0.38	ug/L			10/17/19 16:49	1
Chlorobenzene	0.38	U	1.0	0.38				10/17/19 16:49	1
Ethylbenzene	0.30	U	1.0	0.30	-			10/17/19 16:49	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-193458-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_101419 Lab Sample ID: 460-193869-7

Date Collected: 10/14/19 15:20 Matrix: Water Date Received: 10/14/19 20:20

Method: 8260C - Volatile Org Analyte		Qualifier	RL		_ Unit	D	Prepared	Analyzed	Dil Fac
Styrene	0.42	U	1.0	0.4	2 ug/L		-	10/17/19 16:49	
Xylenes, Total	0.65	U	2.0	0.6	ug/L			10/17/19 16:49	1
Diethyl ether	0.21	U	1.0	0.2	1 ug/L			10/17/19 16:49	1
MTBE	0.47	U	1.0	0.4	7 ug/L			10/17/19 16:49	1
Tetrahydrofuran	1.0	U	2.0	1.	ug/L			10/17/19 16:49	1
Cyclohexane	0.32	U	1.0	0.3	2 ug/L			10/17/19 16:49	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.3	7 ug/L			10/17/19 16:49	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.3	3 ug/L			10/17/19 16:49	1
Isopropylbenzene	0.34	U	1.0	0.3	4 ug/L			10/17/19 16:49	1
N-Propylbenzene	0.32	U	1.0	0.3	2 ug/L			10/17/19 16:49	1
Methylcyclohexane	0.26	U	1.0	0.2	3 ug/L			10/17/19 16:49	1
Indane	0.35	U	1.0	0.3	5 ug/L			10/17/19 16:49	1
Dichlorofluoromethane	0.34	U	1.0	0.3	4 ug/L			10/17/19 16:49	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.3	3 ug/L			10/17/19 16:49	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/17/19 16:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		74 - 132					10/17/19 16:49	
Toluene-d8 (Surr)	86		80 - 120					10/17/19 16:49	1
4-Bromofluorobenzene	104		77 - 124					10/17/19 16:49	1
Dibromofluoromethane (Surr)	101		72 - 131					10/17/19 16:49	1

Client: Golder Associates Inc.

Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-18 Lab Sample ID: 460-194006-1

Date Collected: 10/15/19 10:25 Matrix: Water Date Received: 10/15/19 20:10

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	4.4	0.40	0.20 ug/L			10/18/19 17:31	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98	72 - 133		-		10/18/19 17:31	1

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		72 - 133					10/18/19 17:31	1
Method: 8260C - Volatile (Organic Compo	unds by G	C/MS						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/18/19 02:45	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/18/19 02:45	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/18/19 02:45	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/18/19 02:45	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/18/19 02:45	1
Acetone	4.4	U	5.0	4.4	ug/L			10/18/19 02:45	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/18/19 02:45	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/18/19 02:45	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/18/19 02:45	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/18/19 02:45	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/18/19 02:45	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/18/19 02:45	1
1,2-Dichloroethane	0.43	U	1.0		ug/L			10/18/19 02:45	1
2-Butanone (MEK)	1.9	U	5.0		ug/L			10/18/19 02:45	1
1,1,1-Trichloroethane	0.24	U	1.0		ug/L			10/18/19 02:45	1
Carbon tetrachloride	0.21	. _U	1.0		ug/L			10/18/19 02:45	1
Bromodichloromethane	0.34		1.0		ug/L			10/18/19 02:45	1
1,2-Dichloropropane	0.35		1.0		ug/L			10/18/19 02:45	1
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/18/19 02:45	1
Trichloroethene	0.31		1.0		ug/L			10/18/19 02:45	1
Dibromochloromethane	0.28	U	1.0		ug/L			10/18/19 02:45	1
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/18/19 02:45	1
Benzene	0.24		1.0		ug/L			10/18/19 02:45	1
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/18/19 02:45	1
Bromoform	0.54		1.0		ug/L			10/18/19 02:45	· · · · · · · · · · · · · · · · · · ·
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/18/19 02:45	1
2-Hexanone	1.1		5.0		ug/L			10/18/19 02:45	1
Tetrachloroethene	0.25		1.0		ug/L			10/18/19 02:45	1
1,1,2,2-Tetrachloroethane	0.23		1.0		ug/L			10/18/19 02:45	1
Toluene	0.38		1.0		ug/L ug/L			10/18/19 02:45	1
Chlorobenzene	6.9	U	1.0		ug/L			10/18/19 02:45	1
	0.30	11	1.0		ug/L ug/L			10/18/19 02:45	1
Ethylbenzene					-			10/18/19 02:45	
Styrene Yulana Tatal	0.42		1.0		ug/L				1
Xylenes, Total	0.65	U	2.0		ug/L			10/18/19 02:45	1
Diethyl ether	13		1.0		ug/L			10/18/19 02:45	1
MTBE	0.47		1.0		ug/L			10/18/19 02:45	1
Tetrahydrofuran	1.0		2.0		ug/L			10/18/19 02:45	1
Cyclohexane	0.32		1.0		ug/L			10/18/19 02:45	1
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/18/19 02:45	1
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/18/19 02:45	1
Isopropylbenzene	0.34		1.0		ug/L			10/18/19 02:45	1
N-Propylbenzene	0.32	U	1.0		ug/L			10/18/19 02:45	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/18/19 02:45	1

Eurofins TestAmerica, Edison

11/12/2019

Client: Golder Associates Inc.

Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

4-Chloroaniline

Client Sample ID: MW-18 Lab Sample ID: 460-194006-1

Date Collected: 10/15/19 10:25 Matrix: Water

Date Received: 10/15/19 20:10

Method: 8260C - Volatile Org			•		U - 14	_	D	A	D:- =
Analyte	0.35	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
ndane			1.0	0.35	-			10/18/19 02:45	
Dichlorofluoromethane	0.34		1.0		ug/L			10/18/19 02:45	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/18/19 02:45	
Fentatively Identified Compound	Est. Result		Unit		RT _	CAS No.	Prepared	Analyzed	Dil Fa
Chlorodifluoromethane	2.0	F1	ug/L		.42	75-45-6		10/18/19 02:45	
1,4-Dichlorobenzene	1.4		ug/L	10	.92	106-46-7		10/18/19 02:45	
Tentatively Identified Compound	None		ug/L					10/18/19 02:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	89		74 - 132					10/18/19 02:45	
Toluene-d8 (Surr)	96		80 - 120					10/18/19 02:45	
1-Bromofluorobenzene	101		77 - 124					10/18/19 02:45	
Dibromofluoromethane (Surr)	99		72 - 131					10/18/19 02:45	
Method: 8270D SIM - Semivo	latile Organi	c Compo	unds (GC/N	IS SIM)					
Analyte		Qualifier	` RL		Unit	D	Prepared	Analyzed	Dil F
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/17/19 16:11	10/18/19 06:31	
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/17/19 16:11	10/18/19 06:31	
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/17/19 16:11	10/18/19 06:31	
lexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/17/19 16:11	10/18/19 06:31	
Pentachlorophenol	0.15	U. *	0.20	0.15	ug/L		10/17/19 16:11	10/18/19 06:31	
•		•	0.20						
Bis(2-chloroethyl)ether	0.19		0.030	0.026	_		10/17/19 16:11	10/18/19 06:31	
3is(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte	0.19 e Organic Co Result	mpounds Qualifier	0.030 s (GC/MS) RL	0.026 MD L	ug/L Unit	D_	10/17/19 16:11 Prepared	10/18/19 06:31 Analyzed	Dil F
Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol	0.19 e Organic Co Result 0.29	mpounds Qualifier	0.030 s (GC/MS) RL 10	0.026 MDL 0.29	ug/L Unit ug/L	<u>D</u>	10/17/19 16:11 Prepared 10/17/19 16:11	10/18/19 06:31 Analyzed 10/18/19 03:15	Dil F
Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Inalyte Chenol Chlorophenol	0.19 e Organic Co Result 0.29 0.38	mpounds Qualifier U	0.030 s (GC/MS) RL 10	0.026 MDL 0.29 0.38	ug/L Unit ug/L ug/L	<u>D</u>	10/17/19 16:11 Prepared 10/17/19 16:11 10/17/19 16:11	10/18/19 06:31 Analyzed 10/18/19 03:15 10/18/19 03:15	Dil F
Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte PhenolChlorophenolMethylphenol	0.19 e Organic Co Result 0.29 0.38 0.26	mpounds Qualifier U U	0.030 s (GC/MS) RL 10 10	0.026 MDL 0.29 0.38 0.26	ug/L Unit ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	Dil F
Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Chenol Chlorophenol Methylphenol Methylphenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24	mpounds Qualifier U U U U	0.030 S (GC/MS) RL 10 10 10	0.026 MDL 0.29 0.38 0.26 0.24	ug/L Unit ug/L ug/L ug/L ug/L	D	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	Dil F
Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Inalyte Phenol -Chlorophenol -Methylphenol -Methylphenol -Nitrophenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75	mpounds Qualifier U U U U U	0.030 S (GC/MS) RL 10 10 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75	ug/L Unit ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	Dil F
Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol Chlorophenol -Methylphenol -Methylphenol Chlirophenol Chlorophenol Chlirophenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24	mpounds Qualifier U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	Dil F
Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 3-Methylphenol 3-Nitrophenol 2-A-Dimethylphenol 2-4-Dichlorophenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42	mpounds Qualifier U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	Dil F
Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 3-Methylphenol 3-Methylphenol 2-Nitrophenol 2-4-Dimethylphenol 2-4-Dichlorophenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	mpounds Qualifier U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	Dil F
Alecthod: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 3-Methylphenol 3-Methylphenol 3-Methylphenol 3-Methylphenol 3-A-Dimethylphenol 3-A-Dichlorophenol 3-Chloro-3-methylphenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	mpound: Qualifier U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	Dilf
Alexandre Bis (2-chloroethyl) ether Analyte Phenol 2-Chlorophenol 2-Methylphenol 2-Nitrophenol 2-A-Dimethylphenol 2-Chlorophenol 3-4-Dichlorophenol 3-4-Dichlorophenol 3-4-Chloro-3-methylphenol 3-4-6-Trichlorophenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28	mpounds Qualifier U U U U U U U U U U U U U U	0.030 s (GC/MS) RL 10 10 10 10 10 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	Dil F
Alethod: 8270D - Semivolatile analyte Phenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	mpounds Qualifier U U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u> _	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	Dil F
Alectric Response Service Response Resp	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28	mpounds Qualifier U U U U U U U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 10 10 10 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	Dil F
Ris(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol -Chlorophenol -Methylphenol -Nitrophenol -,4-Dimethylphenol -,4-Dichlorophenol -,4,6-Trichlorophenol -,4,5-Trichlorophenol -,4-Dinitrophenol -,4-Dinitrophenol -,4-Dinitrophenol -,4-Dinitrophenol -Nitrophenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14	mpounds Qualifier U U U U U U U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 10 10 10 20	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	Dilf
Method: 8270D - Semivolatile analyte Thenol -Chlorophenol -Methylphenol -Nitrophenol -4-Dimethylphenol -Chloro-3-methylphenol -4,6-Trichlorophenol -4,5-Trichlorophenol -4-Dinitrophenol -(4-Dinitrophenol -(5,4-Dinitrophenol -(6,5-Dinitro-2-methylphenol -(7,5-Dinitro-2-methylphenol -(8,6-Dinitro-2-methylphenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	mpounds Qualifier U U U U U U U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 10 20 20	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	Dilf
Method: 8270D - Semivolatile challed analyte Phenol -Chlorophenol -Methylphenol -Methylphenol -Methylphenol -Methylphenol -A-Dimethylphenol -A-Dimethylphenol -A-Dichlorophenol -Chloro-3-methylphenol -A,5-Trichlorophenol -A,5-Trichlorophenol -A,5-Dinitrophenol -Nitrophenol -A,5-Dinitrophenol -A,5-Dinitrophenol -A,5-Dinitrophenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13	mpounds Qualifier U U U U U U U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 20 20 20	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	DilF
Method: 8270D - Semivolatile analyte Phenol -Chlorophenol -Methylphenol -Methoro-3-methylphenol -Methorophenol -Methylphenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0	mpound: Qualifier U U U U U U U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 20 20 20 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	DilF
Method: 8270D - Semivolatile analyte Phenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3	mpounds Qualifier U U U U U U U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 20 20 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	DilF
Method: 8270D - Semivolatile Analyte Phenol P-Chlorophenol P-Methylphenol P-Methylphenol P-Nitrophenol P-Nitrophenol P-Chloro-3-methylphenol P-Chlorobenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3	mpounds Qualifier U U U U U U U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 20 20 20 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed Analyzed 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15 10/18/19 03:15	DilF
Method: 8270D - Semivolatile Analyte Phenol P-Chlorophenol P-Methylphenol P-Methylphenol P-Nitrophenol P-Chloro-3-methylphenol P-Chlorobenol	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43	mpounds Qualifier U U U U U U U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 20 20 20 10 10 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11	Analyzed Analyzed 10/18/19 03:15	DilF
Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 3-Methylphenol 2-Methylphenol 2-Nitrophenol 2-A-Dimethylphenol 2-A-Dichlorophenol 2-A-Dichlorophenol 3-A-Dichlorophenol 3-A-Dichlorophenol 3-A-Dichlorophenol 3-A-Dichlorophenol 3-Dichlorophenol 3-A-Dichlorophenol 3-A-Dichlorophenol 3-A-Dichlorophenol 3-A-Dichlorophenol 3-A-Dichlorophenol 3-Dichlorobenzene	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2	mpounds Qualifier U U U U U U U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 20 20 20 10 10 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11	Analyzed Analyzed 10/18/19 03:15	DilF
Bis(2-chloroethyl)ether Method: 8270D - Semivolatile	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2	mpounds Qualifier U U U U U U U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 10 10 10 10 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57 0.80	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11	Analyzed 10/18/19 03:15	Dilf
Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Methylphenol 2-A-Dimethylphenol 2-A-Dichlorophenol 2-A-Dichlorophenol 2-A-Dichlorophenol 2-A-Dichlorophenol 3-Chjoritrophenol 3-A-Dichlorophenol 3-A-Dichlorophenol 3-A-Dichlorophenol 3-Dichlorophenol 4-Dichlorobenzene	0.19 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80	mpound: Qualifier U U U U U U U U U U U U U U U U U U U	0.030 S (GC/MS) RL 10 10 10 10 10 10 10 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 10/17/19 16:11	Analyzed 10/18/19 03:15	Dilf

Eurofins TestAmerica, Edison

10/17/19 16:11 10/18/19 03:15

10

1.9 ug/L

1.9 U

Client: Golder Associates Inc.

Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-18 Lab Sample ID: 460-194006-1

Date Collected: 10/15/19 10:25

Date Received: 10/15/19 20:10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/17/19 16:11	10/18/19 03:15	
2-Methylnaphthalene	1.1	U	10	1.1			10/17/19 16:11	10/18/19 03:15	
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/17/19 16:11	10/18/19 03:15	
2-Chloronaphthalene	1.2	U	10		ug/L		10/17/19 16:11	10/18/19 03:15	
2-Nitroaniline	0.47	U	10		ug/L		10/17/19 16:11	10/18/19 03:15	
Dimethyl phthalate	0.77		10		ug/L		10/17/19 16:11	10/18/19 03:15	
Acenaphthylene	0.82	U	10		ug/L		10/17/19 16:11	10/18/19 03:15	
2,6-Dinitrotoluene	0.39	U	2.0		ug/L		10/17/19 16:11	10/18/19 03:15	
3-Nitroaniline	0.96	U	10	0.96	_		10/17/19 16:11	10/18/19 03:15	
Acenaphthene	1.1		10	1.1	•		10/17/19 16:11	10/18/19 03:15	
Dibenzofuran	1.1	U	10	1.1	-		10/17/19 16:11	10/18/19 03:15	
2,4-Dinitrotoluene	1.0	_	2.0		ug/L		10/17/19 16:11		
Diethyl phthalate	0.98		10		ug/L		10/17/19 16:11		
4-Chlorophenyl phenyl ether	1.3		10		ug/L		10/17/19 16:11		
Fluorene	0.91		10		ug/L			10/18/19 03:15	
4-Nitroaniline	0.54		10		ug/L			10/18/19 03:15	
N-Nitrosodiphenylamine	0.89		10		ug/L		10/17/19 16:11		
4-Bromophenyl phenyl ether	0.75		10		ug/L			10/18/19 03:15	
Phenanthrene	0.78		10		ug/L			10/18/19 03:15	
Anthracene	0.63		10		ug/L ug/L		10/17/19 16:11		
Carbazole	0.68		10		ug/L			10/18/19 03:15	
	0.84		10		ug/L ug/L			10/18/19 03:15	
Di-n-butyl phthalate Fluoranthene	0.84		10		ug/L ug/L		10/17/19 16:11		
			10		-				
Pyrene Pyrene	1.6				ug/L			10/18/19 03:15	
Butyl benzyl phthalate	0.85		10		ug/L			10/18/19 03:15	
3,3'-Dichlorobenzidine	1.4		10		ug/L		10/17/19 16:11		
Chrysene	0.91		2.0		ug/L			10/18/19 03:15	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/18/19 03:15	
Di-n-octyl phthalate	4.8		10		ug/L		10/17/19 16:11	10/18/19 03:15	•
Benzo[k]fluoranthene	0.67		1.0		ug/L			10/18/19 03:15	
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/18/19 03:15	•
Dibenz(a,h)anthracene	0.72		1.0		ug/L			10/18/19 03:15	•
Benzo[g,h,i]perylene	1.4		10		ug/L			10/18/19 03:15	
Diphenyl ether	1.2		10		ug/L			10/18/19 03:15	•
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/18/19 03:15	•
Caprolactam	0.68		10		ug/L			10/18/19 03:15	
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/18/19 03:15	•
Bisphenol-A	9.9	U	10	9.9	ug/L		10/17/19 16:11	10/18/19 03:15	
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/17/19 16:11	10/18/19 03:15	•
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Butane, 2-methoxy-2-methyl-	220	JN	ug/L		.73	994-05-8	10/17/19 16:11	10/18/19 03:15	-
Ethanol, 2-butoxy-, phosphate (3:1)	9.5	JN	ug/L	10	.68	78-51-3	10/17/19 16:11	10/18/19 03:15	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	99		51 - 108				10/17/19 16:11	10/18/19 03:15	-
Phenol-d5 (Surr)	33		14 - 39				10/17/19 16:11		
Terphenyl-d14 (Surr)	87		40 - 148					10/18/19 03:15	
2,4,6-Tribromophenol (Surr)	105		26 - 139					10/18/19 03:15	
2-Fluorophenol (Surr)	48		25 - 58					10/18/19 03:15	

Eurofins TestAmerica, Edison

11/12/2019

Client: Golder Associates Inc.

Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-18 Lab Sample ID: 460-194006-1

Date Collected: 10/15/19 10:25 Matrix: Water Date Received: 10/15/19 20:10

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	86		45 - 107				10/17/19 16:11	10/18/19 03:15	•
Method: 300.0 - Anions, Ion C	hromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/17/19 01:03	•
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/17/19 01:03	
Sulfate	7.13		0.60	0.35	mg/L			10/17/19 01:03	
Method: 300.0 - Anions, Ion C	hromatogra	phy - DL							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloride	49.1	F1-D J-	2.28	0.27	mg/L			10/17/19 07:58	19
Method: 200.8 - Metals (ICP/M	S) - Total R	ecoverable	9						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	31200		250	66.8	ug/L		10/18/19 09:46	10/21/19 10:29	
Magnesium	11800		250	24.8	ug/L		10/18/19 09:46	10/21/19 10:29	Į
Potassium	15400		250	73.5	ug/L		10/18/19 09:46	10/21/19 10:29	į
Calcium	23500		250	233	ug/L		10/18/19 09:46	10/21/19 10:29	
Method: 6010D - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	27.0	J	50.0	1.7	ug/L		10/19/19 08:58	10/20/19 06:56	
Iron, Dissolved	33100		150	34.2	ug/L		10/19/19 08:58	10/20/19 06:56	•
Manganese, Dissolved	2670		15.0	0.99	ug/L		10/19/19 08:58	10/20/19 06:56	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	22.2		0.20	0.14	mg/L			10/17/19 17:48	- 2
Bicarbonate Alkalinity as CaCO3	178		5.0	5.0	mg/L			10/17/19 14:09	•
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/17/19 14:09	
Sulfide	0.58	U	1.0	0.58	mg/L			10/17/19 18:45	

Client Sample ID: MW-34 (80)

Date Collected: 10/15/19 12:05

Lab Sample ID: 460-194006-2

Matrix: Water

Date Received: 10/15/19 20:10

Method: 8260C SIM - Volatile	Organic Com	pounds (GC/MS)					
Analyte	Result C	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	3.8		0.40	0.20 ug/L			10/18/19 17:54	1
Surrogate	%Recovery G	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	109		72 - 133		-		10/18/19 17:54	1

Method: 8260C - Volatile	Method: 8260C - Volatile Organic Compounds by GC/MS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/18/19 03:04	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/18/19 03:04	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/18/19 03:04	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/18/19 03:04	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/18/19 03:04	1
Acetone	4.4	U	5.0	4.4	ug/L			10/18/19 03:04	1

Eurofins TestAmerica, Edison

11/12/2019

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-34 (80)

Lab Sample ID: 460-194006-2

Matrix: Water

Date Collected:	10/15/19 12:05
Date Received:	10/15/19 20:10

Method: 8260C - Volatile Org Analyte		Qualifier	RL		. Unit	D	Prepared	Analyzed	Dil Fa
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/18/19 03:04	
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/18/19 03:04	
1,1-Dichloroethane	0.26	U	1.0	0.26	3 ug/L			10/18/19 03:04	
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	l ug/L			10/18/19 03:04	
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	2 ug/L			10/18/19 03:04	
Chloroform	0.33	U	1.0	0.33	3 ug/L			10/18/19 03:04	
1,2-Dichloroethane	0.43	U	1.0	0.43	3 ug/L			10/18/19 03:04	
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/18/19 03:04	
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/18/19 03:04	
Carbon tetrachloride	0.21	U	1.0	0.2	l ug/L			10/18/19 03:04	
Bromodichloromethane	0.34	U	1.0	0.34	l ug/L			10/18/19 03:04	
1,2-Dichloropropane	0.35	U	1.0	0.3	ug/L			10/18/19 03:04	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	2 ug/L			10/18/19 03:04	
Trichloroethene	0.31	U	1.0		l ug/L			10/18/19 03:04	
Dibromochloromethane	0.28	U	1.0		3 ug/L			10/18/19 03:04	
1,1,2-Trichloroethane	0.43	U	1.0		3 ug/L			10/18/19 03:04	
Benzene	0.20		1.0		ug/L			10/18/19 03:04	
trans-1,3-Dichloropropene	0.49	U	1.0		ug/L			10/18/19 03:04	
Bromoform	0.54	U	1.0		l ug/L			10/18/19 03:04	
4-Methyl-2-pentanone	1.3		5.0		3 ug/L			10/18/19 03:04	
2-Hexanone	1.1		5.0		l ug/L			10/18/19 03:04	
Tetrachloroethene	0.92		1.0		ug/L			10/18/19 03:04	
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/18/19 03:04	
Toluene	0.38		1.0		3 ug/L			10/18/19 03:04	
Chlorobenzene	2.0		1.0		3 ug/L			10/18/19 03:04	
Ethylbenzene	0.30	U	1.0		ug/L			10/18/19 03:04	
Styrene	0.42		1.0		2 ug/L			10/18/19 03:04	
Xylenes, Total	0.65		2.0		ug/L			10/18/19 03:04	
Diethyl ether	3.1	-	1.0		l ug/L			10/18/19 03:04	
MTBE	0.47	П	1.0		ug/L			10/18/19 03:04	
Tetrahydrofuran	1.6		2.0		ug/L			10/18/19 03:04	
Cyclohexane	0.32		1.0		2 ug/L			10/18/19 03:04	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/18/19 03:04	
1,3,5-Trimethylbenzene	0.33		1.0		3 ug/L			10/18/19 03:04	
Isopropylbenzene	0.34		1.0		ug/L			10/18/19 03:04	
N-Propylbenzene	0.32		1.0		ug/L			10/18/19 03:04	
Methylcyclohexane	0.26		1.0		ug/L			10/18/19 03:04	
Indane	0.25		1.0		ug/L			10/18/19 03:04	
Dichlorofluoromethane	0.33		1.0		ug/L ug/L			10/18/19 03:04	
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/18/19 03:04	
1,2,0-11metrybenzene	0.50	0	1.0	0.50	o agre			10/10/19 05:04	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/18/19 03:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	88	*	74 - 132					10/18/19 03:04	
Toluene-d8 (Surr)	94		80 - 120					10/18/19 03:04	
4-Bromofluorobenzene	101		77 - 124					10/18/19 03:04	
Dibromofluoromethane (Surr)	100		72 - 131					10/18/19 03:04	

Eurofins TestAmerica, Edison 11/12/2019

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-34 (80)

Lab Sample ID: 460-194006-2 Date Collected: 10/15/19 12:05

Matrix: Water

Date Received: 10/15/19 20:1	0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/17/19 16:11	10/18/19 06:52	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/17/19 16:11	10/18/19 06:52	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/17/19 16:11	10/18/19 06:52	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/17/19 16:11	10/18/19 06:52	1
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/17/19 16:11	10/18/19 06:52	1
Bis(2-chloroethyl)ether	0.62		0.030	0.026	ug/L		10/17/19 16:11	10/18/19 06:52	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/17/19 16:11	10/18/19 04:39	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/17/19 16:11	10/18/19 04:39	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/17/19 16:11	10/18/19 04:39	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/17/19 16:11	10/18/19 04:39	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/17/19 16:11	10/18/19 04:39	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/17/19 16:11	10/18/19 04:39	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/17/19 16:11	10/18/19 04:39	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/17/19 16:11	10/18/19 04:39	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/17/19 16:11	10/18/19 04:39	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/17/19 16:11	10/18/19 04:39	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/17/19 16:11	10/18/19 04:39	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/17/19 16:11	10/18/19 04:39	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/17/19 16:11	10/18/19 04:39	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/17/19 16:11	10/18/19 04:39	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/17/19 16:11	10/18/19 04:39	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/17/19 16:11	10/18/19 04:39	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/17/19 16:11	10/18/19 04:39	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/17/19 16:11	10/18/19 04:39	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/17/19 16:11	10/18/19 04:39	1
Isophorone	0.80	U	10	0.80	ug/L		10/17/19 16:11	10/18/19 04:39	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/17/19 16:11	10/18/19 04:39	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/17/19 16:11	10/18/19 04:39	1
Naphthalene	1.1	U	10	1.1	ug/L		10/17/19 16:11	10/18/19 04:39	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/17/19 16:11	10/18/19 04:39	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/17/19 16:11	10/18/19 04:39	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/17/19 16:11	10/18/19 04:39	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/17/19 16:11	10/18/19 04:39	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/17/19 16:11	10/18/19 04:39	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/17/19 16:11	10/18/19 04:39	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/17/19 16:11	10/18/19 04:39	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/17/19 16:11	10/18/19 04:39	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/17/19 16:11	10/18/19 04:39	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/17/19 16:11	10/18/19 04:39	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/17/19 16:11	10/18/19 04:39	1
Dibenzofuran	1.1	U	10	1.1	ug/L		10/17/19 16:11	10/18/19 04:39	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/17/19 16:11	10/18/19 04:39	1
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/17/19 16:11	10/18/19 04:39	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/17/19 16:11	10/18/19 04:39	1
Fluorene	0.91	U	10	0.91	ug/L		10/17/19 16:11	10/18/19 04:39	1
4-Nitroaniline	0.54	U	10	0.54	ug/L		10/17/19 16:11	10/18/19 04:39	1
N-Nitrosodiphenylamine	0.89	U	10		ug/L		10/17/19 16:11	10/18/19 04:39	1

Eurofins TestAmerica, Edison

11/12/2019

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-34 (80)

Date Received: 10/15/19 20:10

Lab Sample ID: 460-194006-2 Date Collected: 10/15/19 12:05

Matrix: Water

Method: 8270D - Semivolatile ^{Analyte}		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
4-Bromophenyl phenyl ether	0.75		10		ug/L		10/17/19 16:11	•	
Phenanthrene	0.58		10		ug/L			10/18/19 04:39	
Anthracene	0.63		10		ug/L		10/17/19 16:11	10/18/19 04:39	
Carbazole	0.68		10		ug/L		10/17/19 16:11		
Di-n-butyl phthalate	0.84		10		ug/L			10/18/19 04:39	
Fluoranthene	0.84		10		ug/L		10/17/19 16:11	10/18/19 04:39	
Pyrene	1.6	U	10		ug/L		10/17/19 16:11	10/18/19 04:39	
Butyl benzyl phthalate	0.85	U	10		ug/L			10/18/19 04:39	
3,3'-Dichlorobenzidine	1.4		10		ug/L		10/17/19 16:11		
Chrysene	0.91		2.0		ug/L		10/17/19 16:11		
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/18/19 04:39	
Di-n-octyl phthalate	4.8		10		ug/L		10/17/19 16:11		
Benzo[k]fluoranthene	0.67		1.0		ug/L		10/17/19 16:11		
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/18/19 04:39	
Dibenz(a,h)anthracene	0.72		1.0		ug/L		10/17/19 16:11	10/18/19 04:39	
Benzo[g,h,i]perylene	1.4		10		ug/L		10/17/19 16:11	10/18/19 04:39	
Diphenyl ether	1.2		10		ug/L		10/17/19 16:11	10/18/19 04:39	
n,n'-Dimethylaniline	0.91		1.0		ug/L		10/17/19 16:11	10/18/19 04:39	
Caprolactam	0.68		10		ug/L		10/17/19 16:11	10/18/19 04:39	
bis (2-chloroisopropyl) ether	0.63		10		ug/L		10/17/19 16:11	10/18/19 04:39	
Bisphenol-A	9.9		10		ug/L		10/17/19 16:11	10/18/19 04:39	
N-Methylaniline	0.48		5.0		ug/L			10/18/19 04:39	
TV Welliylanine	0.40	0	0.0	0.40	ugiL		10/11/10 10:11	10/10/10 04:00	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L	_			10/17/19 16:11	10/18/19 04:39	
Surrogata	9/ Bassyoni	Ouglifier	Limits				Bronorod	Analizad	Dil Fa
Surrogate Nitrobenzene-d5 (Surr)	%Recovery	Quanner	51 ₋ 108				Prepared 10/17/19 16:11	Analyzed 10/18/19 04:39	DIIF
, ,	31		14 - 39				10/17/19 16:11	10/18/19 04:39	
Phenol-d5 (Surr)	94		14 - 39 40 - 148				10/17/19 16:11	10/18/19 04:39	
Terphenyl-d14 (Surr)	103		26 ₋ 139					10/18/19 04:39	
2,4,6-Tribromophenol (Surr)	46		20 - 139 25 - 58						
2-Fluorophenol (Surr)								10/18/19 04:39	
2-Fluorobiphenyl (Surr)	84		45 - 107				10/17/19 16:11	10/18/19 04:39	
Method: 300.0 - Anions, Ion (Chromatogra	ohv							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Nitrate as N	0.52		0.10	0.056				10/17/19 02:18	
Nitrite as N	0.076	U	0.12	0.076	-			10/17/19 02:18	
Sulfate	12.9		0.60		mg/L			10/17/19 02:18	
· ·					•				
Method: 300.0 - Anions, Ion (Chromatogra	phy - DL							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	38.3	Đ	1.68	0.20	mg/L			10/17/19 09:42	1
	N 400								
Method: 200.8 - Metals (ICP/						_		A •	ps
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Sodium	21100		250		ug/L		10/18/19 09:46	10/21/19 10:48	
Magnesium	8310		250		ug/L		10/18/19 09:46		
Potassium	4110		250	73.5	ug/L		10/18/19 09:46	10/21/19 10:48	
, otassiani					-				

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-34 (80)

Lab Sample ID: 460-194006-2

Date Collected: 10/15/19 12:05 Matrix: Water Date Received: 10/15/19 20:10

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	12.9 J	50.0	1.7	ug/L		10/19/19 08:58	10/20/19 07:04	1
Iron, Dissolved	2450	150	34.2	ug/L		10/19/19 08:58	10/20/19 07:04	1
Manganese, Dissolved	1200	15.0	0.99	ug/L		10/19/19 08:58	10/20/19 07:04	1

Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared 0.10 0.068 mg/L 10/17/19 18:00 Ammonia (as N) 0.62 5.0 5.0 mg/L 10/17/19 12:27 Bicarbonate Alkalinity as CaCO3 54.1 1 Carbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L 10/17/19 12:27 1 Sulfide 0.58 U 1.0 0.58 mg/L 10/17/19 18:45 1

Client Sample ID: MW-34 (110) Lab Sample ID: 460-194006-3 Date Collected: 10/15/19 15:05 Matrix: Water

Date Received: 10/15/19 20:10

Method: 8260C SIM - Vola	itile Organic Com	npounds ((GC/MS)						
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	4.3		0.40	0.20	ug/L			10/18/19 18:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		72 - 133			-		10/18/19 18:17	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/18/19 03:22	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/18/19 03:22	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/18/19 03:22	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/18/19 03:22	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/18/19 03:22	1
Acetone	4.4	U	5.0	4.4	ug/L			10/18/19 03:22	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/18/19 03:22	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/18/19 03:22	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/18/19 03:22	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/18/19 03:22	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/18/19 03:22	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/18/19 03:22	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/18/19 03:22	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/18/19 03:22	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/18/19 03:22	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/18/19 03:22	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/18/19 03:22	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/18/19 03:22	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/18/19 03:22	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/18/19 03:22	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/18/19 03:22	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/18/19 03:22	1
Benzene	0.20	U	1.0	0.20	ug/L			10/18/19 03:22	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/18/19 03:22	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/18/19 03:22	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/18/19 03:22	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/18/19 03:22	1

Eurofins TestAmerica, Edison

11/12/2019

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-34 (110)

Lab Sample ID: 460-194006-3 Date Collected: 10/15/19 15:05

Matrix: Water

Date Received: 10/15/19 20:10

Method: 8260C - Volatile Org ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.91		1.0	0.25	ug/L			10/18/19 03:22	
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/18/19 03:22	
Toluene	0.38		1.0		ug/L			10/18/19 03:22	
Chlorobenzene	2.9		1.0		ug/L			10/18/19 03:22	
Ethylbenzene	0.30	U	1.0		ug/L			10/18/19 03:22	
Styrene	0.42		1.0		ug/L			10/18/19 03:22	
Xylenes, Total	0.65		2.0		ug/L			10/18/19 03:22	
Diethyl ether	4.6		1.0		ug/L			10/18/19 03:22	
MTBE	0.47	U	1.0		ug/L			10/18/19 03:22	
Tetrahydrofuran	1.0		2.0		ug/L			10/18/19 03:22	
Cyclohexane	0.32		1.0		ug/L			10/18/19 03:22	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/18/19 03:22	
I,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/18/19 03:22	
sopropylbenzene	0.34		1.0		ug/L			10/18/19 03:22	
N-Propylbenzene	0.32		1.0		ug/L			10/18/19 03:22	
Methylcyclohexane	0.32		1.0		ug/L ug/L			10/18/19 03:22	
ndane	0.20		1.0		ug/L			10/18/19 03:22	
Dichlorofluoromethane	0.33		1.0		ug/L ug/L			10/18/19 03:22	
	0.34		1.0		ug/L ug/L			10/18/19 03:22	
1,2,3-Trimethylbenzene	0.30	U	1.0	0.30	ug/L			10/10/19 03.22	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D .	RT	CAS No.	Prepared	Analyzed	Dil Fa
Fentatively Identified Compound	None		ug/L					10/18/19 03:22	
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	88		74 - 132					10/18/19 03:22	
1,2-Dichloroethane-d4 (Surr) Foluene-d8 (Surr)	88 95		80 - 120					10/18/19 03:22	
f,2-Dichloroethane-d4 (Surr) Foluene-d8 (Surr) t-Bromofluorobenzene	88 95 100		80 - 120 77 - 124					10/18/19 03:22 10/18/19 03:22	•
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene	88 95		80 - 120					10/18/19 03:22	•
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 1-Bromofluorobenzene Dibromofluoromethane (Surr)	88 95 100 100	c Compo	80 - 120 77 - 124 72 - 131	e cima)				10/18/19 03:22 10/18/19 03:22	
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo	88 95 100 100		80 - 120 77 - 124 72 - 131 unds (GC/M	•	Unit	ח	Prenared	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22	
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte	88 95 100 100 Platile Organi Result	Qualifier	80 - 120 77 - 124 72 - 131 unds (GC/MS	MDL	Unit	D	Prepared	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed	Dil Fac
f.,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene	88 95 100 100 Platile Organi Result	Qualifier U	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050	MDL 0.016	ug/L	D	10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14	Dil Fa
7,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene	88 95 100 100 Ilatile Organi Result 0.016 0.022	Qualifier U	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050 0.050	MDL 0.016 0.022	ug/L ug/L	<u>D</u>	10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14	Dil Fa
I,2-Dichloroethane-d4 (Surr) Foluene-d8 (Surr) I-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	88 95 100 100 Platile Organi Result 0.016 0.022 0.024	Qualifier U U U	80 - 120 77 - 124 72 - 131 unds (GC/M3 RL 0.050 0.050 0.050	MDL 0.016 0.022 0.024	ug/L ug/L ug/L	<u>D</u>	10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14	Dil Fa
In,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) I-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene	88 95 100 100 Platile Organi Result 0.016 0.022 0.024 0.013	Qualifier U U U U	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L	D	10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14	Dil Fa
I,2-Dichloroethane-d4 (Surr) Foluene-d8 (Surr) I-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol	88 95 100 100 Platile Organi Result 0.016 0.022 0.024 0.013 0.15	Qualifier U U U U	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	D	10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14	Dil Fa
In,2-Dichloroethane-d4 (Surr) IToluene-d8 (Surr) It-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol	88 95 100 100 Platile Organi Result 0.016 0.022 0.024 0.013	Qualifier U U U U	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050 0.050 0.050	MDL 0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14	Dil Fa
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether	88 95 100 100 Platile Organi Result 0.016 0.022 0.024 0.013 0.15 0.56	Qualifier U U U U U U	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.20 0.20	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	D	10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14	Dil Fa
7,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyi)ether Method: 8270D - Semivolatile	88 95 100 100 Platile Organi Result 0.016 0.022 0.024 0.013 0.15 0.56	Qualifier U U U U U	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14	Dil Fac
In Jacobian Control of the Control o	88 95 100 100 Platile Organi Result 0.016 0.022 0.024 0.013 0.15 0.56 e Organic Co	Qualifier U U U U mpounds Qualifier	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS)	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L	D	10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14	Dil Fac
A,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) A-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol	88 95 100 100 100 Ilatile Organi Result 0.016 0.022 0.024 0.013 0.15 0.56 Corganic	Qualifier U U U U U ** ** ** ** ** ** **	80 - 120 77 - 124 72 - 131 unds (GC/M3 RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 Prepared 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14	Dil Fa
J.2-Dichloroethane-d4 (Surr) Foluene-d8 (Surr) J-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol P-Chlorophenol	88 95 100 100 100 100 101 101 101 101 101 10	Qualifier U U U U ** ** ** ** ** ** ** **	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 Prepared 10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 Analyzed 10/18/19 05:00 10/18/19 05:00	Dil Fa
J.2-Dichloroethane-d4 (Surr) Foluene-d8 (Surr) J-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol P-Chlorophenol	88 95 100 100 100 100 101 101 101 101 101 10	Qualifier U U U U ** Compounds Qualifier U U U	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.20 0.20 0.030 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 Analyzed 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00	Dil Fa
"2-Dichloroethane-d4 (Surr) "Coluene-d8 (Surr) "Coluene-d8 (Surr) "Coluene-d8 (Surr) "Coluene-d8 (Surr) "Coluene-d8 (Surr) "Coluene-d8 (Surr) "Method: 8270D SIM - Semivolanity "Coluene Senzo[a]anthracene "Coluene Senzo[a]pyrene "Coluene Senzo[a]pyrene "Coluene Senzo[a]pyrene "Coluene Senzo[a]pyrene "Colleroethyl)ether "Colleroethyl)ether "Colleroethyl)ether "Collerophenol "Collerophenol "Collerophenol "Collerophenol "Collerophenol	88 95 100 100 100 100 100 101 101 101 101 10	Qualifier U U U U ### Compounds Qualifier U U U U U U U U U U U U U U U U U U U	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 Prepared 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00	Dil Fa
"2-Dichloroethane-d4 (Surr) "Coluene-d8 (Surr) "Method: 8270D SIM - Semivolative "Coluene Senzo[a]pyrene "Coluene Senzo[b]filuoranthene "Colleroethyl)ether "Method: 8270D - Semivolative "Collerophenol "Collorophenol "Collorophenol "Collorophenol "Collorophenol "Collorophenol "Collorophenol "Collorophenol "Collorophenol "Collorophenol	88 95 100 100 100 100 100 100 100 101 0.016 0.022 0.024 0.013 0.15 0.56 0.75	Qualifier U U U U ** ** ** ** ** ** ** **	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00	Dil Fa
"2-Dichloroethane-d4 (Surr) Foluene-d8 (Surr) -Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol -Chlorophenol -Methylphenol -Methylphenol -Methylphenol -Nitrophenol	88 95 100 100 100 Platile Organi Result 0.016 0.022 0.024 0.013 0.15 0.56 Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24	Qualifier U U U U ** ** ** ** ** ** ** **	80 - 120 77 - 124 72 - 131 unds (GC/MS) RL 0.050 0.050 0.050 0.020 0.20 0.030 6 (GC/MS) RL 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 Analyzed 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00	Dil Fa
"2-Dichloroethane-d4 (Surr) Foluene-d8 (Surr) -Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo analyte Fienzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Benzohlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile analyte Phenol -Chlorophenol -Methylphenol -Methylphenol -Nethylphenol -Nitrophenol -Nitrophenol -A-Dichlorophenol	88 95 100 100 100 100 100 101 101 101 101 10	Qualifier U U U U ** ** ** ** ** ** ** **	80 - 120 77 - 124 72 - 131 unds (GC/M3 RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/17/19 16:11 10/17/19 16:11	10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 Analyzed 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00	Dil Fa
A,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitrophenol 2-Nitrophenol 2-4-Dichlorophenol 4-Chloro-3-methylphenol	88 95 100 100 100 100 100 101 101 101 101 10	Qualifier U U U U ** ** ** ** ** ** ** **	80 - 120 77 - 124 72 - 131 unds (GC/MS RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed 10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00	Dil Fac
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2,4-Dichlorophenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,5-Trichlorophenol	88 95 100 100 100 100 100 101 101 101 101 10	Qualifier U U U U * Compounds Qualifier U U U U U U U U U U U U U U U U U U U	80 - 120 77 - 124 72 - 131 unds (GC/M3 RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11 10/17/19 16:11	Analyzed 10/18/19 03:22 10/18/19 03:22 10/18/19 03:22 Analyzed 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:14 10/18/19 07:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00 10/18/19 05:00	Dil Fac

Eurofins TestAmerica, Edison

11/12/2019

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-34 (110)

Date Received: 10/15/19 20:10

Lab Sample ID: 460-194006-3 Date Collected: 10/15/19 15:05

Matrix: Water

Method: 8270D - Semivolatil Analyte		Qualifier	ŔĹ	MDL		D	Prepared	Analyzed	Dil Fa
2,4-Dinitrophenol	14	U	20	14	ug/L		10/17/19 16:11	10/18/19 05:00	
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/17/19 16:11	10/18/19 05:00	
4,6-Dinitro-2-methylphenol	13	Ü	20	13	ug/L		10/17/19 16:11	10/18/19 05:00	
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/17/19 16:11	10/18/19 05:00	
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/17/19 16:11	10/18/19 05:00	
1,2-Dichlorobenzene	1.3	Ü	10	1.3	ug/L		10/17/19 16:11	10/18/19 05:00	
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/17/19 16:11	10/18/19 05:00	
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/17/19 16:11	10/18/19 05:00	
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/17/19 16:11	10/18/19 05:00	
Isophorone	0.80	U	10	0.80	ug/L		10/17/19 16:11	10/18/19 05:00	
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/17/19 16:11	10/18/19 05:00	
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/17/19 16:11	10/18/19 05:00	
Naphthalene	1.1	U	10	1.1	ug/L		10/17/19 16:11	10/18/19 05:00	
4-Chloroaniline	1.9	U	10		ug/L		10/17/19 16:11	10/18/19 05:00	
Hexachlorobutadiene	0.78	U	1.0	0.78			10/17/19 16:11	10/18/19 05:00	
2-Methylnaphthalene	1.1	U	10		ug/L		10/17/19 16:11	10/18/19 05:00	
Hexachlorocyclopentadiene	1.7	U	10		ug/L		10/17/19 16:11	10/18/19 05:00	
2-Chloronaphthalene	1.2		10		ug/L		10/17/19 16:11	10/18/19 05:00	
2-Nitroaniline	0.47		10	0.47	-		10/17/19 16:11		
Dimethyl phthalate	0.77	U	10	0.77	-			10/18/19 05:00	
Acenaphthylene	0.82		10	0.82				10/18/19 05:00	
2,6-Dinitrotoluene	0.39		2.0	0.39	_				
3-Nitroaniline	0.96		10	0.96	-			10/18/19 05:00	
Acenaphthene	1.1		10		ug/L			10/18/19 05:00	
Dibenzofuran		U	10		ug/L		10/17/19 16:11	10/18/19 05:00	
2,4-Dinitrotoluene	1.0		2.0		ug/L			10/18/19 05:00	
Diethyl phthalate	0.98		10		ug/L			10/18/19 05:00	
4-Chlorophenyl phenyl ether	1.3		10		ug/L		10/17/19 16:11	10/18/19 05:00	
Fluorene	0.91		10	0.91	_			10/18/19 05:00	
4-Nitroaniline	0.54		10	0.54				10/18/19 05:00	
N-Nitrosodiphenylamine	0.89		10	0.89	_			10/18/19 05:00	
4-Bromophenyl phenyl ether	0.75		10	0.75	•			10/18/19 05:00	
Phenanthrene	0.58		10	0.58	_			10/18/19 05:00	
Anthracene	0.63		10	0.63	-			10/18/19 05:00	
Carbazole	0.68		10	0.68	-			10/18/19 05:00	
Di-n-butyl phthalate	0.84		10	0.84				10/18/19 05:00	
Fluoranthene	0.84		10	0.84	_			10/18/19 05:00	
Pyrene	1.6		10		ug/L			10/18/19 05:00	
Butyl benzyl phthalate	0.85		10	0.85	_			10/18/19 05:00	
3,3'-Dichlorobenzidine	1.4		10		ug/L			10/18/19 05:00	
Chrysene	0.91		2.0	0.91	-			10/18/19 05:00	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/18/19 05:00	
Di-n-octyl phthalate	4.8		10		ug/L			10/18/19 05:00	
Benzo[k]fluoranthene	0.67		1.0	0.67	-			10/18/19 05:00	
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L ug/L			10/18/19 05:00	
Dibenz(a,h)anthracene	0.72		1.0	0.72				10/18/19 05:00	
Benzo[g,h,i]perylene	1.4		1.0		ug/L			10/18/19 05:00	
Diphenyl ether	1.2		10		ug/L			10/18/19 05:00	
n,n'-Dimethylaniline	0.91		1.0		ug/L ug/L			10/18/19 05:00	

Eurofins TestAmerica, Edison 11/12/2019

Page 31 of 2941

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-34 (110)

Lab Sample ID: 460-194006-3 Date Collected: 10/15/19 15:05

Matrix: Water

Date Received: 10/15/19 20:10

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Caprolactam	0.68	U	10	0.68	ug/L		10/17/19 16:11	10/18/19 05:00	1
bis (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/17/19 16:11	10/18/19 05:00	1
Bisphenol-A	9.9	U	10	9.9	ug/L		10/17/19 16:11	10/18/19 05:00	1
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/17/19 16:11	10/18/19 05:00	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				10/17/19 16:11	10/18/19 05:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	106		51 - 108				10/17/19 16:11	10/18/19 05:00	1
Phenol-d5 (Surr)	34		14 _ 39				10/17/19 16:11	10/18/19 05:00	7
Terphenyl-d14 (Surr)	99		40 - 148				10/17/19 16:11	10/18/19 05:00	1
2,4,6-Tribromophenol (Surr)	103		26 - 139				10/17/19 16:11	10/18/19 05:00	
2-Fluorophenol (Surr)	50		25 - 58				10/17/19 16:11	10/18/19 05:00	1
2-Fluorobiphenyl (Surr)	87		45 - 107				10/17/19 16:11	10/18/19 05:00	1
Method: 300.0 - Anions, Ion Cl						_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.67		0.10		mg/L			10/17/19 02:03	1
Nitrite as N	0.076	U	0.12		mg/L			10/17/19 02:03	1
Sulfate	13.7		0.60	0.35	mg/L			10/17/19 02:03	1
Method: 300.0 - Anions, Ion Cl						_			B.1. E
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	37.4	Ð	1.80	0.21	mg/L			10/17/19 08:57	15
Method: 200.8 - Metals (ICP/M									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Sodium	22500		250		ug/L			10/21/19 10:50	5
Vl agnesium	9140		250		ug/L		10/18/19 09:46	10/21/19 10:50	5
Potassium	4530		250		ug/L		10/18/19 09:46	10/21/19 10:50	5
Calcium	17500		250	233	ug/L		10/18/19 09:46	10/21/19 10:50	5
Method: 6010D - Metals (ICP) -	Dissolved								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	13.9	J	50.0	1.7	ug/L		10/19/19 08:58	10/20/19 07:08	1
Iron, Dissolved	6280		150	34.2	ug/L		10/19/19 08:58	10/20/19 07:08	1
Manganese, Dissolved	1300		15.0	0.99	ug/L		10/19/19 08:58	10/20/19 07:08	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.95		0.10	0.068	mg/L			10/17/19 16:42	1
Bicarbonate Alkalinity as CaCO3	66.5		5.0	5.0	mg/L			10/17/19 12:34	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/17/19 12:34	1
Sulfide	0.58		1.0		mg/L			10/17/19 18:45	

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)

Client Sample ID: FDGW_101519

Lab Sample ID: 460-194006-4 Date Collected: 10/15/19 00:00

Matrix: Water

Date Received: 10/15/19 20:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	4.4		0.40	0.20	ug/L			10/18/19 18:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92		72 - 133			-		10/18/19 18:41	1
			~ 19.5 ~						
Method: 8260C - Volatile Or Analyte		unds by G Qualifier	C/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40		1.0	0.40		-	Tropurcu	10/18/19 03:41	1
Bromomethane	0.55		1.0	0.55	-			10/18/19 03:41	1
Vinyl chloride	0.17		1.0	0.17				10/18/19 03:41	1
Chloroethane	0.32		1.0	0.32	-			10/18/19 03:41	
Methylene Chloride	0.32		1.0	0.32				10/18/19 03:41	1
Acetone	4.4		5.0		ug/L			10/18/19 03:41	1
Carbon disulfide	0.82		1.0	0.82				10/18/19 03:41	1
1,1-Dichloroethene	0.26		1.0	0.26				10/18/19 03:41	1
1,1-Dichloroethane	0.26		1.0	0.26				10/18/19 03:41	1
trans-1.2-Dichloroethene	0.24		1.0	0.24				10/18/19 03:41	1
cis-1,2-Dichloroethene	0.22		1.0	0.22				10/18/19 03:41	1
Chloroform	0.33		1.0	0.33				10/18/19 03:41	1
1,2-Dichloroethane	0.43		1.0	0.43	-			10/18/19 03:41	1
2-Butanone (MEK)	1.9		5.0		ug/L			10/18/19 03:41	1
1,1,1-Trichloroethane	0.24		1.0	0.24				10/18/19 03:41	1
Carbon tetrachloride	0.21		1.0	0.21	-			10/18/19 03:41	1
Bromodichloromethane	0.34		1.0	0.34				10/18/19 03:41	1
1,2-Dichloropropane	0.35	U	1.0	0.35				10/18/19 03:41	1
cis-1,3-Dichloropropene	0.22		1.0	0.22	-			10/18/19 03:41	1
Trichloroethene	0.31	U	1.0	0.31				10/18/19 03:41	1
Dibromochloromethane	0.28	U	1.0	0.28				10/18/19 03:41	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43				10/18/19 03:41	1
Benzene	0.20	U	1.0	0.20				10/18/19 03:41	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49				10/18/19 03:41	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/18/19 03:41	1
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			10/18/19 03:41	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/18/19 03:41	1
Tetrachloroethene	0.89	J	1.0	0.25				10/18/19 03:41	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/18/19 03:41	1
Toluene	0.38	U	1.0	0.38	ug/L			10/18/19 03:41	1
Chlorobenzene	1.9		1.0	0.38	ug/L			10/18/19 03:41	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/18/19 03:41	1
Styrene	0.42	U	1.0	0.42	ug/L			10/18/19 03:41	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/18/19 03:41	1
Diethyl ether	3.2		1.0	0.21	ug/L			10/18/19 03:41	1
МТВЕ	0.47	U	1.0	0.47	ug/L			10/18/19 03:41	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/18/19 03:41	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/18/19 03:41	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/18/19 03:41	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/18/19 03:41	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/18/19 03:41	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/18/19 03:41	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/18/19 03:41	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: FDGW_101519

Lab Sample ID: 460-194006-4

Date Collected: 10/15/19 00:00 Matrix: Water Date Received: 10/15/19 20:10

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) **Analyte** Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Indane 0.35 U 1.0 0.35 ug/L 10/18/19 03:41 0.34 U 1.0 Dichlorofluoromethane 0.34 ug/L 10/18/19 03:41 1,2,3-Trimethylbenzene 0.36 U 1.0 0.36 ug/L 10/18/19 03:41 Tentatively Identified Compound Est. Result Qualifier Unit RT CAS No. Prepared Analyzed Dil Fac Tentatively Identified Compound None ug/L 10/18/19 03:41 Qualifier Prepared Surrogate %Recovery Limits Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 87 74 - 132 10/18/19 03:41 Toluene-d8 (Surr) 96 80 - 120 10/18/19 03:41 4-Bromofluorobenzene 101 77 - 124 10/18/19 03:41 1 Dibromofluoromethane (Surr) 100 72 - 131 10/18/19 03:41

Method: 8270D SIM - Semi	olatile Organi	c Compour	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/17/19 16:11	10/18/19 07:35	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/17/19 16:11	10/18/19 07:35	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/17/19 16:11	10/18/19 07:35	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/17/19 16:11	10/18/19 07:35	1
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/17/19 16:11	10/18/19 07:35	1
Bis(2-chloroethyl)ether	0.58		0.030	0.026	ug/L		10/17/19 16:11	10/18/19 07:35	1

Method: 8270D - Semivolatil Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/17/19 16:11	10/18/19 05:21	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/17/19 16:11	10/18/19 05:21	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/17/19 16:11	10/18/19 05:21	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/17/19 16:11	10/18/19 05:21	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/17/19 16:11	10/18/19 05:21	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/17/19 16:11	10/18/19 05:21	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/17/19 16:11	10/18/19 05:21	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/17/19 16:11	10/18/19 05:21	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/17/19 16:11	10/18/19 05:21	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/17/19 16:11	10/18/19 05:21	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/17/19 16:11	10/18/19 05:21	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/17/19 16:11	10/18/19 05:21	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/17/19 16:11	10/18/19 05:21	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/17/19 16:11	10/18/19 05:21	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/17/19 16:11	10/18/19 05:21	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/17/19 16:11	10/18/19 05:21	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/17/19 16:11	10/18/19 05:21	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/17/19 16:11	10/18/19 05:21	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/17/19 16:11	10/18/19 05:21	1
Isophorone	0.80	U	10	0.80	ug/L		10/17/19 16:11	10/18/19 05:21	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/17/19 16:11	10/18/19 05:21	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/17/19 16:11	10/18/19 05:21	1
Naphthalene	1.1	U	10	1.1	ug/L		10/17/19 16:11	10/18/19 05:21	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/17/19 16:11	10/18/19 05:21	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/17/19 16:11	10/18/19 05:21	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/17/19 16:11	10/18/19 05:21	1

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: FDGW_101519

Lab Sample ID: 460-194006-4 Date Collected: 10/15/19 00:00

Matrix: Water

Date Received: 10/15/19 20:10

Analyte		Qualifier	RL		. Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	1.7	U	10		ug/L		10/17/19 16:11	10/18/19 05:21	1
2-Chloronaphthalene	1.2	U	10		2 ug/L		10/17/19 16:11	10/18/19 05:21	1
2-Nitroaniline	0.47	U	10		ug/L		10/17/19 16:11	10/18/19 05:21	1
Dimethyl phthalate	0.77	U	10		ug/L		10/17/19 16:11	10/18/19 05:21	1
Acenaphthylene	0.82	U	10	0.82	2 ug/L		10/17/19 16:11	10/18/19 05:21	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/17/19 16:11	10/18/19 05:21	1
3-Nitroaniline	0.96		10	0.96	ug/L		10/17/19 16:11	10/18/19 05:21	1
Acenaphthene	1.1	U	10	1.	l ug/L		10/17/19 16:11	10/18/19 05:21	1
Dibenzofuran	1.1	U	10	1.1	l ug/L		10/17/19 16:11	10/18/19 05:21	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/17/19 16:11	10/18/19 05:21	1
Diethyl phthalate	0.98	U	10	0.98	3 ug/L		10/17/19 16:11	10/18/19 05:21	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	3 ug/L		10/17/19 16:11	10/18/19 05:21	1
Fluorene	0.91	U	10	0.9	l ug/L		10/17/19 16:11	10/18/19 05:21	1
4-Nitroaniline	0.54	U	10	0.54	l ug/L		10/17/19 16:11	10/18/19 05:21	1
N-Nitrosodiphenylamine	0.89	U	10	0.89	g ug/L		10/17/19 16:11	10/18/19 05:21	1
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/17/19 16:11	10/18/19 05:21	1
Phenanthrene	0.58	U	10	0.58	3 ug/L		10/17/19 16:11	10/18/19 05:21	1
Anthracene	0.63	U	10	0.63	3 ug/L		10/17/19 16:11	10/18/19 05:21	1
Carbazole	0.68	U	10	0.68	3 ug/L		10/17/19 16:11	10/18/19 05:21	1
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/17/19 16:11	10/18/19 05:21	1
Fluoranthene	0.84	U	10	0.84	ug/L		10/17/19 16:11	10/18/19 05:21	1
Pyrene	1.6	U	10	1.6	3 ug/L		10/17/19 16:11	10/18/19 05:21	1
Butyl benzyl phthalate	0.85	U	10	0.8	ug/L		10/17/19 16:11	10/18/19 05:21	1
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/17/19 16:11	10/18/19 05:21	1
Chrysene	0.91	U	2.0	0.9	l ug/L		10/17/19 16:11	10/18/19 05:21	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.3	ug/L		10/17/19 16:11	10/18/19 05:21	1
Di-n-octyl phthalate	4.8	U	10	4.8	3 ug/L		10/17/19 16:11	10/18/19 05:21	1
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/17/19 16:11	10/18/19 05:21	1
Indeno[1,2,3-cd]pyrene	1.3	U	2.0		3 ug/L		10/17/19 16:11	10/18/19 05:21	1
Dibenz(a,h)anthracene	0.72	U	1.0		2 ug/L		10/17/19 16:11	10/18/19 05:21	1
Benzo[g,h,i]perylene	1.4	U	10		l ug/L		10/17/19 16:11	10/18/19 05:21	1
Diphenyl ether	1.2	U	10		2 ug/L		10/17/19 16:11	10/18/19 05:21	1
n,n'-Dimethylaniline	0.91	U	1.0		l ug/L		10/17/19 16:11	10/18/19 05:21	1
Caprolactam	0.68	U	10		3 ug/L		10/17/19 16:11	10/18/19 05:21	1
bis (2-chloroisopropyl) ether	0.63	U	10		ug/L		10/17/19 16:11	10/18/19 05:21	1
Bisphenol-A	9.9	U	10		ug/L		10/17/19 16:11	10/18/19 05:21	1
N-Methylaniline	0.48		5.0		3 ug/L			10/18/19 05:21	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				10/17/19 16:11	10/18/19 05:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	102		51 - 108				10/17/19 16:11		1
Phenol-d5 (Surr)	33		14 - 39				10/17/19 16:11		1
Terphenyl-d14 (Surr)	96		40 - 148				10/17/19 16:11	10/18/19 05:21	1
2,4,6-Tribromophenol (Surr)	102		26 - 139				10/17/19 16:11	10/18/19 05:21	1
2-Fluorophenol (Surr)	48		25 - 58				10/17/19 16:11	10/18/19 05:21	1
2-Fluorobiphenyl (Surr)	86		45 - 107				10/17/19 16:11	10/18/19 05:21	1

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: FDGW_101519 Lab Sample ID: 460-194006-4

Date Collected: 10/15/19 00:00 Matrix: Water

Date Received: 10/15/19 20:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.51		0.10	0.056	mg/L			10/17/19 00:18	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/17/19 00:18	1
Sulfate	12.9		0.60	0.35	mg/L			10/17/19 00:18	1
Method: 300.0 - Anions, Ion Ch	romatogra	phy - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	37.5	D —	1.80	0.21	mg/L			10/17/19 07:43	15
Method: 200.8 - Metals (ICP/MS) - Total R	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	21000		250	66.8	ug/L		10/18/19 09:46	10/21/19 10:53	5
Magnesium	8180		250	24.8	ug/L		10/18/19 09:46	10/21/19 10:53	5
Potassium	4180		250	73.5	ug/L		10/18/19 09:46	10/21/19 10:53	5
Calcium	16900		250	233	ug/L		10/18/19 09:46	10/21/19 10:53	5
Method: 6010D - Metals (ICP) - I	Dissolved								
Method: 6010D - Metals (ICP) - Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
, ,			RL 50.0		Unit ug/L	D	Prepared 10/19/19 08:58	Analyzed 10/20/19 07:12	Dil Fac
Analyte	Result			1.7		<u>D</u>	•	•	
Analyte Cobalt, Dissolved	Result 13.0		50.0	1.7 34.2	ug/L	<u>D</u>	10/19/19 08:58	10/20/19 07:12	1
Analyte Cobalt, Dissolved Iron, Dissolved	13.0 2480		50.0 150	1.7 34.2	ug/L ug/L	<u>D</u>	10/19/19 08:58 10/19/19 08:58	10/20/19 07:12 10/20/19 07:12	1
Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved	Result 13.0 2480 1190		50.0 150	1.7 34.2	ug/L ug/L ug/L	<u>D</u>	10/19/19 08:58 10/19/19 08:58	10/20/19 07:12 10/20/19 07:12	1
Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry	Result 13.0 2480 1190	J	50.0 150 15.0	1.7 34.2 0.99	ug/L ug/L ug/L Unit		10/19/19 08:58 10/19/19 08:58 10/19/19 08:58	10/20/19 07:12 10/20/19 07:12 10/20/19 07:12	1 1 1 Dil Fac
Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	Result 13.0 2480 1190 Result	J	50.0 150 15.0 RL	1.7 34.2 0.99 MDL 0.068	ug/L ug/L ug/L Unit mg/L		10/19/19 08:58 10/19/19 08:58 10/19/19 08:58	10/20/19 07:12 10/20/19 07:12 10/20/19 07:12 Analyzed	1 1 1
Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	Result 13.0 2480 1190 Result 0.63	J Qualifier	50.0 150 15.0 RL 0.10	1.7 34.2 0.99 MDL 0.068 5.0	ug/L ug/L ug/L Unit mg/L		10/19/19 08:58 10/19/19 08:58 10/19/19 08:58	10/20/19 07:12 10/20/19 07:12 10/20/19 07:12 10/20/19 07:12 Analyzed 10/17/19 16:43	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Onein Jampie ID. IDGVV	Lab Jampie ID. 400-134000-3
Date Collected: 10/15/19 00:00	Matrix: Water
Date Received: 10/15/19 20:10	

Method: 8260C SIM - Volatile	Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/18/19 17:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		72 - 133			-		10/18/19 17:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/18/19 02:09	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/18/19 02:09	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/18/19 02:09	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/18/19 02:09	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/18/19 02:09	1
Acetone	15		5.0	4.4	ug/L			10/18/19 02:09	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/18/19 02:09	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/18/19 02:09	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/18/19 02:09	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/18/19 02:09	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_101519

Lab Sample ID: 460-194006-5 Date Collected: 10/15/19 00:00

Matrix: Water

Date Received: 10/15/19 20:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/18/19 02:09	
Chloroform	0.33	U	1.0	0.33	ug/L			10/18/19 02:09	
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/18/19 02:09	
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/18/19 02:09	
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/18/19 02:09	
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/18/19 02:09	
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/18/19 02:09	
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/18/19 02:09	•
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/18/19 02:09	
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/18/19 02:09	
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/18/19 02:09	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/18/19 02:09	
Benzene	0.20	U	1.0	0.20	ug/L			10/18/19 02:09	
trans-1,3-Dichloropropene	0.49	U	1.0		ug/L			10/18/19 02:09	
Bromoform	0.54	U	1.0	0.54	ug/L			10/18/19 02:09	• • • • • • •
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			10/18/19 02:09	
2-Hexanone	1.1	U	5.0		ug/L			10/18/19 02:09	
Tetrachloroethene	0.25	U	1.0		ug/L			10/18/19 02:09	
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/18/19 02:09	
Toluene	0.38		1.0		ug/L			10/18/19 02:09	
Chlorobenzene	0.38	U	1.0		ug/L			10/18/19 02:09	• • • • • • •
Ethylbenzene	0.30	U	1.0		ug/L			10/18/19 02:09	
Styrene	0.42	U	1.0		ug/L			10/18/19 02:09	
Xylenes, Total	0.65	U	2.0		ug/L			10/18/19 02:09	
Diethyl ether	0.21	U	1.0		ug/L			10/18/19 02:09	
MTBE	0.47	U	1.0		ug/L			10/18/19 02:09	
Tetrahydrofuran	1.0	U	2.0		ug/L			10/18/19 02:09	• • • • • • •
Cyclohexane	0.32		1.0		ug/L			10/18/19 02:09	
1,2,4-Trimethylbenzene	0.37	U	1.0		ug/L			10/18/19 02:09	
1,3,5-Trimethylbenzene	0.33	U	1.0		ug/L			10/18/19 02:09	
Isopropylbenzene	0.34	U	1.0		ug/L			10/18/19 02:09	
N-Propylbenzene	0.32	U	1.0		ug/L			10/18/19 02:09	
Methylcyclohexane	0.26	U	1.0		ug/L			10/18/19 02:09	
Indane	0.35		1.0		ug/L			10/18/19 02:09	
Dichlorofluoromethane	0.34		1.0		ug/L			10/18/19 02:09	
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/18/19 02:09	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	*****		-		10/18/19 02:09	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	87		74 - 132					10/18/19 02:09	
Toluene-d8 (Surr)	96		80 - 120					10/18/19 02:09	-
4-Bromofluorobenzene	101		77 - 124					10/18/19 02:09	•

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)

Client Sample ID: MW-34(124)

Lab Sample ID: 460-194064-1 Date Collected: 10/16/19 10:15

Matrix: Water

Date Received: 10/16/19 21:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	6.1		0.40	0.20	ug/L			10/19/19 07:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99	Q Q Q Q Q Q Q Q Q Q	72 - 133					10/19/19 07:06	1
Method: 8260C - Volatile (Analyte		unds by G Qualifier	C/MS RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40		1.0		ug/L		Trepared	10/20/19 00:46	1
Bromomethane	0.55		1.0		ug/L			10/20/19 00:46	1
Vinyl chloride	0.17		1.0		ug/L			10/20/19 00:46	1
Chloroethane	0.32		1.0		ug/L			10/20/19 00:46	
Methylene Chloride	0.32		1.0		ug/L			10/20/19 00:46	1
Acetone	4.4		5.0		ug/L			10/20/19 00:46	1
Carbon disulfide	0.82		1.0		ug/L			10/20/19 00:46	
1,1-Dichloroethene	0.26		1.0		ug/L			10/20/19 00:46	1
1,1-Dichloroethane	0.26		1.0		ug/L			10/20/19 00:46	1
trans-1.2-Dichloroethene	0.24		1.0		ug/L			10/20/19 00:46	
cis-1,2-Dichloroethene	0.24		1.0		ug/L ug/L			10/20/19 00:46	1
Chloroform	0.33		1.0		ug/L			10/20/19 00:46	1
	0.43		1.0		ug/L ug/L			10/20/19 00:46	
1,2-Dichloroethane			5.0		-				1
2-Butanone (MEK)	1.9 0.24				ug/L			10/20/19 00:46	1
1,1,1-Trichloroethane			1.0		ug/L			10/20/19 00:46	1
Carbon tetrachloride	0.21		1.0		ug/L			10/20/19 00:46	1
Bromodichloromethane	0.34		1.0		ug/L			10/20/19 00:46	1
1,2-Dichloropropane	0.35		1.0		ug/L			10/20/19 00:46	1
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/20/19 00:46	1
Trichloroethene	0.31		1.0		ug/L			10/20/19 00:46	1
Dibromochloromethane	0.28		1.0		ug/L			10/20/19 00:46	
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/20/19 00:46	1
Benzene	0.20		1.0		ug/L			10/20/19 00:46	1
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/20/19 00:46	1
Bromoform	0.54		1.0		ug/L			10/20/19 00:46	1
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/20/19 00:46	1
2-Hexanone	1.1	U	5.0		ug/L			10/20/19 00:46	1
Tetrachloroethene	1.2		1.0		ug/L			10/20/19 00:46	1
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/20/19 00:46	1
Toluene	0.38	U	1.0		ug/L			10/20/19 00:46	1
Chlorobenzene	2.1		1.0		ug/L			10/20/19 00:46	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/20/19 00:46	1
Styrene	0.42	U	1.0	0.42	ug/L			10/20/19 00:46	1
Xylenes, Total	0.65	U	2.0		ug/L			10/20/19 00:46	1
Diethyl ether	3.8		1.0	0.21	ug/L			10/20/19 00:46	1
MTBE	0.47		1.0	0.47	ug/L			10/20/19 00:46	1
Tetrahydrofuran	1.0		2.0	1.0	ug/L			10/20/19 00:46	1
Cyclohexane	0.32	U	1.0		ug/L			10/20/19 00:46	1
1,2,4-Trimethylbenzene	0.37		1.0	0.37	ug/L			10/20/19 00:46	1
1,3,5-Trimethylbenzene	0.33-	- U * UJ	1.0	0.33	ug/L			10/20/19 00:46	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/20/19 00:46	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/20/19 00:46	1
Methylcyclohexane	0.26	11	1.0	0.26	ug/L			10/20/19 00:46	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-34(124)

Lab Sample ID: 460-194064-1 Date Collected: 10/16/19 10:15

Matrix: Water

Naphthalene

4-Chloroaniline

Hexachlorobutadiene

2-Methylnaphthalene

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ndane	0.35	U	1.0	0.35	ug/L			10/20/19 00:46	1
Dichlorofluoromethane	0.34	U *	1.0	0.34	ug/L			10/20/19 00:46	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/20/19 00:46	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/20/19 00:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		74 - 132					10/20/19 00:46	1
Toluene-d8 (Surr)	100		80 - 120					10/20/19 00:46	7
4-Bromofluorobenzene	99		77 - 124					10/20/19 00:46	1
Dibromofluoromethane (Surr)	112		72 - 131					10/20/19 00:46	
Method: 8270D SIM - Semivo	latile Organi	c Compo	unds (GC/N	IS SIM)					
Analyte		Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/18/19 09:15	10/19/19 04:45	1
Benzo[a]pyrene	0.022	U *	0.050	0.022	ug/L		10/18/19 09:15	10/19/19 04:45	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/18/19 09:15	10/19/19 04:45	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/18/19 09:15	10/19/19 04:45	1
Pentachlorophenol	0.15	U *	0.20		ug/L		10/18/19 09:15	10/19/19 04:45	1
Bis(2-chloroethyl)ether	0.42		0.030	0.026	-		10/18/19 09:15	10/19/19 04:45	1
Analyte Phenol	Result 0.29	Qualifier	RL 10	MDL 0.29	Unit ug/L	D	Prepared 10/18/19 09:15	Analyzed 10/19/19 02:45	Dil Fac
					-				
2-Chlorophenol	0.38		10		ug/L			10/19/19 02:45	1
2-Methylphenol	0.26		10		ug/L			10/19/19 02:45	1
4-Methylphenol	0.24		10		ug/L			10/19/19 02:45	1
2-Nitrophenol	0.75		10		ug/L			10/19/19 02:45	1
2,4-Dimethylphenol	0.24		10		ug/L			10/19/19 02:45	
2,4-Dichlorophenol	0.42		10		ug/L			10/19/19 02:45	1
4-Chloro-3-methylphenol	0.58	_	10		ug/L			10/19/19 02:45	1
2,4,6-Trichlorophenol	0.30		10		ug/L			10/19/19 02:45	
2,4,5-Trichlorophenol	0.28		10		ug/L			10/19/19 02:45	1
2,4-Dinitrophenol	14		20		ug/L			10/19/19 02:45	1
4-Nitrophenol	0.69		20		ug/L			10/19/19 02:45	1
4,6-Dinitro-2-methylphenol	13		20		ug/L			10/19/19 02:45	1
1,3-Dichlorobenzene	2.0		10		ug/L			10/19/19 02:45	1
1,4-Dichlorobenzene	1.3		10		ug/L			10/19/19 02:45	
1,2-Dichlorobenzene	1.3		10		ug/L			10/19/19 02:45	1
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L			10/19/19 02:45	1
	1.2	U	2.0	1.2	ug/L		10/18/19 09:15	10/19/19 02:45	1
Nitrobenzene	0.57		1.0		ug/L			10/19/19 02:45	1
Nitrobenzene Isophorone	0.57 0.80	U	10	0.80	ug/L		10/18/19 09:15	10/19/19 02:45	1
Hexachloroethane Nitrobenzene Isophorone Bis(2-chloroethoxy)methane	0.57 0.80 0.24	U U	10 10	0.80 0.24	ug/L ug/L		10/18/19 09:15 10/18/19 09:15	10/19/19 02:45 10/19/19 02:45	
Nitrobenzene sophorone	0.57 0.80	U U	10	0.80 0.24	ug/L		10/18/19 09:15 10/18/19 09:15 10/18/19 09:15	10/19/19 02:45	

Eurofins TestAmerica, Edison

10/18/19 09:15 10/19/19 02:45

10/18/19 09:15 10/19/19 02:45

10/18/19 09:15 10/19/19 02:45

10/18/19 09:15 10/19/19 02:45

11/12/2019

1

1

10

10

1.0

10

1.1 ug/L

1.9 ug/L

0.78 ug/L

1.1 ug/L

1.1 U

1.9 U

0.78 U

1.1 U

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-34(124)

Date Received: 10/16/19 21:10

Lab Sample ID: 460-194064-1 Date Collected: 10/16/19 10:15

Matrix: Water

Method: 8270D - Semivolatile ^{Analyte}		Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/18/19 09:15	10/19/19 02:45	
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/18/19 09:15	10/19/19 02:45	
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/18/19 09:15	10/19/19 02:45	
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/18/19 09:15	10/19/19 02:45	
Acenaphthylene	0.82	U	10		ug/L		10/18/19 09:15	10/19/19 02:45	
2,6-Dinitrotoluene	0.39	U	2.0		ug/L		10/18/19 09:15	10/19/19 02:45	
3-Nitroaniline	0.96	U	10		ug/L		10/18/19 09:15	10/19/19 02:45	
Acenaphthene	1.1	U	10		ug/L		10/18/19 09:15	10/19/19 02:45	
Dibenzofuran	1.1		10	1.1	-		10/18/19 09:15	10/19/19 02:45	
2,4-Dinitrotoluene	1.0	U	2.0		ug/L			10/19/19 02:45	
Diethyl phthalate	0.98		10		ug/L			10/19/19 02:45	
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/19/19 02:45	
Fluorene	0.91		10		ug/L			10/19/19 02:45	
4-Nitroaniline	0.54		10		ug/L			10/19/19 02:45	
N-Nitrosodiphenylamine	0.89		10		ug/L			10/19/19 02:45	
4-Bromophenyl phenyl ether	0.75		10		ug/L			10/19/19 02:45	
Phenanthrene	0.78		10		ug/L			10/19/19 02:45	
Anthracene	0.63		10		ug/L			10/19/19 02:45	
Carbazole	0.68		10		ug/L ug/L			10/19/19 02:45	
Di-n-butyl phthalate	0.84		10		ug/L ug/L			10/19/19 02:45	
Fluoranthene	0.84		10		ug/L ug/L			10/19/19 02:45	
	1.6		10		ug/L ug/L			10/19/19 02:45	
Pyrene	0.85		10		ug/L ug/L			10/19/19 02:45	
Butyl benzyl phthalate 3,3'-Dichlorobenzidine	1.4		10		ug/L ug/L			10/19/19 02:45	
,					-				
Chrysene	0.91		2.0		ug/L			10/19/19 02:45	
Bis(2-ethylhexyl) phthalate	1.7		2.0	1.7	•			10/19/19 02:45	
Di-n-octyl phthalate	4.8		10		ug/L			10/19/19 02:45	•
Benzo[k]fluoranthene	0.67		1.0		ug/L			10/19/19 02:45	•
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/19/19 02:45	
Dibenz(a,h)anthracene	0.72		1.0		ug/L			10/19/19 02:45	•
Benzo[g,h,i]perylene	1.4		10		ug/L			10/19/19 02:45	
Diphenyl ether	1.2		10		ug/L			10/19/19 02:45	•
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/19/19 02:45	•
Caprolactam	0.68		10	0.68	ug/L			10/19/19 02:45	
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/19/19 02:45	•
Bisphenol-A	9.9		10		ug/L			10/19/19 02:45	•
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/18/19 09:15	10/19/19 02:45	•
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				10/18/19 09:15	10/19/19 02:45	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	96		51 - 108					10/19/19 02:45	•
Phenol-d5 (Surr)	33		14 - 39				10/18/19 09:15	10/19/19 02:45	•
Terphenyl-d14 (Surr)	109		40 - 148				10/18/19 09:15	10/19/19 02:45	•
2,4,6-Tribromophenol (Surr)	106		26 - 139				10/18/19 09:15	10/19/19 02:45	
2-Fluorophenol (Surr)	50		25 - 58				10/18/19 09:15	10/19/19 02:45	•
2-Fluorobiphenyl (Surr)	96		45 - 107				10/18/19 09:15	10/19/19 02:45	•

Client: Golder Associates Inc.

Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-34(124)

Date Collected: 10/16/19 10:15 Date Received: 10/16/19 21:10 Lab Sample ID: 460-194064-1

Matrix: Water

Method: 300.0 - Anions, Ion Chroma	togra	phy							
•	~	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	38.4		1.68	0.20	mg/L			10/18/19 11:27	14
Nitrate as N	1.48		0.10	0.056	mg/L			10/17/19 21:03	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/17/19 21:03	1
Sulfate	13.0		0.60	0.35	mg/L			10/17/19 21:03	1
- Method: 200.8 - Metals (ICP/MS) - To	tal R	ecoverable							
· · · · · · · · · · · · · · · · · · ·		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	21000	***************************************	250	66.8	ug/L		10/22/19 08:48	10/23/19 15:08	5
Magnesium	8350		250	24.8	ug/L		10/22/19 08:48	10/23/19 15:08	5
Potassium	4150		250	73.5	ug/L		10/22/19 08:48	10/23/19 15:08	5
Calcium	16000		250	233	ug/L		10/22/19 08:48	10/23/19 15:08	5
Method: 6010D - Metals (ICP) - Disso	olved								
Analyte F	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	13.1	J	50.0	1.7	ug/L		10/19/19 08:58	10/20/19 07:24	1
Iron, Dissolved	8690		150	34.2	ug/L		10/19/19 08:58	10/20/19 07:24	1
Manganese, Dissolved	1080		15.0	0.99	ug/L		10/19/19 08:58	10/20/19 07:24	1
General Chemistry									
Analyte F	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.80		0.10	0.068	mg/L			10/18/19 12:05	1
Bicarbonate Alkalinity as CaCO3	61.6		5.0	5.0	mg/L			10/17/19 13:18	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/17/19 13:18	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/22/19 13:00	1

Client Sample ID: UPA-108C-US

Date Collected: 10/16/19 14:30

Date Received: 10/16/19 21:10

Lab Sample ID: 460-194064-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/19/19 18:48	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/19/19 18:48	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/19/19 18:48	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/19/19 18:48	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/19/19 18:48	1
Acetone	4.4	U	5.0	4.4	ug/L			10/19/19 18:48	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/19/19 18:48	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/19/19 18:48	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/19/19 18:48	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/19/19 18:48	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/19/19 18:48	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/19/19 18:48	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/19/19 18:48	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/19/19 18:48	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/19/19 18:48	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/19/19 18:48	1
Bromodichloromethane	0.34	U *	1.0	0.34	ug/L			10/19/19 18:48	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/19/19 18:48	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/19/19 18:48	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/19/19 18:48	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108C-US

Lab Sample ID: 460-194064-2 Date Collected: 10/16/19 14:30

Matrix: Water

Date Received: 10/16/19 21:10

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.28	U	1.0	0.28	ug/L			10/19/19 18:48	
0.43	U	1.0	0.43	ug/L			10/19/19 18:48	
0.57	J	1.0	0.20	ug/L			10/19/19 18:48	
		1.0		-			10/19/19 18:48	
0.54	U	1.0		-			10/19/19 18:48	
				-			10/19/19 18:48	
1.1	U			-			10/19/19 18:48	
0.25	U			•			10/19/19 18:48	
							10/19/19 18:48	
				-				
	П			-				
				-				
				-				
	O			_				
	H			_				
				-				
				_				1
	U			-				
				_				1
				-				1
				-				1
				-				1
				-				1
				-				1
				_				1
				-				1
0.36	U	1.0	0.36	ug/L			10/19/19 18:48	1
Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
None		ug/L				***************************************	10/19/19 18:48	1
%Recovery	Qualifier	l imits				Prepared	Analyzed	Dil Fac
_							-	1
, , , ,		72-101					10/10/10 10:40	•
atile Organi	c Compo	unds (GC/N	IS SIM)					
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.016	U	0.050	0.016	ug/L		10/18/19 09:15	10/19/19 05:27	1
0.022	U ±	0.050	0.022	ug/L		10/18/19 09:15	10/19/19 05:27	1
0.024	U	0.050	0.024	ug/L		10/18/19 09:15	10/19/19 05:27	1
0.013	U	0.020	0.013	ug/L		10/18/19 09:15	10/19/19 05:27	1
		0.20		-				
0.34		0.030		-				
				-				
			M 40 500.		·	.		pq
Doguli	Qualifier	D1	RASTS	Unit	D	Prepared	Analyzed	Dil Fac
0.29		- RL 10		ug/L		10/18/19 09:15	•	1
	0.28 0.43 0.57 0.49 0.54 1.3 1.1 0.25 0.37 0.38 6.7 0.30 0.42 0.65 48 0.47 1.6 0.32 600 0.37 0.33 0.34 0.32 0.26 0.62 0.34 0.36 Est. Result None %Recovery 112 105 100 114 atile Organi Result 0.016 0.022 0.024 0.013 0.15 0.34	0.30 U 0.42 U 0.65 U 48 0.47 U 1.6 J 0.32 U 600 0.37 U 0.33 U 0.34 U 0.32 U 0.26 U 0.62 J 0.34 U 0.36 U Est. Result Qualifier None %Recovery Qualifier 112 105 100 114 atile Organic Compo Result Qualifier 0.016 U 0.022 U * 0.024 U 0.013 U 0.15 U * 0.34 Organic Compounds	0.28 U 1.0 0.43 U 1.0 0.57 J 1.0 0.49 U 1.0 0.54 U 1.0 0.54 U 1.0 0.50 1.1 U 5.0 0.25 U 1.0 0.37 U 1.0 0.38 U 1.0 0.38 U 1.0 0.42 U 1.0 0.65 U 2.0 48 1.0 0.47 U 1.0 1.6 J 2.0 0.32 U 1.0 600 50 0.37 U 1.0 0.33 U 1.0 0.34 U 1.0 0.34 U 1.0 0.34 U 1.0 0.35 U 1.0 0.36 U 1.0 0.36 U 1.0 0.36 U 1.0 0.37 U 1.0 0.38 U 1.0 0.39 U 1.0 0.39 U 1.0 0.30 U 1.0 0.31 U 1.0 0.32 U 1.0 0.34 U 1.0 0.35 U 1.0 0.36 U 1.0 0.62 J 1.0 0.36 U 1.0 0.65 U 1.0 0.66 U 1.0 0.65 U 1.0 0.60	0.28 U 1.0 0.28 0.43 U 1.0 0.43 0.57 J 1.0 0.20 0.49 U 1.0 0.54 1.3 U 5.0 1.3 1.1 U 5.0 1.1 0.25 U 1.0 0.37 0.38 U 1.0 0.38 6.7 1.0 0.38 6.7 1.0 0.38 6.7 1.0 0.38 6.7 1.0 0.38 0.30 U 1.0 0.30 0.42 U 1.0 0.42 0.65 U 2.0 0.65 48 1.0 0.21 0.47 U 1.0 0.47 1.6 J 2.0 1.0 0.32 U 1.0 0.32 600 50 28 0.37 U 1.0 0.33 0.34 U 1.0 0.34 0.32 U 1.0 0.34 0.32 U 1.0 0.34 0.35 U 1.0 0.35 0.36 U 1.0 0.36 Est. Result Qualifier Unit D Wg/L **Recovery Qualifier Unit D Wg/L **Recovery Qualifier Unit D Wg/L **A - 132 105 80 - 120 100 77 - 124 114 72 - 131 **atile Organic Compounds (GC/MS SIM) Result Qualifier RL MDL 0.016 U 0.050 0.016 0.022 U ± 0.050 0.022 0.024 U 0.050 0.022 0.024 U 0.050 0.024 0.013 U 0.020 0.013 0.15 U ± 0.20 0.15 0.34 0.030 0.026 Organic Compounds (GC/MS)	0.28 U 1.0 0.28 ug/L 0.43 U 1.0 0.43 ug/L 0.57 J 1.0 0.20 ug/L 0.49 U 1.0 0.49 ug/L 0.54 U 1.0 0.54 ug/L 1.3 U 5.0 1.3 ug/L 1.1 U 5.0 1.1 ug/L 0.25 U 1.0 0.37 ug/L 0.37 U 1.0 0.38 ug/L 0.30 U 1.0 0.38 ug/L 0.42 U 1.0 0.30 ug/L 0.48 1.0 0.21 ug/L 0.65 U 2.0 0.65 ug/L 0.47 U 1.0 0.21 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.32 ug/L 0.34 U 1.0 0.33 ug/L 0.35 U 1.0 0.35 ug/L 0.47 U 1.0 0.47 ug/L 0.65 U 2.0 0.65 ug/L 0.37 U 1.0 0.32 ug/L 0.60 50 28 ug/L 0.30 U 1.0 0.32 ug/L 0.50 0 50 28 ug/L 0.31 U 1.0 0.32 ug/L 0.50 0 50 28 ug/L 0.50 0 50 28 ug/L 0.50 0 50 28 ug/L 0.50 0 50 0.50 ug/L 0.50 0 50 0.50 ug/L 0.50 0 50 0.50 ug/L 0.50 0 50 0.00 ug/L	0.28 U 1.0 0.28 ug/L 0.43 U 1.0 0.43 ug/L 0.57 J 1.0 0.20 ug/L 0.49 U 1.0 0.54 ug/L 0.54 U 1.0 0.54 ug/L 1.3 U 5.0 1.1 ug/L 0.25 U 1.0 0.25 ug/L 0.37 U 1.0 0.38 ug/L 0.38 U 1.0 0.38 ug/L 0.30 U 1.0 0.38 ug/L 0.65 U 2.0 0.65 ug/L 0.48 1.0 0.21 ug/L 0.65 U 2.0 0.65 ug/L 0.37 U 1.0 0.32 ug/L 0.65 U 2.0 0.65 ug/L 0.48 1.0 0.21 ug/L 0.65 U 2.0 0.65 ug/L 0.37 U 1.0 0.32 ug/L 0.65 U 0.03 ug/L 0.42 U 1.0 0.47 ug/L 1.6 J 2.0 1.0 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.33 ug/L 0.34 U 1.0 0.33 ug/L 0.35 U 1.0 0.32 ug/L 0.36 U 1.0 0.35 ug/L 0.37 U 1.0 0.32 ug/L 0.38 U 1.0 0.32 ug/L 0.39 U 1.0 0.32 ug/L 0.30 U 1.0 0.35 ug/L 0.34 U 1.0 0.34 ug/L 0.35 U 1.0 0.35 ug/L 0.36 U 1.0 0.36 ug/L 0.37 U 1.0 0.36 ug/L 0.38 U 1.0 0.36 ug/L 0.39 U 1.0 0.39 ug/L 0.39 U 1.0 0.30 ug/L 0.47 U 1.0 0.30 ug/L 0.48 U 1.0 0.30 ug/L 0.58 U 1.0 0.30 ug/L 0.69 U 1.0 0.30 ug/L 0.60 U 1.0 0.30 ug/L 0.60 U 1.0 0.30 ug/L 0.61 U 1.0 0.30 ug/L 0.020 U 1.0 0.050 0.000 ug/L 0.020 U 1.0 0.050 0.000 ug/L 0.021 U 1.0 0.050 0.000 ug/L 0.022 U 1.0 0.050 0.000 ug/L 0.034 U 0.050 0.0020 ug/L 0.013 U 0.020 0.013 ug/L 0.034 0.030 0.026 ug/L 0.034 U 0.030 0.026 ug/L	0.28 U 1.0 0.28 ug/L 0.43 U 1.0 0.43 ug/L 0.57 J 1.0 0.20 ug/L 0.49 U 1.0 0.49 ug/L 0.54 U 1.0 0.54 ug/L 1.3 U 5.0 1.3 ug/L 1.1 U 5.0 1.1 ug/L 0.25 U 1.0 0.35 ug/L 0.37 U 1.0 0.38 ug/L 0.6.7 1.0 0.38 ug/L 0.6.6 U 2.0 0.65 ug/L 0.42 U 1.0 0.42 ug/L 0.65 U 2.0 1.0 ug/L 0.42 U 1.0 0.42 ug/L 0.65 U 2.0 1.0 ug/L 0.47 U 1.0 0.47 ug/L 1.6 J 2.0 1.0 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.32 ug/L 0.34 U 1.0 0.35 ug/L 0.35 U 1.0 0.35 ug/L 0.36 U 2.0 1.0 ug/L 0.50 U 2.0 1.0 ug/L 0.31 U 1.0 0.32 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.32 ug/L 0.34 U 1.0 0.35 ug/L 0.35 U 1.0 0.35 ug/L 0.36 U 1.0 0.36 ug/L 0.37 U 0.0 0.39 ug/L 0.38 U 1.0 0.39 ug/L 0.39 U 1.0 0.39 ug/L 0.40 U 1.0 0.36 ug/L 0.50 U 1.0 0.36 ug/L 0.51 U 1.0 0.36 ug/L 0.52 U 1.0 0.36 ug/L 0.53 U 1.0 0.36 ug/L 0.54 U 1.0 0.36 ug/L 0.55 U 1.0 0.36 ug/L 0.67 U 1.0 0.36 ug/L 0.77 - 724 114 72 - 73 131 atile Organic Compounds (GC/MS SIM) Result Qualifier RL MDL Unit D Prepared 0.016 U 0.050 0.022 ug/L 10/18/19 09:15 0.024 U 0.050 0.022 ug/L 10/18/19 09:15 0.034 0.030 0.026 ug/L 10/18/19 09:15 0.034 0.030 0.026 ug/L 10/18/19 09:15 0.034 0.030 0.026 ug/L 10/18/19 09:15	0.28 U 1.0 0.28 ug/L 10/19/19 18.48 0.43 U 1.0 0.43 ug/L 10/19/19 18.48 0.46 U 1.0 0.49 ug/L 10/19/19 18.48 0.49 U 1.0 0.49 ug/L 10/19/19 18.48 0.54 U 1.0 0.54 ug/L 10/19/19 18.48 1.3 U 5.0 1.3 ug/L 10/19/19 18.48 1.3 U 5.0 1.1 ug/L 10/19/19 18.48 0.25 U 1.0 0.25 ug/L 10/19/19 18.48 0.37 U 1.0 0.37 ug/L 10/19/19 18.48 0.38 U 1.0 0.38 ug/L 10/19/19 18.48 0.30 U 1.0 0.30 ug/L 10/19/19 18.48 0.30 U 1.0 0.32 ug/L 10/19/19 18.48 1.6 J 0.21 ug/L 10/19/19 18.48 1.6 J 0.21 ug/L 10/19/19 18.48 1.6 J 0.21 ug/L 10/19/19 18.48 1.6 J 0.32 U 1.0 0.47 ug/L 10/19/19 18.48 1.6 J 0.32 U 1.0 0.47 ug/L 10/19/19 18.48 1.6 J 0.32 U 1.0 0.47 ug/L 10/19/19 18.48 0.33 U 1.0 0.37 ug/L 10/19/19 18.48 0.34 U 1.0 0.32 ug/L 10/19/19 18.48 0.35 U 1.0 0.35 ug/L 10/19/19 18.48 0.36 U 1.0 0.35 ug/L 10/19/19 18.48 0.36 U 1.0 0.35 ug/L 10/19/19 18.48 0.36 U 1.0 0.35 ug/L 10/19/19 18.48 0.62 J 1.0 0.35 ug/L 10/19/19 18.48 0.62 J 1.0 0.35 ug/L 10/19/19 18.48 0.65 J 1.0 0.35 ug/L 10/19/19 18.48 0.66 U 1.0 0.36 ug/L 10/19/19 18.48 0.67 J 10/19/19 18.48 0.68 U 1.0 0.35 ug/L 10/19/19 18.48 0.69 U 1.0 0.35 ug/L 10/19/19 18.48 0.60 U 1.0 0.36 ug/L 10/19/19 18.48 0.60 U 1.0 0.55 0.046 ug/L 10/18/19 09.15 10/19/19 05.27 0.02 U 0.050 0.042 ug/L 10/18/19 09.15 10/19/19 05.27 0.04 U 0.050 0.042 ug/L 10/18/19 09.15 10/19/19 05.27 0.05 U 0.050 0.046 ug/L 10/18/19 09.15 10/19/19 05.27 0.05 U 0.050 0.046 ug/L 10/18/19 09.15 10

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108C-US

Date Received: 10/16/19 21:10

Lab Sample ID: 460-194064-2 Date Collected: 10/16/19 14:30

Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylphenol	0.26	U	10	0.26	ug/L		10/18/19 09:15	10/19/19 03:06	-
4-Methylphenol	0.24	U	10	0.24	ug/L		10/18/19 09:15	10/19/19 03:06	
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/18/19 09:15	10/19/19 03:06	
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/18/19 09:15	10/19/19 03:06	
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/18/19 09:15	10/19/19 03:06	
4-Chloro-3-methylphenol	0.58	U	10		ug/L		10/18/19 09:15	10/19/19 03:06	
2,4,6-Trichlorophenol	0.30	U	10		ug/L		10/18/19 09:15	10/19/19 03:06	
2,4,5-Trichlorophenol	0.28	U	10		ug/L		10/18/19 09:15	10/19/19 03:06	
2,4-Dinitrophenol	14	U	20	14	ug/L		10/18/19 09:15	10/19/19 03:06	
4-Nitrophenol	0.69	U	20		ug/L		10/18/19 09:15	10/19/19 03:06	
4,6-Dinitro-2-methylphenol	13	. U	20		ug/L			10/19/19 03:06	
1,3-Dichlorobenzene	2.0		10		ug/L			10/19/19 03:06	
1,4-Dichlorobenzene	1.3		10		ug/L			10/19/19 03:06	
1,2-Dichlorobenzene	1.3		10		ug/L			10/19/19 03:06	
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L			10/19/19 03:06	
Hexachloroethane	1.2		2.0		ug/L			10/19/19 03:06	
Nitrobenzene	0.57		1.0		ug/L			10/19/19 03:06	
Isophorone	0.80		1.0		ug/L			10/19/19 03:06	
Bis(2-chloroethoxy)methane	0.30		10	0.24	-			10/19/19 03:06	
1,2,4-Trichlorobenzene	1.3		2.0		ug/L			10/19/19 03:06	
Naphthalene	1.1		10		ug/L			10/19/19 03:06	
4-Chloroaniline		U	10		-			10/19/19 03:06	
	0.78				ug/L				
Hexachlorobutadiene			1.0		ug/L			10/19/19 03:06	
2-Methylnaphthalene	1.1		10		•			10/19/19 03:06	•
Hexachlorocyclopentadiene	1.7		10		ug/L			10/19/19 03:06	•
2-Chloronaphthalene	1.2		10		ug/L			10/19/19 03:06	•
2-Nitroaniline	0.47		10	0.47	-			10/19/19 03:06	•
Dimethyl phthalate	0.77		10	0.77				10/19/19 03:06	
Acenaphthylene	0.82		10		ug/L			10/19/19 03:06	
2,6-Dinitrotoluene	0.39		2.0	0.39	_			10/19/19 03:06	
3-Nitroaniline	0.96		10		ug/L			10/19/19 03:06	
Acenaphthene	1.1		10		ug/L			10/19/19 03:06	
Dibenzofuran	1.1		10		ug/L			10/19/19 03:06	
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/18/19 09:15	10/19/19 03:06	
Diethyl phthalate	0.98		10	0.98	_		10/18/19 09:15		•
4-Chlorophenyl phenyl ether	1.3		10		ug/L		10/18/19 09:15	10/19/19 03:06	•
Fluorene	0.91	U	10	0.91				10/19/19 03:06	
4-Nitroaniline	0.54	U	10	0.54	ug/L		10/18/19 09:15	10/19/19 03:06	
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/18/19 09:15	10/19/19 03:06	
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/18/19 09:15	10/19/19 03:06	
Phenanthrene	0.58	U	10	0.58	ug/L		10/18/19 09:15	10/19/19 03:06	
Anthracene	0.63	U	10	0.63	ug/L		10/18/19 09:15	10/19/19 03:06	
Carbazole	0.68	U	10	0.68	ug/L		10/18/19 09:15	10/19/19 03:06	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/18/19 09:15	10/19/19 03:06	
Fluoranthene	0.84	U	10	0.84	ug/L		10/18/19 09:15	10/19/19 03:06	
Pyrene	1.6	U	10		ug/L		10/18/19 09:15	10/19/19 03:06	
Butyl benzyl phthalate	0.85		10		ug/L			10/19/19 03:06	• • • • • • • • •
3,3'-Dichlorobenzidine	1.4		10		ug/L			10/19/19 03:06	
Chrysene	0.91		2.0		ug/L			10/19/19 03:06	

Eurofins TestAmerica, Edison 11/12/2019

Page 43 of 2941

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108C-US

Lab Sample ID: 460-194064-2 Date Collected: 10/16/19 14:30

Matrix: Water

Date Received: 10/16/19 21:10

Analyte		mpounus Qualifier	; (GC/MS) (RL		I) Unit	D	Prepared	Analyzed	Dil Fa
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L		10/18/19 09:15	10/19/19 03:06	
Di-n-octyl phthalate	4.8		10		ug/L		10/18/19 09:15	10/19/19 03:06	
Benzo[k]fluoranthene	0.67		1.0		ug/L		10/18/19 09:15	10/19/19 03:06	
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/19/19 03:06	
Dibenz(a,h)anthracene	0.72		1.0		ug/L			10/19/19 03:06	
Benzo[g,h,i]perylene	1.4		10		ug/L			10/19/19 03:06	
Diphenyl ether	1.2		10		ug/L			10/19/19 03:06	
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/19/19 03:06	
Caprolactam	0.68		10		ug/L			10/19/19 03:06	
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/19/19 03:06	
Bisphenol-A	9.9		10		ug/L			10/19/19 03:06	
N-Methylaniline	0.48		5.0		ug/L			10/19/19 03:06	
N-Weury lamine	0.40	O	3.0	0.40	ug/L		10/10/19 09.13	10/19/19 05:00	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
1,4-Dioxane, 2,5-dimethyl-	10	J-N	ug/L		2.28	15176-21-3	10/18/19 09:15	10/19/19 03:06	
Ethanol, 2-(2-butoxyethoxy)-	49	JN	ug/L	5	5.26	112-34-5	10/18/19 09:15	10/19/19 03:06	
Unknown	8.5	J	ug/L	7	7.61		10/18/19 09:15	10/19/19 03:06	
Unknown	14	J	ug/L	8	3.24		10/18/19 09:15	10/19/19 03:06	
0	0/5	0						A t	545
Surrogate	%Recovery	Qualitier	Limits				Prepared	Analyzed	Dil F
Nitrobenzene-d5 (Surr)	89		51 - 108					10/19/19 03:06	
Phenol-d5 (Surr)	30		14 - 39					10/19/19 03:06	
Terphenyl-d14 (Surr)	97		40 - 148					10/19/19 03:06	
2,4,6-Tribromophenol (Surr)	100		26 - 139					10/19/19 03:06	
2-Fluorophenol (Surr)	45		25 - 58					10/19/19 03:06	
2-Fluorobiphenyl (Surr)	90		45 - 107				10/18/19 09:15	10/19/19 03:06	
Method: 300.0 - Anions, Ion C	hromatogra	nhv							
· · · · · · · · · · · · · · · · · · ·						_			
Anaivie	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
•		Qualifier	RL 1.92				Prepared	Analyzed 10/18/19 13:10	
Chloride	44.4		1.92	0.22	mg/L		Prepared	10/18/19 13:10	
Chloride Nitrate as N	44.4 0.056	U	1.92 0.10	0.22 0.056	mg/L mg/L		Prepared	10/18/19 13:10 10/18/19 01:48	
Chloride Nitrate as N Nitrite as N	44.4 0.056 0.076	U	1.92 0.10 0.12	0.22 0.056 0.076	mg/L mg/L mg/L		Prepared	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48	Dil F
Chloride Nitrate as N Nitrite as N	44.4 0.056	U	1.92 0.10	0.22 0.056 0.076	mg/L mg/L		Prepared	10/18/19 13:10 10/18/19 01:48	
Chloride Nitrate as N Nitrite as N Sulfate	44.4 0.056 0.076 10.6	U U	1.92 0.10 0.12 0.60	0.22 0.056 0.076	mg/L mg/L mg/L		Prepared	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48	
Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N	44.4 0.056 0.076 10.6 1S) - Total R	U U	1.92 0.10 0.12 0.60	0.22 0.056 0.076 0.35	mg/L mg/L mg/L		Prepared Prepared	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48	
Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N Analyte	44.4 0.056 0.076 10.6 1S) - Total R	U U ecoverab	1.92 0.10 0.12 0.60	0.22 0.056 0.076 0.35	mg/L mg/L mg/L mg/L		Prepared	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48	
Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N Analyte Sodium	44.4 0.056 0.076 10.6 (IS) - Total R Result	U U ecoverab	1.92 0.10 0.12 0.60 le	0.22 0.056 0.076 0.35 MDL	mg/L mg/L mg/L mg/L		Prepared 10/22/19 08:48	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 Analyzed	
Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium	44.4 0.056 0.076 10.6 (IS) - Total R Result 38200	U U ecoverab	1.92 0.10 0.12 0.60 le RL 250	0.22 0.056 0.076 0.35 MDL 66.8 24.8	mg/L mg/L mg/L mg/L		Prepared 10/22/19 08:48 10/22/19 08:48	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 Analyzed 10/23/19 15:11	
Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium	44.4 0.056 0.076 10.6 (IS) - Total R Result 38200 9710	U U ecoverab	1.92 0.10 0.12 0.60 ie RL 250 250	0.22 0.056 0.076 0.35 MDL 66.8 24.8 73.5	mg/L mg/L mg/L ug/L ug/L		Prepared 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 Analyzed 10/23/19 15:11 10/23/19 15:11	
Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium	44.4 0.056 0.076 10.6 (IS) - Total R Result 38200 9710 14000 13600	U U ecoverab Qualifier	1.92 0.10 0.12 0.60 le RL 250 250	0.22 0.056 0.076 0.35 MDL 66.8 24.8 73.5	mg/L mg/L mg/L mg/L ug/L ug/L ug/L		Prepared 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 Analyzed 10/23/19 15:11 10/23/19 15:11	
Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP)	44.4 0.056 0.076 10.6 (IS) - Total R Result 38200 9710 14000 13600	U U ecoverab Qualifier	1.92 0.10 0.12 0.60 le RL 250 250 250	0.22 0.056 0.076 0.35 MDL 66.8 24.8 73.5	mg/L mg/L mg/L Unit ug/L ug/L ug/L	D	Prepared 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 Analyzed 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11	Dil F
Analyte Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte	44.4 0.056 0.076 10.6 IS) - Total R Result 38200 9710 14000 13600 - Dissolved Result	U U ecoverab Qualifier	1.92 0.10 0.12 0.60 le RL 250 250 250 RL	0.22 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233	mg/L mg/L mg/L Unit ug/L ug/L ug/L		Prepared 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 Prepared	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 Analyzed 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11	
Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte	44.4 0.056 0.076 10.6 //S) - Total R Result 38200 9710 14000 13600 - Dissolved Result 3.2	U U ecoverab Qualifier	1.92 0.10 0.12 0.60 le RL 250 250 250 RL 50.0	0.22 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233	mg/L mg/L mg/L Unit ug/L ug/L ug/L ug/L	D	Prepared 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 Prepared 10/19/19 08:58	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 10/18/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11	Dil F
Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved	44.4 0.056 0.076 10.6 //S) - Total R Result 38200 9710 14000 13600 - Dissolved Result 3.2 66900	U U ecoverab Qualifier	1.92 0.10 0.12 0.60 le RL 250 250 250 RL 50.0 150	0.22 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233 MDL 1.7	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 Prepared 10/19/19 08:58 10/19/19 08:58	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 10/18/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11 Malyzed 10/20/19 07:28 10/20/19 07:28	Dil F
Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved	44.4 0.056 0.076 10.6 //S) - Total R Result 38200 9710 14000 13600 - Dissolved Result 3.2	U U ecoverab Qualifier	1.92 0.10 0.12 0.60 le RL 250 250 250 RL 50.0	0.22 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233 MDL 1.7	mg/L mg/L mg/L Unit ug/L ug/L ug/L ug/L	D	Prepared 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 Prepared 10/19/19 08:58	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 10/18/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11	Dil F
Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved	44.4 0.056 0.076 10.6 //S) - Total R Result 38200 9710 14000 13600 - Dissolved Result 3.2 66900	U U ecoverab Qualifier	1.92 0.10 0.12 0.60 le RL 250 250 250 RL 50.0 150	0.22 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233 MDL 1.7	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 Prepared 10/19/19 08:58 10/19/19 08:58	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 10/18/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11 Malyzed 10/20/19 07:28 10/20/19 07:28	Dil F
Chloride Nitrate as N Nitrate as N Sulfate Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry	44.4 0.056 0.076 10.6 IS) - Total R Result 38200 9710 14000 13600 - Dissolved Result 3.2 66900 238	U ecoverab Qualifier Qualifier	1.92 0.10 0.12 0.60 le RL 250 250 250 250 150.0	0.22 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 Prepared 10/19/19 08:58 10/19/19 08:58	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 Analyzed 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 07:28 10/20/19 07:28 10/20/19 07:28	Dil F
Chloride Nitrate as N Nitrite as N Sulfate Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP)	44.4 0.056 0.076 10.6 IS) - Total R Result 38200 9710 14000 13600 - Dissolved Result 3.2 66900 238	U U ecoverab Qualifier	1.92 0.10 0.12 0.60 le RL 250 250 250 RL 50.0 150	0.22 0.056 0.076 0.35 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99	mg/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 10/22/19 08:48 Prepared 10/19/19 08:58 10/19/19 08:58 10/19/19 08:58	10/18/19 13:10 10/18/19 01:48 10/18/19 01:48 10/18/19 01:48 10/18/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11 10/23/19 15:11 Malyzed 10/20/19 07:28 10/20/19 07:28	Dil F

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-108C-US

Lab Sample ID: 460-194064-2

Date Collected: 10/16/19 14:30 Date Received: 10/16/19 21:10

Matrix: Water

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/17/19 13:25	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/22/19 13:00	1

Lab Sample ID: 460-194064-3 Client Sample ID: RBGW_101619

Date Collected: 10/16/19 12:40 Date Received: 10/16/19 21:10

Matrix: Water

Method: 8260C SIM - Volatile	Organic Co	mpounds (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/19/19 12:23	1
Surrogate 4-Bromofluorobenzene	%Recovery	Qualifier	Limits 72 - 133			-	Prepared	Analyzed 10/19/19 12:23	Dil Fac

4-Bromonuoropenzene -	91		12-133					10/19/19 12.23	1
Method: 8260C - Volatile Org. Analyte		unds by G Qualifier	C/MS	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40		1.0	0.40		<u> </u>		10/19/19 14:37	1
Bromomethane	0.55	U	1.0	0.55	_			10/19/19 14:37	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/19/19 14:37	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/19/19 14:37	1
Methylene Chloride	0.32	U	1.0	0.32	-			10/19/19 14:37	1
Acetone	6.0		5.0		ug/L			10/19/19 14:37	1
Carbon disulfide	0.82	U	1.0	0.82	-			10/19/19 14:37	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/19/19 14:37	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/19/19 14:37	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/19/19 14:37	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/19/19 14:37	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/19/19 14:37	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/19/19 14:37	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/19/19 14:37	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/19/19 14:37	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/19/19 14:37	1
Bromodichloromethane	0.34	U *	1.0	0.34	ug/L			10/19/19 14:37	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/19/19 14:37	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/19/19 14:37	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/19/19 14:37	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/19/19 14:37	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/19/19 14:37	1
Benzene	0.20	U	1.0	0.20	ug/L			10/19/19 14:37	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/19/19 14:37	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/19/19 14:37	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/19/19 14:37	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/19/19 14:37	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/19/19 14:37	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/19/19 14:37	1
Toluene	0.38	U	1.0	0.38	ug/L			10/19/19 14:37	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/19/19 14:37	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/19/19 14:37	1
Styrene	0.42	U	1.0	0.42	ug/L			10/19/19 14:37	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/19/19 14:37	1

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: RBGW_101619

Lab Sample ID: 460-194064-3 Date Collected: 10/16/19 12:40

Matrix: Water

Date Received: 10/16/19 21:10

Method: 8260C - Volatile Org	anic Compo	unds hv (GC/MS (Cor	ntinued)					
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/19/19 14:37	1
MTBE	0.47	U	1.0	0.47	ug/L			10/19/19 14:37	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/19/19 14:37	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/19/19 14:37	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/19/19 14:37	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/19/19 14:37	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/19/19 14:37	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/19/19 14:37	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/19/19 14:37	1
Indane	0.35	U	1.0	0.35	ug/L			10/19/19 14:37	1
Dichlorofluoromethane	0.34	U *	1.0	0.34	ug/L			10/19/19 14:37	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/19/19 14:37	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	_				10/19/19 14:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		74 - 132					10/19/19 14:37	1
Toluene-d8 (Surr)	106		80 - 120					10/19/19 14:37	1
4-Bromofluorobenzene	103		77 - 124					10/19/19 14:37	1
Dibromofluoromethane (Surr)	117		72 - 131					10/19/19 14:37	1
– Method: 8270D SIM - Semivo	latile Organi	c Compo	unds (GC/N	IS SIM)					
Analyte		Qualifier	RL	,	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/18/19 09:15	10/19/19 05:06	1
Benzo[a]pyrene	0.022	U *	0.050	0.022	ug/L		10/18/19 09:15	10/19/19 05:06	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/18/19 09:15	10/19/19 05:06	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/18/19 09:15	10/19/19 05:06	1
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/18/19 09:15	10/19/19 05:06	1
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026	ug/L		10/18/19 09:15	10/19/19 05:06	1
– Method: 8270D - Semivolatile	e Organic Co	mpounds	GC/MS)						
Analyte		Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/18/19 09:15	10/19/19 03:27	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/18/19 09:15	10/19/19 03:27	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/18/19 09:15	10/19/19 03:27	1
4-Methylphenol	0.24	Ü	10	0.24	ug/L		10/18/19 09:15	10/19/19 03:27	1
2-Nitrophenol	0.75	U	10		ug/L		10/18/19 09:15	10/19/19 03:27	1
2,4-Dimethylphenol	0.24	U	10		ug/L		10/18/19 09:15	10/19/19 03:27	1
2,4-Dichlorophenol	0.42	U	10		ug/L		10/18/19 09:15	10/19/19 03:27	1
4-Chloro-3-methylphenol	0.58		10		ug/L		10/18/19 09:15	10/19/19 03:27	1
2,4,6-Trichlorophenol	0.30		10		ug/L		10/18/19 09:15	10/19/19 03:27	1
2,4,5-Trichlorophenol	0.28		10		ug/L			10/19/19 03:27	1
2,4-Dinitrophenol	14		20		ug/L			10/19/19 03:27	1
4-Nitrophenol	0.69		20		ug/L			10/19/19 03:27	1
4,6-Dinitro-2-methylphenol	13		20		ug/L			10/19/19 03:27	1
1,3-Dichlorobenzene	2.0		10	2.0				10/19/19 03:27	1
1,4-Dichlorobenzene	1.3		10		ug/L			10/19/19 03:27	1
1,2-Dichlorobenzene	1.3		10		ug/L			10/19/19 03:27	1
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L			10/19/19 03:27	1
	5.10	-		5.10					•

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: RBGW_101619

Lab Sample ID: 460-194064-3 Date Collected: 10/16/19 12:40

Matrix: Water

Date Received: 10/16/19 21:10

Method: 8270D - Semivolatile Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Hexachloroethane	1.2		2.0		ug/L		•	10/19/19 03:27	
Nitrobenzene	0.57		1.0		ug/L			10/19/19 03:27	
Isophorone	0.80		10		ug/L			10/19/19 03:27	
Bis(2-chloroethoxy)methane	0.24		10		ug/L			10/19/19 03:27	
1,2,4-Trichlorobenzene	1.3		2.0					10/19/19 03:27	
Naphthalene	1.1		10	1.1	ug/L			10/19/19 03:27	
4-Chloroaniline	1.9		10		ug/L			10/19/19 03:27	
Hexachlorobutadiene	0.78		1.0		ug/L			10/19/19 03:27	
2-Methylnaphthalene	1.1		10	1.1	ug/L			10/19/19 03:27	
Hexachlorocyclopentadiene	1.7		10		ug/L			10/19/19 03:27	
2-Chloronaphthalene	1.2		10		ug/L			10/19/19 03:27	
2-Nitroaniline	0.47		10		ug/L		10/18/19 09:15		
Dimethyl phthalate	0.77		10		ug/L			10/19/19 03:27	
Acenaphthylene	0.77		10		ug/L ug/L			10/19/19 03:27	
2.6-Dinitrotoluene	0.82		2.0		ug/L ug/L			10/19/19 03:27	
2,0-Dinitrotoluene 3-Nitroaniline	0.39		2.0		ug/L ug/L			10/19/19 03:27	
	1.1				_				
Acenaphthene			10	1.1	ug/L			10/19/19 03:27	
Dibenzofuran	1.1		10	1.1	ug/L			10/19/19 03:27	
2,4-Dinitrotoluene	1.0		2.0	1.0	ug/L			10/19/19 03:27	
Diethyl phthalate	0.98		10		ug/L			10/19/19 03:27	
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/19/19 03:27	
Fluorene	0.91		10		ug/L			10/19/19 03:27	
4-Nitroaniline	0.54		10	0.54	-			10/19/19 03:27	
N-Nitrosodiphenylamine	0.89		10	0.89	ug/L			10/19/19 03:27	
4-Bromophenyl phenyl ether	0.75		10		ug/L			10/19/19 03:27	
Phenanthrene	0.58		10		ug/L			10/19/19 03:27	
Anthracene	0.63		10		ug/L			10/19/19 03:27	
Carbazole	0.68		10	0.68	ug/L			10/19/19 03:27	
Di-n-butyl phthalate	0.84		10	0.84	ug/L		10/18/19 09:15	10/19/19 03:27	
Fluoranthene	0.84	U	10	0.84	ug/L		10/18/19 09:15	10/19/19 03:27	
Pyrene		U	10		•			10/19/19 03:27	
Butyl benzyl phthalate	0.85	U	10		ug/L		10/18/19 09:15	10/19/19 03:27	
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/18/19 09:15	10/19/19 03:27	
Chrysene	0.91	U	2.0	0.91	ug/L		10/18/19 09:15	10/19/19 03:27	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/18/19 09:15	10/19/19 03:27	
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/18/19 09:15	10/19/19 03:27	
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/18/19 09:15	10/19/19 03:27	
ndeno[1,2,3-cd]pyrene	1.3	U	2.0	1.3	ug/L		10/18/19 09:15	10/19/19 03:27	
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/18/19 09:15	10/19/19 03:27	
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/18/19 09:15	10/19/19 03:27	
Diphenyl ether	1.2	U	10	1.2	ug/L		10/18/19 09:15	10/19/19 03:27	
n,n'-Dimethylaniline	0.91	U	1.0		ug/L		10/18/19 09:15	10/19/19 03:27	
Caprolactam	0.68		10		ug/L			10/19/19 03:27	
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/19/19 03:27	
Bisphenol-A	9.9		10		ug/L			10/19/19 03:27	
N-Methylaniline	0.48		5.0		ug/L		10/18/19 09:15		
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/19/19 03:27	

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: RBGW_101619

Lab Sample ID: 460-194064-3 Date Collected: 10/16/19 12:40

Limits

%Recovery Qualifier

Result Qualifier

0.068 U

5.0 U

5.0 U

0.58 U

Matrix: Water

Dil Fac

Analyzed

Prepared

Date Received: 10/16/19 21:10

Surrogate

Ourroguic	7011CCCVCI y	Quantities	Lilinto				rrepuseu	Analyzea	Diri ac
Nitrobenzene-d5 (Surr)	104		51 - 108				10/18/19 09:15	10/19/19 03:27	1
Phenol-d5 (Surr)	35		14 - 39				10/18/19 09:15	10/19/19 03:27	1
Terphenyl-d14 (Surr)	119		40 - 148				10/18/19 09:15	10/19/19 03:27	1
2,4,6-Tribromophenol (Surr)	113		26 - 139				10/18/19 09:15	10/19/19 03:27	1
2-Fluorophenol (Surr)	53		25 - 58				10/18/19 09:15	10/19/19 03:27	1
2-Fluorobiphenyl (Surr)	103		45 - 107				10/18/19 09:15	10/19/19 03:27	1
- Method: 300.0 - Anions, Ion	Chromatogra	iphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.014	U	0.12	0.014	mg/L			10/17/19 23:58	1
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/17/19 23:58	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/17/19 23:58	1
Sulfate	0.35	U	0.60	0.35	mg/L			10/17/19 23:58	1
Method: 200.8 - Metals (ICP/	MS) - Total R	ecoverable	.						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	82.6	J	250	66.8	ug/L		10/22/19 08:48	10/23/19 15:13	5
Magnesium	24.8	U	250	24.8	ug/L		10/22/19 08:48	10/23/19 15:13	5
Potassium	73.5	U	250	73.5	ug/L		10/22/19 08:48	10/23/19 15:13	5
Calcium	233	U	250	233	ug/L		10/22/19 08:48	10/23/19 15:13	5
-									
Method: 6010D - Metals (ICP) - Dissolved								
Method: 6010D - Metals (ICP Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
· · · · · · · · · · · · · · · · · · ·		Qualifier	RL 50.0		Unit ug/L	<u>D</u>	Prepared 10/19/19 08:58	Analyzed 10/20/19 07:32	Dil Fac
Analyte	Result	Qualifier U		1.7		<u>D</u>			Dil Fac

Client Sample ID: TBGW 101619

Date Collected: 10/16/19 14:30

Date Received: 10/16/19 21:10

General Chemistry

Bicarbonate Alkalinity as CaCO3

Carbonate Alkalinity as CaCO3

Analyte

Sulfide

Ammonia (as N)

Lab Sample ID: 460-194064-4

Analyzed

10/18/19 12:07

10/17/19 13:31

10/17/19 13:31

10/22/19 13:00

Prepared

Matrix: Water

Dil Fac

1

1

Method: 8260C SIM - Volatile	e Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/19/19 03:18	1
Surrogate 4-Bromofluorobenzene	%Recovery	Qualifier	Limits 72 - 133			-	Prepared	Analyzed 10/19/19 03:18	Dil Fac

RL

0.10

5.0

5.0

1.0

MDL Unit

0.068 mg/L

5.0 mg/L

5.0 mg/L

0.58 mg/L

Method: 8260C - Volatile	Organic Compo	unds by GC/	MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/19/19 15:05	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/19/19 15:05	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/19/19 15:05	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/19/19 15:05	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/19/19 15:05	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_101619

Lab Sample ID: 460-194064-4 Date Collected: 10/16/19 14:30

Matrix: Water

Date Received: 10/16/19 21:10

Method: 8260C - Volatile Org Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	19		5.0	4.4	ug/L		•	10/19/19 15:05	1
Carbon disulfide	0.82	U	1.0		ug/L			10/19/19 15:05	1
1,1-Dichloroethene	0.26		1.0		ug/L			10/19/19 15:05	1
1,1-Dichloroethane	0.26		1.0		ug/L			10/19/19 15:05	1
trans-1,2-Dichloroethene	0.24		1.0		ug/L			10/19/19 15:05	1
cis-1,2-Dichloroethene	0.22		1.0		ug/L			10/19/19 15:05	1
Chloroform	0.33		1.0		ug/L			10/19/19 15:05	1
1,2-Dichloroethane	0.43		1.0		ug/L			10/19/19 15:05	1
2-Butanone (MEK)	1.9		5.0		ug/L			10/19/19 15:05	1
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/19/19 15:05	1
Carbon tetrachloride	0.21		1.0		ug/L			10/19/19 15:05	1
Bromodichloromethane	0.34		1.0		ug/L			10/19/19 15:05	1
1,2-Dichloropropane	0.35		1.0		ug/L			10/19/19 15:05	1
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/19/19 15:05	
Trichloroethene	0.31		1.0		ug/L			10/19/19 15:05	. 1
Dibromochloromethane	0.28		1.0		ug/L			10/19/19 15:05	1
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/19/19 15:05	1
Benzene	0.20		1.0		ug/L			10/19/19 15:05	1
trans-1,3-Dichloropropene	0.49		1.0		ug/L ug/L			10/19/19 15:05	1
Bromoform	0.49		1.0		ug/L			10/19/19 15:05	1
	1.3		5.0		ug/L ug/L			10/19/19 15:05	1
4-Methyl-2-pentanone 2-Hexanone	1.1		5.0		-			10/19/19 15:05	1
Z-nexamone Tetrachloroethene					ug/L				
	0.25		1.0		ug/L			10/19/19 15:05	1
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/19/19 15:05	1
Toluene	0.38		1.0		ug/L			10/19/19 15:05	1
Chlorobenzene	0.38		1.0		ug/L			10/19/19 15:05	1
Ethylbenzene	0.30		1.0		ug/L			10/19/19 15:05	1
Styrene	0.42		1.0		ug/L			10/19/19 15:05	1
Xylenes, Total	0.65		2.0		ug/L			10/19/19 15:05	1
Diethyl ether	0.21		1.0		ug/L			10/19/19 15:05	1
MTBE	0.47		1.0		ug/L			10/19/19 15:05	
Tetrahydrofuran	1.0		2.0		ug/L			10/19/19 15:05	1
Cyclohexane	0.32		1.0		ug/L			10/19/19 15:05	1
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/19/19 15:05	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/19/19 15:05	1
Isopropylbenzene	0.34		1.0		ug/L			10/19/19 15:05	1
N-Propylbenzene	0.32		1.0		ug/L			10/19/19 15:05	1
Methylcyclohexane	0.26		1.0		ug/L			10/19/19 15:05	1
Indane	0.35	U	1.0	0.35	ug/L			10/19/19 15:05	1
Dichlorofluoromethane	0.34	U *	1.0		ug/L			10/19/19 15:05	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/19/19 15:05	1
Tentatively Identified Compound	Est. Result		Unit	<u>D</u>	RT _	CAS No.	Prepared	Analyzed	Dil Fac
Isopropyl Alcohol	5.3	JN	ug/L	1	1.90	67-63-0		10/19/19 15:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		74 - 132			•		10/19/19 15:05	1
Toluene-d8 (Surr)	101		80 - 120					10/19/19 15:05	1
4-Bromofluorobenzene	97		77 - 124					10/19/19 15:05	1
Dibromofluoromethane (Surr)	112		72 - 131					10/19/19 15:05	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)

Client Sample ID: MW-26N_128

Lab Sample ID: 460-194233-1 Date Collected: 10/17/19 11:00

Matrix: Water

Date Received: 10/17/19 21:00

Analyte	***	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	37		0.40		ug/L	- -		10/19/19 15:20	1
- 7	0,				- J				·
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		72 - 133			-		10/19/19 15:20	1
 Method: 8260C - Volatile Oi	rasnic Comno	unde hv G	CIMS						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40		1.0		ug/L			10/22/19 19:29	1
Bromomethane	0.55		1.0		ug/L			10/22/19 19:29	1
Vinyl chloride	0.17	U	1.0		ug/L			10/22/19 19:29	1
Chloroethane	0.32	U	1.0		ug/L			10/22/19 19:29	1
Methylene Chloride	0.32		1.0		ug/L			10/22/19 19:29	1
Acetone	4.4	U	5.0		ug/L			10/22/19 19:29	1
Carbon disulfide	0.82	U	1.0		ug/L			10/22/19 19:29	1
1,1-Dichloroethene	0.26		1.0		ug/L			10/22/19 19:29	1
1,1-Dichloroethane	0.26		1.0		ug/L			10/22/19 19:29	1
trans-1,2-Dichloroethene	0.24		1.0		ug/L			10/22/19 19:29	1
cis-1,2-Dichloroethene	0.22		1.0		ug/L			10/22/19 19:29	1
Chloroform	0.33	U	1.0		ug/L			10/22/19 19:29	1
1,2-Dichloroethane	0.43		1.0		ug/L			10/22/19 19:29	1
2-Butanone (MEK)	1.9		5.0		ug/L			10/22/19 19:29	1
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/22/19 19:29	1
Carbon tetrachloride	0.21		1.0		ug/L			10/22/19 19:29	
Bromodichloromethane	0.34		1.0		ug/L			10/22/19 19:29	. 1
1,2-Dichloropropane	0.35		1.0		ug/L			10/22/19 19:29	1
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/22/19 19:29	
Trichloroethene	0.31		1.0		ug/L			10/22/19 19:29	1
Dibromochloromethane	0.28		1.0		ug/L			10/22/19 19:29	1
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/22/19 19:29	
Benzene	0.20		1.0		ug/L			10/22/19 19:29	1
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/22/19 19:29	1
Bromoform	0.54		1.0		ug/L			10/22/19 19:29	1
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/22/19 19:29	1
2-Hexanone	1.1		5.0		ug/L			10/22/19 19:29	1
Tetrachloroethene	0.25		1.0		ug/L			10/22/19 19:29	1
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/22/19 19:29	1
Toluene	0.38		1.0	0.38	-			10/22/19 19:29	1
Chlorobenzene	0.38	U	1.0		ug/L			10/22/19 19:29	1
Ethylbenzene	0.30		1.0		ug/L			10/22/19 19:29	1
Styrene	0.42		1.0		ug/L			10/22/19 19:29	1
Xylenes, Total	0.65		2.0		ug/L			10/22/19 19:29	1
Diethyl ether	0.49		1.0		ug/L			10/22/19 19:29	1
MTBE	0.47		1.0		ug/L			10/22/19 19:29	1
Tetrahydrofuran	4.7		2.0		ug/L			10/22/19 19:29	1
Cyclohexane	0.32	U	1.0		ug/L			10/22/19 19:29	1
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/22/19 19:29	1
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/22/19 19:29	1
Isopropylbenzene	0.34		1.0		ug/L			10/22/19 19:29	1
N-Propylbenzene	0.32		1.0		ug/L			10/22/19 19:29	1
Methylcyclohexane	0.26		1.0		ug/L			10/22/19 19:29	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N_128

Lab Sample ID: 460-194233-1 Date Collected: 10/17/19 11:00

Matrix: Water

2-Methylnaphthalene

Method: 8260C - Volatile Org			•				_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
ndane	0.35	U	1.0		ug/L			10/22/19 19:29	
Dichlorofluoromethane	1.6		1.0		ug/L			10/22/19 19:29	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/22/19 19:29	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/22/19 19:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	107		74 - 132					10/22/19 19:29	
Toluene-d8 (Surr)	99		80 - 120					10/22/19 19:29	
4-Bromofluorobenzene	110		77 - 124					10/22/19 19:29	
Dibromofluoromethane (Surr)	107	_	72 - 131	F				10/22/19 19:29	
Method: 8270D SIM - Semivo ^{Analyte}		c Compo Qualifier	unas (GC/N RL	•	Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]anthracene	0.031	U	0.10	0.031	ug/L		•	10/21/19 02:00	
Benzo[a]pyrene	0.043	U	0.10	0.043	ug/L		10/19/19 08:47	10/21/19 02:00	
Benzo[b]fluoranthene	0.048	U	0.10	0.048	ug/L		10/19/19 08:47	10/21/19 02:00	
Hexachlorobenzene	0.026	U	0.040	0.026	ug/L		10/19/19 08:47	10/21/19 02:00	
Pentachlorophenol	0.31	U	0.40		ug/L		10/19/19 08:47	10/21/19 02:00	
Bis(2-chloroethyl)ether	11		0.060	0.052	-		10/19/19 08:47	10/21/19 02:00	
Phenol	0.29		10	0.29	-		10/19/19 08:47	10/20/19 04:46	
2-Chlorophenol	0.29		10		ug/L ug/L			10/20/19 04:46	
2-Methylphenol	0.26		10		ug/L		10/19/19 08:47		
I-Methylphenol	0.24		10						
2-Nitrophenol	0.2.			(1.74	HG/I				
- Mapricio	0.75	11			ug/L		10/19/19 08:47	10/20/19 04:46	
2.4-Dimethylphenol	0.75 0.24		10	0.75	ug/L		10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46	
· · · · · · · · · · · · · · · · · · ·	0.24	U	10 10	0.75 0.24	ug/L ug/L		10/19/19 08:47 10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol	0.24 0.42	U	10 10 10	0.75 0.24 0.42	ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46	
2,4-Dimethylphenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol	0.24 0.42 0.58	U U	10 10 10 10	0.75 0.24 0.42 0.58	ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol	0.24 0.42 0.58 0.30	U U U	10 10 10 10 10	0.75 0.24 0.42 0.58 0.30	ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	0.24 0.42 0.58 0.30 0.28	U U U U	10 10 10 10 10	0.75 0.24 0.42 0.58 0.30	ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol	0.24 0.42 0.58 0.30 0.28 14	U U U U U	10 10 10 10 10 10 20	0.75 0.24 0.42 0.58 0.30 0.28	ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol	0.24 0.42 0.58 0.30 0.28 14 0.69	U U U U U U	10 10 10 10 10 10 20 20	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol I-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol I-Nitrophenol I,6-Dinitro-2-methylphenol	0.24 0.42 0.58 0.30 0.28 14 0.69	U U U U U U	10 10 10 10 10 10 20 20	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene	0.24 0.42 0.58 0.30 0.28 14 0.69	U U U U U U U	10 10 10 10 10 10 20 20 20	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol I-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol I-Nitrophenol I,6-Dinitro-2-methylphenol I,3-Dichlorobenzene I,4-Dichlorobenzene	0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0	U U U U U U U U	10 10 10 10 10 10 20 20 20 10	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 1-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 1-Nitrophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3	U U U U U U U U	10 10 10 10 10 20 20 20 10 10	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 4-Nitrosodi-n-propylamine	0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3	U U U U U U U U U U	10 10 10 10 10 20 20 20 10 10	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 1-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 1-Nitrophenol 1,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Nitrosodi-n-propylamine 1-exachloroethane	0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2	U U U U U U U U U U	10 10 10 10 10 10 20 20 20 10 10 10 1.0 2.0	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 1-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 1-Nitrophenol 1,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene N-Nitrosodi-n-propylamine Hexachloroethane Nitrobenzene	0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57		10 10 10 10 10 20 20 20 10 10 1.0 2.0	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 3-Dichlorophenol 3-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene	0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57 0.80		10 10 10 10 10 20 20 20 10 10 10 1.0 2.0	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57 0.80	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 1-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 1-Nitrophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1-Nitrosodi-n-propylamine 1-exachloroethane 1-sophorone 1-sitrobenzene 1-sitrobenzene	0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57 0.80 0.24		10 10 10 10 10 10 20 20 10 10 10 2.0 1.0 1.0	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57 0.80 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 1-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene N-Nitrosodi-n-propylamine Hexachloroethane Nitrobenzene sophorone Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene	0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57 0.80 0.24 1.3		10 10 10 10 10 10 20 20 20 10 10 10 1.0 2.0 1.0 10	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57 0.80 0.24 1.3	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene N-Nitrosodi-n-propylamine Hexachloroethane Nitrobenzene sophorone Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene Naphthalene	0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57 0.80 0.24 1.3 1.1		10 10 10 10 10 10 20 20 20 10 10 1.0 2.0 1.0 2.0 10	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 1.3 0.43 1.2 0.57 0.80 0.24 1.3 1.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46	
2,4-Dichlorophenol	0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57 0.80 0.24 1.3		10 10 10 10 10 10 20 20 20 10 10 10 1.0 2.0 1.0 10	0.75 0.24 0.42 0.58 0.30 0.28 14 0.69 13 2.0 1.3 0.43 1.2 0.57 0.80 0.24 1.3 1.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/19/19 08:47 10/19/19 08:47	10/20/19 04:46 10/20/19 04:46	

Eurofins TestAmerica, Edison

10/19/19 08:47 10/20/19 04:46

10

1.1 ug/L

1.1 U

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N_128

Lab Sample ID: 460-194233-1

Matrix: Water

Date Collected: 10/17/19 11:00 Date Received: 10/17/19 21:00

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/19/19 08:47	10/20/19 04:46	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/19/19 08:47	10/20/19 04:46	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/19/19 08:47	10/20/19 04:46	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/19/19 08:47	10/20/19 04:46	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/19/19 08:47	10/20/19 04:46	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/19/19 08:47	10/20/19 04:46	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/19/19 08:47	10/20/19 04:46	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/19/19 08:47	10/20/19 04:46	1
Dibenzofuran	1.1	U	10	1.1	ug/L		10/19/19 08:47	10/20/19 04:46	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/19/19 08:47	10/20/19 04:46	1
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/19/19 08:47	10/20/19 04:46	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/19/19 08:47	10/20/19 04:46	1
Fluorene	0.91	U	10	0.91	ug/L		10/19/19 08:47	10/20/19 04:46	1
4-Nitroaniline	0.54	U	10	0.54	ug/L		10/19/19 08:47	10/20/19 04:46	
N-Nitrosodiphenylamine	0.89	U	10	0.89	_		10/19/19 08:47	10/20/19 04:46	1
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/19/19 08:47	10/20/19 04:46	1
Phenanthrene	0.58	U	10	0.58	ug/L		10/19/19 08:47	10/20/19 04:46	1
Anthracene	0.63	U	10	0.63	ug/L		10/19/19 08:47	10/20/19 04:46	1
Carbazole	0.68	U	10		ug/L		10/19/19 08:47	10/20/19 04:46	1
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/19/19 08:47	10/20/19 04:46	1
Fluoranthene	0.84	U	10		ug/L		10/19/19 08:47	10/20/19 04:46	1
Pyrene	1.6	U	10		ug/L		10/19/19 08:47	10/20/19 04:46	1
Butyl benzyl phthalate	0.85	U	10		ug/L		10/19/19 08:47	10/20/19 04:46	1
3,3'-Dichlorobenzidine	1.4	U	10		ug/L		10/19/19 08:47	10/20/19 04:46	1
Chrysene	0.91	U	2.0		ug/L		10/19/19 08:47	10/20/19 04:46	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0		ug/L		10/19/19 08:47	10/20/19 04:46	1
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/19/19 08:47	10/20/19 04:46	1
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/19/19 08:47	10/20/19 04:46	1
Indeno[1,2,3-cd]pyrene	1.3	U	2.0		ug/L		10/19/19 08:47	10/20/19 04:46	1
Dibenz(a,h)anthracene	0.72		1.0		ug/L			10/20/19 04:46	1
Benzo[g,h,i]perylene	1.4		10		ug/L			10/20/19 04:46	1
Diphenyl ether	1.2		10		ug/L			10/20/19 04:46	1
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/20/19 04:46	1
Caprolactam	0.68		10		ug/L			10/20/19 04:46	1
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/20/19 04:46	1
Bisphenol-A	9.9		10		ug/L			10/20/19 04:46	1
N-Methylaniline	0.48		5.0		ug/L			10/20/19 04:46	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	9.0	J	ug/L	6	.77		10/19/19 08:47	10/20/19 04:46	-
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	93		51 - 108					10/20/19 04:46	1
Phenol-d5 (Surr)	31		14 - 39					10/20/19 04:46	•
Terphenyl-d14 (Surr)	107		40 - 148					10/20/19 04:46	1
2,4,6-Tribromophenol (Surr)	94		26 - 139					10/20/19 04:46	1
2-Fluorophenol (Surr)	46		25 - 58				10/19/19 08:47	10/20/19 04:46	1
2-Fluorobiphenyl (Surr)	89		45 - 107				10/19/19 08:47	10/20/19 04:46	1

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N_128

Lab Sample ID: 460-194233-1

Date Collected: 10/17/19 11:00 Matrix: Water Date Received: 10/17/19 21:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.79		0.10	0.056	mg/L			10/18/19 21:42	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/18/19 21:42	1
Method: 300.0 - Anions, Ion Chr	omatogra	phy - DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	35.6	D	1.68	0.20	mg/L			10/19/19 03:24	14
Sulfate	23.6	D	8.40	4.84	mg/L			10/19/19 03:24	14
- Method: 200.8 - Metals (ICP/MS)	- Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	21700		250	66.8	ug/L		10/23/19 11:33	10/23/19 23:15	5
Magnesium	10500		250	24.8	ug/L		10/23/19 11:33	10/23/19 23:15	5
Potassium	1980		250	73.5	ug/L		10/23/19 11:33	10/23/19 23:15	5
Calcium	19900		250	233	ug/L		10/23/19 11:33	10/23/19 23:15	5
Method: 6010D - Metals (ICP) - [Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	1.7	U –	50.0	1.7	ug/L		10/23/19 09:43	10/23/19 20:00	1
Iron, Dissolved	34.2	U	150	34.2	ug/L		10/23/19 09:43	10/23/19 20:00	1
Manganese, Dissolved	100		15.0	0.99	ug/L		10/23/19 09:43	10/23/19 20:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			10/22/19 11:29	1
Bicarbonate Alkalinity as CaCO3	35.9		5.0	5.0	mg/L			10/21/19 13:28	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/21/19 13:28	1
Sulfide	0.58	· u	1.0	0.58	mg/L			10/22/19 13:00	1

Client Sample ID: MW-26N_138

Date Collected: 10/17/19 12:00

Date Received: 10/17/19 21:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/22/19 19:05	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/22/19 19:05	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/22/19 19:05	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/22/19 19:05	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/22/19 19:05	1
Acetone	4.4	U	5.0	4.4	ug/L			10/22/19 19:05	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/22/19 19:05	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/22/19 19:05	1
1,1-Dichloroethane	0.89	J	1.0	0.26	ug/L			10/22/19 19:05	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/22/19 19:05	1
cis-1,2-Dichloroethene	0.55	J	1.0	0.22	ug/L			10/22/19 19:05	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/22/19 19:05	1
1,2-Dichloroethane	0.60	J	1.0	0.43	ug/L			10/22/19 19:05	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/22/19 19:05	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/22/19 19:05	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/22/19 19:05	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/22/19 19:05	1

Eurofins TestAmerica, Edison

Lab Sample ID: 460-194233-2

Matrix: Water

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N_138

Lab Sample ID: 460-194233-2 Date Collected: 10/17/19 12:00

Matrix: Water

Date Received: 10/17/19 21:00

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/22/19 19:05	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/22/19 19:05	
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/22/19 19:05	
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/22/19 19:05	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/22/19 19:05	
Benzene	9.5		1.0	0.20	ug/L			10/22/19 19:05	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/22/19 19:05	
Bromoform	0.54	U	1.0	0.54	ug/L			10/22/19 19:05	
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/22/19 19:05	
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/22/19 19:05	
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/22/19 19:05	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/22/19 19:05	
Toluene	0.38	U	1.0	0.38	ug/L			10/22/19 19:05	
Chlorobenzene	3.8		1.0	0.38	ug/L			10/22/19 19:05	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/22/19 19:05	
Styrene	0.42	U	1.0	0.42	ug/L			10/22/19 19:05	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/22/19 19:05	
Diethyl ether	3.2		1.0	0.21	ug/L			10/22/19 19:05	
MTBE	0.47	U	1.0	0.47	ug/L			10/22/19 19:05	
Tetrahydrofuran	12		2.0	1.0	ug/L			10/22/19 19:05	
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/22/19 19:05	
1,4-Dioxane	260		50	28	ug/L			10/22/19 19:05	
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/22/19 19:05	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/22/19 19:05	
Isopropylbenzene	2.3		1.0	0.34	ug/L			10/22/19 19:05	
N-Propylbenzene	1.4		1.0	0.32	ug/L			10/22/19 19:05	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/22/19 19:05	
Indane	0.67	J	1.0	0.35	ug/L			10/22/19 19:05	
Dichlorofluoromethane	6.3		1.0	0.34	ug/L			10/22/19 19:05	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/22/19 19:05	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D .	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/22/19 19:05	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	108		74 - 132			•		10/22/19 19:05	
Toluene-d8 (Surr)	100		80 - 120					10/22/19 19:05	
4-Bromofluorobenzene	109		77 - 124					10/22/19 19:05	

Method: 8270D SIM - Semivo	latile Organi	c Compoun	ds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.16	U	0.50	0.16	ug/L		10/19/19 08:47	10/21/19 02:21	10
Benzo[a]pyrene	0.22	U	0.50	0.22	ug/L		10/19/19 08:47	10/21/19 02:21	10
Benzo[b]fluoranthene	0.24	U	0.50	0.24	ug/L		10/19/19 08:47	10/21/19 02:21	10
Hexachlorobenzene	0.13	U	0.20	0.13	ug/L		10/19/19 08:47	10/21/19 02:21	10
Pentachlorophenol	1.5	U *	2.0	1.5	ug/L		10/19/19 08:47	10/21/19 02:21	10
Bis(2-chloroethyl)ether	55		0.30	0.26	ug/L		10/19/19 08:47	10/21/19 02:21	10

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N_138

Date Received: 10/17/19 21:00

Lab Sample ID: 460-194233-2 Date Collected: 10/17/19 12:00

Matrix: Water

Method: 8270D - Semivolatil ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Phenol	0.29	U —	10	0.29	ug/L		10/19/19 08:47	10/20/19 05:07	
2-Chlorophenol	0.38	U	10		ug/L		10/19/19 08:47	10/20/19 05:07	
2-Methylphenol	0.26	U	10		ug/L		10/19/19 08:47	10/20/19 05:07	
4-Methylphenol	0.24	U	10		ug/L		10/19/19 08:47	10/20/19 05:07	
2-Nitrophenol	0.75		10	0.75	-			10/20/19 05:07	
2,4-Dimethylphenol	0.24		10		ug/L			10/20/19 05:07	
2,4-Dichlorophenol	0.42	U	10		ug/L			10/20/19 05:07	
4-Chloro-3-methylphenol	0.58		10		ug/L			10/20/19 05:07	
2,4,6-Trichlorophenol	0.30		10	0.30	_			10/20/19 05:07	
2,4,5-Trichlorophenol	0.28	U	10		ug/L			10/20/19 05:07	
2,4-Dinitrophenol	14		20		ug/L			10/20/19 05:07	
4-Nitrophenol	0.69		20		•			10/20/19 05:07	
4,6-Dinitro-2-methylphenol	13		20		•			10/20/19 05:07	
1,3-Dichlorobenzene	2.0		10	2.0	ug/L		10/19/19 08:47		
1.4-Dichlorobenzene	1.3		10					10/20/19 05:07	
1,2-Dichlorobenzene		Ü	10		ug/L			10/20/19 05:07	
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L			10/20/19 05:07	
Hexachloroethane	1.2		2.0		ug/L			10/20/19 05:07	
Nitrobenzene	0.57		1.0		ug/L			10/20/19 05:07	
Isophorone	0.80		1.0	0.80	=			10/20/19 05:07	
Bis(2-chloroethoxy)methane	0.30		10		ug/L ug/L			10/20/19 05:07	
1,2,4-Trichlorobenzene	1.3		2.0		ug/L			10/20/19 05:07	
Naphthalene	1.1		10	1.1	ug/L ug/L			10/20/19 05:07	
4-Chloroaniline	1.9		10	1.9	ug/L ug/L			10/20/19 05:07	
Hexachlorobutadiene	0.78		1.0		-			10/20/19 05:07	
2-Methylnaphthalene	1.1		1.0	1.1	ug/L ug/L			10/20/19 05:07	
Hexachlorocyclopentadiene	1.7		10		ug/L ug/L			10/20/19 05:07	
			10		ug/L ug/L			10/20/19 05:07	
2-Chloronaphthalene 2-Nitroaniline	1.2 0.47		10		-			10/20/19 05:07	
					ug/L			10/20/19 05:07	
Dimethyl phthalate	0.77		10		ug/L			10/20/19 05:07	
Acenaphthylene			10		ug/L				
2,6-Dinitrotoluene	0.39		2.0		-			10/20/19 05:07	
3-Nitroaniline	0.96		10		ug/L			10/20/19 05:07	
Acenaphthene	1.1		10		ug/L			10/20/19 05:07	
Dibenzofuran	1.1		10		ug/L			10/20/19 05:07	
2,4-Dinitrotoluene	1.0		2.0		ug/L			10/20/19 05:07	
Diethyl phthalate	0.98		10		ug/L			10/20/19 05:07	
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/20/19 05:07	
Fluorene	0.91		10		ug/L			10/20/19 05:07	
4-Nitroaniline	0.54		10		ug/L			10/20/19 05:07	
N-Nitrosodiphenylamine	0.89		10		ug/L			10/20/19 05:07	
4-Bromophenyl phenyl ether	0.75		10		ug/L			10/20/19 05:07	
Phenanthrene	0.58		10		ug/L			10/20/19 05:07	
Anthracene	0.63		10		ug/L			10/20/19 05:07	
Carbazole	0.68		10		ug/L			10/20/19 05:07	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/19/19 08:47	10/20/19 05:07	
Fluoranthene	0.84		10	0.84	ug/L		10/19/19 08:47	10/20/19 05:07	
Pyrene	1.6	U	10	1.6	ug/L		10/19/19 08:47	10/20/19 05:07	
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/19/19 08:47	10/20/19 05:07	

Eurofins TestAmerica, Edison 11/12/2019

Page 55 of 2941

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N_138

Lab Sample ID: 460-194233-2 Date Collected: 10/17/19 12:00

Matrix: Water

Date Received: 10/17/19 21:00

Method: 8270D - Semivolatile			: (GC/MS) (
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
3,3'-Dichlorobenzidine	1.4	U	10		ug/L		10/19/19 08:47	10/20/19 05:07	1
Chrysene	0.91	U	2.0		ug/L		10/19/19 08:47	10/20/19 05:07	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0		ug/L		10/19/19 08:47	10/20/19 05:07	1
Di-n-octyl phthalate	4.8	U	10		ug/L		10/19/19 08:47	10/20/19 05:07	1
Benzo[k]fluoranthene	0.67	U	1.0		ug/L		10/19/19 08:47	10/20/19 05:07	1
ndeno[1,2,3-cd]pyrene	1.3	U	2.0	1.3	ug/L		10/19/19 08:47	10/20/19 05:07	1
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/19/19 08:47	10/20/19 05:07	1
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/19/19 08:47	10/20/19 05:07	1
Diphenyl ether	1.2	U	10	1.2	ug/L		10/19/19 08:47	10/20/19 05:07	1
n,n'-Dimethylaniline	0.91	U	1.0	0.91	ug/L		10/19/19 08:47	10/20/19 05:07	1
Caprolactam	0.68	U *	10	0.68	ug/L		10/19/19 08:47	10/20/19 05:07	1
ois (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/19/19 08:47	10/20/19 05:07	1
Bisphenol-A	17		10	9.9	ug/L		10/19/19 08:47	10/20/19 05:07	1
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/19/19 08:47	10/20/19 05:07	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
?-Isopropoxyphenol	18	JN	ug/L	5	5.18	4812-20-8	10/19/19 08:47	10/20/19 05:07	1
Jnknown	7.7	J	ug/L	5	5.76		10/19/19 08:47	10/20/19 05:07	1
Unknown	16	J	ug/L	5	5.93		10/19/19 08:47	10/20/19 05:07	1
Unknown	69	J	ug/L	6	78		10/19/19 08:47	10/20/19 05:07	1
Benzylamine	8.8	JN	ug/L	7	7.07	100-46-9	10/19/19 08:47	10/20/19 05:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	107	-	51 - 108				10/19/19 08:47	10/20/19 05:07	1
Phenol-d5 (Surr)	36		14 _ 39				10/19/19 08:47	10/20/19 05:07	1
Terphenyl-d14 (Surr)	118		40 - 148				10/19/19 08:47	10/20/19 05:07	1
2,4,6-Tribromophenol (Surr)	115		26 - 139				10/19/19 08:47	10/20/19 05:07	1
2-Fluorophenol (Surr)	53		25 _ 58				10/19/19 08:47	10/20/19 05:07	1
2-Fluorobiphenyl (Surr)	103		45 - 107				10/19/19 08:47	10/20/19 05:07	1
Method: 300.0 - Anions, Ion (Chromatogra	phy							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/18/19 21:57	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/18/19 21:57	1
Sulfate	8.47		0.60	0.35	mg/L			10/18/19 21:57	1
Method: 300.0 - Anions, Ion (Chromatogra	phy - DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	48.0	Ð	2.28	0.27	mg/L			10/19/19 03:39	19
Method: 200.8 - Metals (ICP/N	/IS) - Total R	ecoverabl	le						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Sodium	23800		250		ug/L			10/23/19 23:20	5
Magnesium	12300		250		ug/L		10/23/19 11:33	10/23/19 23:20	5
Potassium	2420		250		ug/L			10/23/19 23:20	5
Calcium	22500		250	233	ug/L		10/23/19 11:33	10/23/19 23:20	5
Method: 6010D - Metals (ICP)									
, ,	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Iron	Result 34.2		RL 150		Unit ug/L	<u>D</u>		Analyzed 11/06/19 15:27	Dil Fac

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N_138 Lab Sample ID: 460-194233-2

Date Collected: 10/17/19 12:00 At Date Received: 10/17/19 21:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	3.8	J	50.0	1.7	ug/L		11/05/19 05:09	11/06/19 15:27	1
Method: 6010D - Metals (ICP) - I	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	4.1	J	50.0	1.7	ug/L		10/23/19 09:43	10/23/19 20:04	1
Iron, Dissolved	34.2	U	150	34.2	ug/L		10/23/19 09:43	10/23/19 20:04	1
Manganese, Dissolved	346		15.0	0.99	ug/L		10/23/19 09:43	10/23/19 20:04	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.099	J	0.10	0.068	mg/L			10/22/19 11:07	1
Bicarbonate Alkalinity as CaCO3	74.4		5.0	5.0	mg/L			10/21/19 11:48	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/21/19 11:48	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/22/19 13:00	

Client Sample ID: MW-26N_3X Lab Sample ID: 460-194233-3

Date Collected: 10/17/19 14:30 Date Received: 10/17/19 21:00 Matrix: Water

Method: 8260C - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/22/19 19:54	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/22/19 19:54	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/22/19 19:54	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/22/19 19:54	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/22/19 19:54	1
Acetone	4.4	U	5.0	4.4	ug/L			10/22/19 19:54	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/22/19 19:54	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/22/19 19:54	1
1,1-Dichloroethane	0.61	J	1.0	0.26	ug/L			10/22/19 19:54	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/22/19 19:54	1
cis-1,2-Dichloroethene	0.47	J	1.0	0.22	ug/L			10/22/19 19:54	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/22/19 19:54	1
1,2-Dichloroethane	0.64	J	1.0	0.43	ug/L			10/22/19 19:54	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/22/19 19:54	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/22/19 19:54	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/22/19 19:54	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/22/19 19:54	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/22/19 19:54	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/22/19 19:54	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/22/19 19:54	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/22/19 19:54	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/22/19 19:54	1
Benzene	4.9		1.0	0.20	ug/L			10/22/19 19:54	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/22/19 19:54	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/22/19 19:54	1
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			10/22/19 19:54	1
2-Hexanone	1.1	U	5.0		ug/L			10/22/19 19:54	1
Tetrachloroethene	0.25	. U	1.0	0.25	•			10/22/19 19:54	1
1,1,2,2-Tetrachloroethane	0.37		1.0	0.37				10/22/19 19:54	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N_3X

Lab Sample ID: 460-194233-3

Matrix: Water

Date Collected: 10/17/19 14:30 Date Received: 10/17/19 21:00

Method: 8260C - Volatile Org Analyte		Qualifier	RL		. Unit	D	Prepared	Analyzed	Dil Fa
Toluene	0.38	U	1.0	0.38	ug/L		·	10/22/19 19:54	
Chlorobenzene	4.2		1.0	0.38	ug/L			10/22/19 19:54	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/22/19 19:54	
Styrene	0.42	U	1.0	0.42	ug/L			10/22/19 19:54	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/22/19 19:54	
Diethyl ether	2.5		1.0	0.21	ug/L			10/22/19 19:54	
MTBE	0.58	J	1.0	0.47	ug/L			10/22/19 19:54	
Tetrahydrofuran	10		2.0	1.0	ug/L			10/22/19 19:54	
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/22/19 19:54	
1,4-Dioxane	130		50	28	ug/L			10/22/19 19:54	
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/22/19 19:54	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/22/19 19:54	
Isopropylbenzene	1.1		1.0		ug/L			10/22/19 19:54	
N-Propylbenzene	0.71	J	1.0		ug/L			10/22/19 19:54	
Methylcyclohexane	0.26	U	1.0		ug/L			10/22/19 19:54	
Indane	0.38	J	1.0		ug/L			10/22/19 19:54	
Dichlorofluoromethane	4,8		1.0		ug/L			10/22/19 19:54	
1,2,3-Trimethylbenzene	0.36	U	1.0		ug/L			10/22/19 19:54	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	_				10/22/19 19:54	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	108		74 - 132					10/22/19 19:54	
Toluene-d8 (Surr)	98		80 - 120					10/22/19 19:54	7
4-Bromofluorobenzene	109		77 - 124					10/22/19 19:54	7
Dibromofluoromethane (Surr)	108		72 - 131					10/22/19 19:54	•
Method: 8270D SIM - Semivo	latile Organi	c Compo	unds (GC/N	IS SIM)					
Analyte		Qualifier	RL		. Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.16	U	0.50	0.16	-		10/19/19 08:47	10/21/19 02:42	10
Benzo[a]pyrene	0.22	U	0.50	0.22	ug/L		10/19/19 08:47	10/21/19 02:42	10
Benzo[b]fluoranthene	0.24	U	0.50	0.24	ug/L		10/19/19 08:47		10
Hexachlorobenzene	0.13	U	0.20	0.13	•		10/19/19 08:47	10/21/19 02:42	10
Pentachlorophenol	1.5	U *	2.0	1.5	•		10/19/19 08:47	10/21/19 02:42	10
Bis(2-chloroethyl)ether	33		0.30	0.26	ug/L		10/19/19 08:47	10/21/19 02:42	10
Method: 8270D - Semivolatile			(GC/MS)						
Analyte		Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/19/19 08:47	10/20/19 05:28	
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/19/19 08:47	10/20/19 05:28	•
2-Methylphenol	0.26	U	10	0.26	ug/L		10/19/19 08:47	10/20/19 05:28	
4-Methylphenol	0.24	U	10	0.24	ug/L		10/19/19 08:47	10/20/19 05:28	
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/19/19 08:47	10/20/19 05:28	
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/19/19 08:47	10/20/19 05:28	-
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/19/19 08:47	10/20/19 05:28	
4-Chloro-3-methylphenol	0.58	U	10		ug/L		10/19/19 08:47	10/20/19 05:28	
2,4,6-Trichlorophenol	0.30	U	10		ug/L		10/19/19 08:47	10/20/19 05:28	
•			10		ug/L			10/20/19 05:28	
2,4,5-Trichlorophenol	0.28	U	10	0.20	ugil		10/10/10 00.47	10,20,1000.20	
2,4,5-1 richlorophenol 2,4-Dinitrophenol	14		20		ug/L			10/20/19 05:28	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N_3X

Date Received: 10/17/19 21:00

Lab Sample ID: 460-194233-3 Date Collected: 10/17/19 14:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/19/19 08:47	10/20/19 05:28	-
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/19/19 08:47	10/20/19 05:28	
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/19/19 08:47	10/20/19 05:28	
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/19/19 08:47	10/20/19 05:28	
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/19/19 08:47	10/20/19 05:28	
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/19/19 08:47	10/20/19 05:28	
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/19/19 08:47	10/20/19 05:28	
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/19/19 08:47	10/20/19 05:28	
Isophorone	0.80	U	10	0.80	ug/L		10/19/19 08:47	10/20/19 05:28	
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/19/19 08:47	10/20/19 05:28	
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/19/19 08:47	10/20/19 05:28	
Naphthalene	1.1	U	10	1.1	ug/L		10/19/19 08:47	10/20/19 05:28	
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/19/19 08:47	10/20/19 05:28	
Hexachlorobutadiene	0.78	U	1.0		ug/L		10/19/19 08:47	10/20/19 05:28	
2-Methylnaphthalene	1.1		10		ug/L		10/19/19 08:47	10/20/19 05:28	
Hexachlorocyclopentadiene		U	10		ug/L		10/19/19 08:47	10/20/19 05:28	
2-Chloronaphthalene	1.2	U	10		ug/L		10/19/19 08:47	10/20/19 05:28	
2-Nitroaniline	0.47		10		ug/L		10/19/19 08:47	10/20/19 05:28	
Dimethyl phthalate	0.77	U	10		ug/L		10/19/19 08:47	10/20/19 05:28	
Acenaphthylene	0.82	U	10		ug/L		10/19/19 08:47	10/20/19 05:28	
2,6-Dinitrotoluene	0.39	U	2.0		ug/L		10/19/19 08:47	10/20/19 05:28	
3-Nitroaniline	0.96		10		ug/L		10/19/19 08:47	10/20/19 05:28	
Acenaphthene	1.1	U	10		ug/L			10/20/19 05:28	
Dibenzofuran	1.1	U	10		ug/L			10/20/19 05:28	
2,4-Dinitrotoluene	1.0		2.0		ug/L			10/20/19 05:28	
Diethyl phthalate	0.98		10		ug/L			10/20/19 05:28	
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/20/19 05:28	
Fluorene	0.91		10		ug/L			10/20/19 05:28	
4-Nitroaniline	0.54		10		ug/L			10/20/19 05:28	
N-Nitrosodiphenylamine	0.89		10		ug/L			10/20/19 05:28	
4-Bromophenyl phenyl ether	0.75		10		ug/L			10/20/19 05:28	
Phenanthrene	0.58		10		ug/L			10/20/19 05:28	
Anthracene	0.63		10		ug/L			10/20/19 05:28	
Carbazole	0.68		10		ug/L			10/20/19 05:28	
Di-n-butyl phthalate	0.84		10		ug/L			10/20/19 05:28	
Fluoranthene	0.84		10		ug/L			10/20/19 05:28	
Pyrene	1.6		10		ug/L			10/20/19 05:28	
Butyl benzyl phthalate	0.85		10		ug/L			10/20/19 05:28	
3,3'-Dichlorobenzidine	1.4		10		ug/L			10/20/19 05:28	
Chrysene	0.91		2.0		ug/L			10/20/19 05:28	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/20/19 05:28	
Di-n-octyl phthalate	4.8		10		ug/L			10/20/19 05:28	
Benzo[k]fluoranthene	0.67		1.0		ug/L ug/L			10/20/19 05:28	
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/20/19 05:28	
Dibenz(a,h)anthracene	0.72		1.0		ug/L ug/L			10/20/19 05:28	
	1.4		1.0		ug/L ug/L			10/20/19 05:28	
Benzo[g,h,i]perylene	1.4				ug/L ug/L			10/20/19 05:28	
Diphenyl ether	0.91		10 1.0		ug/L ug/L			10/20/19 05:28	
n,n'-Dimethylaniline Caprolactam	0.91		1.0		ug/L ug/L			10/20/19 05:28	

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N_3X

Lab Sample ID: 460-194233-3 Date Collected: 10/17/19 14:30

Matrix: Water

Date Received: 10/17/19 21:00

Analyte		Qualifier	(GC/MS) (MDL		D	Prepared	Analyzed	Dil Fac
bis (2-chloroisopropyl) ether	0.63		10		0.63		=	10/19/19 08:47	10/20/19 05:28	1
Bisphenol-A	9.9	_	10			ug/L			10/20/19 05:28	
N-Methylaniline	0.48		5.0		0.48	-			10/20/19 05:28	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No	Prepared	Analyzed	Dil Fac
2-Isopropoxyphenol	9.0	JN	ug/L		5.	18	4812-20-8	10/19/19 08:47	10/20/19 05:28	1
Unknown	11	J	ug/L		5.	93		10/19/19 08:47	10/20/19 05:28	1
Unknown	48	J	ug/L		6.	78		10/19/19 08:47	10/20/19 05:28	1
Unknown	8.8	J	ug/L		7.	07		10/19/19 08:47	10/20/19 05:28	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	109	X	51 - 108					10/19/19 08:47	10/20/19 05:28	1
Phenol-d5 (Surr)	36		14 - 39					10/19/19 08:47	10/20/19 05:28	1
Terphenyl-d14 (Surr)	114		40 - 148					10/19/19 08:47	10/20/19 05:28	1
2,4,6-Tribromophenol (Surr)	118		26 - 139					10/19/19 08:47	10/20/19 05:28	1
2-Fluorophenol (Surr)	53		25 - 58					10/19/19 08:47	10/20/19 05:28	1
2-Fluorobiphenyl (Surr)	103		45 - 107					10/19/19 08:47	10/20/19 05:28	1
Method: 300.0 - Anions, Ion C										
Analyte		Qualifier	RL		MDL			Prepared	Analyzed	Dil Fac
Nitrate as N	0.15		0.10		0.056				10/18/19 22:12	1
Nitrite as N	0.076	U	0.12		0.076	mg/L			10/18/19 22:12	1
Sulfate	16.3		0.60		0.35	mg/L			10/18/19 22:12	1
Mathadi 200 0 Aniona lon <i>(</i>	`hromatoara	nb. NI								
Method: 300.0 - Anions, Ion (ını vinatogra	pny - DL								
Method: 300.0 - Anions, ion C Analyte		Qualifier	RL		MDL			Prepared	Analyzed	Dil Fac
•		Qualifier	RL 2.16			Unit mg/L		Prepared	Analyzed 10/19/19 03:53	
Analyte	Result 46.4	Qualifier					<u>E</u>	Prepared	•	
Analyte Chloride	Result 46.4 - Dissolved	Qualifier				mg/L			•	18
Analyte Chloride Method: 6010D - Metals (ICP)	Result 46.4 - Dissolved	Qualifier D Qualifier	2.16		0.25 MD L	mg/L			10/19/19 03:53 Analyzed	18
Analyte Chloride Method: 6010D - Metals (ICP) Analyte	Result 46.4 - Dissolved Result	Qualifier Qualifier J	2.16 R L		0.25 MD L	mg/L Unit ug/L		Prepared 10/23/19 09:43	10/19/19 03:53 Analyzed	18
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved	Result 46.4 - Dissolved Result 11.8	Qualifier Qualifier J	2.16 RL 50.0		0.25 MDL 1.7	mg/L Unit ug/L ug/L		Prepared 10/23/19 09:43 10/23/19 09:43	10/19/19 03:53 Analyzed 10/23/19 20:08	Dil Fac Dil Fac 1 1 1 1
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved	Result 46.4 - Dissolved Result 11.8 34.2 1540	Qualifier Qualifier J	2.16 RL 50.0 150		0.25 MDL 1.7 34.2	mg/L Unit ug/L ug/L		Prepared 10/23/19 09:43 10/23/19 09:43	Analyzed 10/23/19 20:08 10/23/19 20:08	18 Dil Fac 1
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved	Result 46.4 - Dissolved Result 11.8 34.2 1540	Qualifier Qualifier J	2.16 RL 50.0 150 15.0		0.25 MDL 1.7 34.2 0.99	mg/L Unit ug/L ug/L ug/L Unit		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08	18 Dil Fac 1 1 1
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/	Result 46.4 - Dissolved Result 11.8 34.2 1540	Qualifier Qualifier J U	2.16 RL 50.0 150 15.0		0.25 MDL 1.7 34.2 0.99	mg/L Unit ug/L ug/L ug/L Unit		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08	Dil Fac
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/Analyte	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result	Qualifier Qualifier J U	2.16 RL 50.0 150 15.0		0.25 MDL 1.7 34.2 0.99 MDL 0.73	mg/L Unit ug/L ug/L ug/L Unit		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08	Dil Fac Dil Fac Dil Fac Dil Fac
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/Analyte Arsenic	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result 0.73	Qualifier Qualifier J U Qualifier U	2.16 RL 50.0 150 15.0 RL 2.0		0.25 MDL 1.7 34.2 0.99 MDL 0.73	mg/L Unit ug/L ug/L ug/L ug/L ug/L		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 Analyzed 10/23/19 20:22	Dil Fac 1 1 1 Dil Fac 2 2
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/Analyte Arsenic Barium	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result 0.73 125	Qualifier Qualifier J U Qualifier U	2.16 RL 50.0 150 15.0 RL 2.0 4.0		0.25 MDL 1.7 34.2 0.99 MDL 0.73 1.2	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 Analyzed 10/23/19 20:22 10/23/19 20:22	Dil Fac 1 1 1 Dil Fac 2 2 2
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/ Analyte Arsenic Barium Beryllium	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result 0.73 125 0.25	Qualifier Qualifier J U Qualifier U	2.16 RL 50.0 15.0 15.0 RL 2.0 4.0 0.80		0.25 MDL 1.7 34.2 0.99 MDL 0.73 1.2 0.25 0.81	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22	Dil Fac 1 1 1 Dil Fac 2 2 2 2
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/Analyte Arsenic Barium Beryllium Cadmium	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result 0.73 125 0.25 0.81	Qualifier Qualifier J U Qualifier U	2.16 RL 50.0 15.0 RL 2.0 4.0 0.80 2.0		0.25 MDL 1.7 34.2 0.99 MDL 0.73 1.2 0.25 0.81 1.6	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 Analyzed 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22	Dil Fac 1 1 1 Dil Fac 2 2 2 2 2
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/Analyte Arsenic Barium Beryllium Cadmium Cobalt Chromium	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result 0.73 125 0.25 0.81 6.6	Qualifier Qualifier J U Qualifier U	2.16 RL 50.0 150 15.0 RL 2.0 4.0 0.80 2.0 4.0		0.25 MDL 1.7 34.2 0.99 MDL 0.73 1.2 0.25 0.81 1.6 2.3	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22	Dil Fac Dil Fac 2 2 2 2 2 2
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/Analyte Arsenic Barium Beryllium Cadmium Cobalt Chromium Copper	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result 0.73 125 0.25 0.81 6.6 2.3	Qualifier Qualifier J U Qualifier U	2.16 RL 50.0 15.0 15.0 RL 2.0 4.0 0.80 2.0 4.0 4.0 4.0		0.25 MDL 1.7 34.2 0.99 MDL 0.73 1.2 0.25 0.81 1.6 2.3 2.0	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22	Dil Fac Dil Fac 2 2 2 2 2 2 2
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/Analyte Arsenic Barium Beryllium Cadmium Cobalt Chromium	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result 0.73 125 0.25 0.81 6.6 2.3 4.1	Qualifier Qualifier J U Qualifier U	2.16 RL 50.0 15.0 15.0 RL 2.0 4.0 0.80 2.0 4.0 4.0 4.0		0.25 MDL 1.7 34.2 0.99 MDL 0.73 1.2 0.25 0.81 1.6 2.3 2.0 2.9	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22	Dil Fac Dil Fac 2 2 2 2 2 2 2 2
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/ Analyte Arsenic Barium Beryllium Cadmium Cobalt Chromium Copper Manganese	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result 0.73 125 0.25 0.81 6.6 2.3 4.1 771 8.5	Qualifier Qualifier U Qualifier U U	2.16 RL 50.0 15.0 15.0 RL 2.0 4.0 0.80 2.0 4.0 4.0 4.0 8.0 4.0 4.0		0.25 MDL 1.7 34.2 0.99 MDL 0.73 1.2 0.25 0.81 1.6 2.3 2.0 2.9 2.4	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22	Dil Fac Dil Fac 2 2 2 2 2 2 2 2 2 2
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/ Analyte Arsenic Barium Beryllium Cadmium Cobalt Chromium Copper Manganese Nickel Lead	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result 0.73 125 0.25 0.81 6.6 2.3 4.1 771	Qualifier Qualifier J U Qualifier U U U	2.16 RL 50.0 15.0 RL 2.0 4.0 0.80 2.0 4.0 4.0 4.0 8.0 4.0 1.2		MDL 1.7 34.2 0.99 MDL 0.73 1.2 0.25 0.81 1.6 2.3 2.0 2.9 2.4 0.55	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 10/23/19 20:02 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22	Dil Fac 1 1 1 Dil Fac 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/Analyte Arsenic Barium Beryllium Cadmium Cobalt Chromium Copper Manganese Nickel Lead Antimony	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result 0.73 125 0.25 0.81 6.6 2.3 4.1 771 8.5 0.55 0.40	Qualifier J U Qualifier U U U U U	2.16 RL 50.0 15.0 RL 2.0 4.0 0.80 2.0 4.0 4.0 4.0 8.0 4.0 1.2 2.0		MDL 1.7 34.2 0.99 MDL 0.73 1.2 0.25 0.81 1.6 2.3 2.0 2.9 2.4 0.55 0.40	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 Analyzed 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22	Dil Fac Dil Fac 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/ Analyte Arsenic Barium Beryllium Cadmium Cobalt Chromium Copper Manganese Nickel Lead Antimony Thallium	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result 0.73 125 0.25 0.81 6.6 2.3 4.1 771 8.5 0.55 0.40 0.16	Qualifier J U Qualifier U U U U U	2.16 RL 50.0 15.0 15.0 RL 2.0 4.0 0.80 4.0 4.0 4.0 4.0 1.2 2.0 0.80		0.25 MDL 1.7 34.2 0.99 MDL 0.73 1.2 0.25 0.81 1.6 2.3 2.0 2.9 2.4 0.55 0.40 0.16	mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 Analyzed 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22	18 Dil Fac 1 1 1 1 Dil Fac 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Analyte Chloride Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved Method: 6020B - Metals (ICP/Analyte Arsenic Barium Beryllium Cadmium Cobalt Chromium Copper Manganese Nickel Lead Antimony	Result 46.4 - Dissolved Result 11.8 34.2 1540 MS) Result 0.73 125 0.25 0.81 6.6 2.3 4.1 771 8.5 0.55 0.40	Qualifier Qualifier U Qualifier U U U U	2.16 RL 50.0 15.0 RL 2.0 4.0 0.80 2.0 4.0 4.0 4.0 8.0 4.0 1.2 2.0		0.25 MDL 1.7 34.2 0.99 MDL 0.73 1.2 0.25 0.81 1.6 2.3 2.0 2.9 2.4 0.55 0.40 0.16	mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		Prepared 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 10/23/19 09:43 Prepared 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26 10/22/19 23:26	Analyzed 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 10/23/19 20:08 Analyzed 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22 10/23/19 20:22	18 Dil Fac 1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MW-26N_3X

Lab Sample ID: 460-194233-3 Date Collected: 10/17/19 14:30

Matrix: Water

Date Received: 10/17/19 21:00

Method: 6020B - Metals (ICP/MS	S) (Contin	ued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Magnesium	12300		200	73.7	ug/L		10/22/19 23:26	10/23/19 20:22	2
Aluminum	18.8	U	40.0	18.8	ug/L		10/22/19 23:26	10/23/19 20:22	2
Potassium	2430		200	86.7	ug/L		10/22/19 23:26	10/23/19 20:22	2
Calcium	21200		200	98.8	ug/L		10/22/19 23:26	10/23/19 20:22	2
Iron	51.1	U	120	51.1	ug/L		10/22/19 23:26	10/23/19 20:22	2
Selenium	5.4	U	10.0	5.4	ug/L		10/22/19 23:26	10/23/19 20:22	2
Silver	0.59	U	2.0	0.59	ug/L		10/22/19 23:26	10/23/19 20:22	2
_ Method: 7470A - Mercury (CVA)	4)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.12	U	0.20	0.12	ug/L		10/22/19 11:06	10/22/19 14:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.24		0.10	0.068	mg/L			10/22/19 11:09	1
Bicarbonate Alkalinity as CaCO3	70.3		5.0	5.0	mg/L			10/21/19 13:35	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/21/19 13:35	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/22/19 13:00	1

Client Sample ID: TBGW_101719

Date Collected: 10/17/19 14:30 Date Received: 10/17/19 21:00

Lab Sample ID: 460-194233-4

Matrix: Water

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/19/19 13:13	1		
Surrogate	%Recovery	Qualifier	Limits			-	Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene	92		72 - 133					10/19/19 13:13	1		

Analyte	Result	Qualifier	MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/22/19 16:15	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/22/19 16:15	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/22/19 16:15	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/22/19 16:15	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/22/19 16:15	1
Acetone	23		5.0	4.4	ug/L			10/22/19 16:15	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/22/19 16:15	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/22/19 16:15	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/22/19 16:15	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/22/19 16:15	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/22/19 16:15	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/22/19 16:15	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/22/19 16:15	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/22/19 16:15	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/22/19 16:15	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/22/19 16:15	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/22/19 16:15	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/22/19 16:15	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/22/19 16:15	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_101719

Lab Sample ID: 460-194233-4 Date Collected: 10/17/19 14:30

Matrix: Water

Date Received: 10/17/19 21:00

Method: 8260C - Volatile Org ^{Analyte}	•	Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/22/19 16:15	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/22/19 16:15	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/22/19 16:15	1
Benzene	0.20	U	1.0	0.20	ug/L			10/22/19 16:15	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/22/19 16:15	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/22/19 16:15	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/22/19 16:15	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/22/19 16:15	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/22/19 16:15	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/22/19 16:15	1
Toluene	0.38	U	1.0	0.38	ug/L			10/22/19 16:15	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/22/19 16:15	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/22/19 16:15	1
Styrene	0.42	U	1.0	0.42	ug/L			10/22/19 16:15	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/22/19 16:15	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/22/19 16:15	1
MTBE	0.47	U	1.0	0.47	ug/L			10/22/19 16:15	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/22/19 16:15	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/22/19 16:15	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/22/19 16:15	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/22/19 16:15	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/22/19 16:15	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/22/19 16:15	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/22/19 16:15	1
Indane	0.35	U	1.0	0.35	ug/L			10/22/19 16:15	1
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/22/19 16:15	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/22/19 16:15	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/22/19 16:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		74 - 132			-		10/22/19 16:15	-
Toluene-d8 (Surr)	98		80 - 120					10/22/19 16:15	1
4-Bromofluorobenzene	109		77 - 124					10/22/19 16:15	1
Dibromofluoromethane (Surr)	106		72 - 131					10/22/19 16:15	

Date Collected: 10/18/19 10:50

Date Received: 10/18/19 20:55

Method: 8260C SIM - Vol Analyte		mpounds ((GC/MS)	MDL	Unit	D	Prepared	Analvzed	Dil Fac
1,4-Dioxane	1.6		0.40	0.20				10/20/19 05:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	90		72 - 133					10/20/19 05:53	1

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Chloromethane 0.40 U 1.0 0.40 ug/L 10/23/19 19:11

Eurofins TestAmerica, Edison

11/12/2019

Matrix: Water

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105A-LS

Lab Sample ID: 460-194328-1 Date Collected: 10/18/19 10:50

Matrix: Water

Date Received: 10/18/19 20:55

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	0.55		1.0		ug/L			10/23/19 19:11	1
Vinyl chloride	0.17	U	1.0		ug/L			10/23/19 19:11	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/23/19 19:11	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/23/19 19:11	1
Acetone	4.4	U	5.0		ug/L			10/23/19 19:11	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/23/19 19:11	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/23/19 19:11	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/23/19 19:11	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/23/19 19:11	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/23/19 19:11	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/23/19 19:11	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/23/19 19:11	1
2-Butanone (MEK)	1.9	U *	5.0	1.9	ug/L			10/23/19 19:11	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/23/19 19:11	1
Carbon tetrachloride	0.21		1.0	0.21	ug/L			10/23/19 19:11	1
Bromodichloromethane	0.34		1.0		ug/L			10/23/19 19:11	1
1,2-Dichloropropane	0.35	U	1.0		ug/L			10/23/19 19:11	1
cis-1,3-Dichloropropene	0.22	U	1.0		ug/L			10/23/19 19:11	1
Trichloroethene	0.31		1.0		ug/L			10/23/19 19:11	1
Dibromochloromethane	0.28		1.0		ug/L			10/23/19 19:11	1
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/23/19 19:11	1
Benzene	0.20		1.0		ug/L			10/23/19 19:11	1
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/23/19 19:11	. 1
Bromoform	0.54		1.0		ug/L			10/23/19 19:11	
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/23/19 19:11	1
2-Hexanone	1.1		5.0		ug/L			10/23/19 19:11	. 1
Tetrachloroethene	1.0		1.0		ug/L			10/23/19 19:11	
1,1,2,2-Tetrachloroethane	0.37	11	1.0		ug/L			10/23/19 19:11	. 1
Toluene	0.38		1.0		ug/L			10/23/19 19:11	1
Chlorobenzene	0.38		1.0		ug/L			10/23/19 19:11	
Ethylbenzene	0.30		1.0		ug/L			10/23/19 19:11	1
Styrene	0.42		1.0		ug/L ug/L			10/23/19 19:11	1
•	0.42		2.0		ug/L ug/L			10/23/19 19:11	1
Xylenes, Total Diethyl ether	0.03		1.0		ug/L ug/L			10/23/19 19:11	1
MTBE	0.47				-				1
			1.0		ug/L			10/23/19 19:11	1
Tetrahydrofuran	1.0		2.0		ug/L			10/23/19 19:11	1
Cyclohexane	0.32		1.0		ug/L			10/23/19 19:11	1
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/23/19 19:11	1
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/23/19 19:11	1
Isopropylbenzene	0.34		1.0		ug/L			10/23/19 19:11	1
N-Propylbenzene	0.32		1.0		ug/L			10/23/19 19:11	1
Methylcyclohexane	0.26		1.0		ug/L			10/23/19 19:11	1
Indane	0.35		1.0		ug/L			10/23/19 19:11	1
Dichlorofluoromethane	0.34		1.0		ug/L			10/23/19 19:11	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/23/19 19:11	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/23/19 19:11	1

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105A-LS

Lab Sample ID: 460-194328-1 Data Callacted: 10/18/19 10:50

Matrix: Water

Manaa	Managara da	ANIANIAN	~~.~~
Date	Received:	10/10/19	ZU:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110	74 - 132		10/23/19 19:11	1
Toluene-d8 (Surr)	97	80 - 120		10/23/19 19:11	1
4-Bromofluorobenzene	110	77 - 124		10/23/19 19:11	1
Dibromofluoromethane (Surr)	110	72 - 131		10/23/19 19:11	1

Method: 8270D SIM - Sem	ivolatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/20/19 09:41	10/21/19 17:45	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/20/19 09:41	10/21/19 17:45	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/20/19 09:41	10/21/19 17:45	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/20/19 09:41	10/21/19 17:45	1
Pentachlorophenol	0.15	U	0.20	0.15	ug/L		10/20/19 09:41	10/21/19 17:45	1
Bis(2-chloroethyl)ether	0.17		0.030	0.026	ug/L		10/20/19 09:41	10/21/19 17:45	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/20/19 09:41	10/21/19 00:33	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/20/19 09:41	10/21/19 00:33	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/20/19 09:41	10/21/19 00:33	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/20/19 09:41	10/21/19 00:33	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/20/19 09:41	10/21/19 00:33	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/20/19 09:41	10/21/19 00:33	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/20/19 09:41	10/21/19 00:33	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/20/19 09:41	10/21/19 00:33	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/20/19 09:41	10/21/19 00:33	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/20/19 09:41	10/21/19 00:33	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/20/19 09:41	10/21/19 00:33	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/20/19 09:41	10/21/19 00:33	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/20/19 09:41	10/21/19 00:33	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/20/19 09:41	10/21/19 00:33	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/20/19 09:41	10/21/19 00:33	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/20/19 09:41	10/21/19 00:33	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/20/19 09:41	10/21/19 00:33	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/20/19 09:41	10/21/19 00:33	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/20/19 09:41	10/21/19 00:33	1
Isophorone	0.80	U	10	0.80	ug/L		10/20/19 09:41	10/21/19 00:33	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/20/19 09:41	10/21/19 00:33	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/20/19 09:41	10/21/19 00:33	1
Naphthalene	1.1	U	10	1.1	ug/L		10/20/19 09:41	10/21/19 00:33	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/20/19 09:41	10/21/19 00:33	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/20/19 09:41	10/21/19 00:33	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/20/19 09:41	10/21/19 00:33	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/20/19 09:41	10/21/19 00:33	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/20/19 09:41	10/21/19 00:33	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/20/19 09:41	10/21/19 00:33	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/20/19 09:41	10/21/19 00:33	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/20/19 09:41	10/21/19 00:33	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/20/19 09:41	10/21/19 00:33	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/20/19 09:41	10/21/19 00:33	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/20/19 09:41	10/21/19 00:33	1

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105A-LS

Lab Sample ID: 460-194328-1 Date Collected: 10/18/19 10:50

Matrix: Water

Date Received: 10/18/19 20:55 Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Dibenzofuran 1.1 U 10 10/20/19 09:41 10/21/19 00:33 1.1 ug/L 1.0 U 2.0 2,4-Dinitrotoluene 10/20/19 09:41 10/21/19 00:33 1.0 ug/L 1 0.98 U 10 Diethyl phthalate 0.98 ug/L 10/20/19 09:41 10/21/19 00:33 10 4-Chlorophenyl phenyl ether 1.3 U 1.3 ug/L 10/20/19 09:41 10/21/19 00:33 1 Fluorene 0.91 10 0.91 ug/L 10/20/19 09:41 10/21/19 00:33 4-Nitroaniline U 10 10/20/19 09:41 10/21/19 00:33 1 0.54 0.54 ug/L N-Nitrosodiphenylamine U 10 10/20/19 09:41 10/21/19 00:33 1 0.89 0.89 ug/L 4-Bromophenyl phenyl ether 0.75 U 10 10/20/19 09:41 10/21/19 00:33 0.75 ug/L 1 Phenanthrene 0.58 U 10 10/20/19 09:41 10/21/19 00:33 1 0.58 ug/L Anthracene 0.63 U 10 0.63 ug/L 10/20/19 09:41 10/21/19 00:33 1 Carbazole 0.68 U 10 0.68 ug/L 10/20/19 09:41 10/21/19 00:33 1 0.84 U 10 10/20/19 09:41 10/21/19 00:33 Di-n-butyl phthalate 0.84 ug/L 1 Fluoranthene 0.84 U 10 0.84 ug/L 10/20/19 09:41 10/21/19 00:33 1 10 10/20/19 09:41 10/21/19 00:33 Pyrene 1.6 U 1.6 ug/L 1 Butyl benzyl phthalate 0.85 Ü 10 0.85 ug/L 10/20/19 09:41 10/21/19 00:33 1 3.3'-Dichlorobenzidine 1.4 U 10 10/20/19 09:41 10/21/19 00:33 1.4 ug/L 1 Chrysene 0.91 U 2.0 0.91 ug/L 10/20/19 09:41 10/21/19 00:33 1 Bis(2-ethylhexyl) phthalate 1.7 U 2.0 1.7 ug/L 10/20/19 09:41 10/21/19 00:33 1 Di-n-octyl phthalate 4.8 U 10 4.8 ug/L 10/20/19 09:41 10/21/19 00:33 1 Benzo[k]fluoranthene 0.67 U 1.0 0.67 ug/L 10/20/19 09:41 10/21/19 00:33 1 1.3 U 20 10/20/19 09:41 10/21/19 00:33 Indeno[1,2,3-cd]pyrene 1.3 ug/L Dibenz(a,h)anthracene 0.72 U 1.0 0.72 ug/L 10/20/19 09:41 10/21/19 00:33 1 Benzo[g,h,i]perylene U 10 10/20/19 09:41 10/21/19 00:33 1.4 1.4 ug/L 10 10/20/19 09:41 10/21/19 00:33 Diphenyl ether 1.2 U 1.2 ug/L 1.0 n,n'-Dimethylaniline 0.91 U 0.91 10/20/19 09:41 10/21/19 00:33 1 ug/L 10 Caprolactam 0.68 U 0.68 ug/L 10/20/19 09:41 10/21/19 00:33 1 10 0.63 U 0.63 ug/L 10/20/19 09:41 10/21/19 00:33 bis (2-chloroisopropyl) ether Bisphenol-A 9.9 U 10 10/20/19 09:41 10/21/19 00:33 9.9 ug/L 5.0 0.48 ug/L N-Methylaniline 0.48 U 10/20/19 09:41 10/21/19 00:33 1 Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Dil Fac Prepared Analyzed Tentatively Identified Compound None ug/L 10/20/19 09:41 10/21/19 00:33 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Nitrobenzene-d5 (Surr) 107 51 - 108 10/20/19 09:41 10/21/19 00:33 10/20/19 09:41 10/21/19 00:33 Phenol-d5 (Surr) 56 X 14 - 39 1 Terphenyl-d14 (Surr) 103 40 - 148 10/20/19 09:41 10/21/19 00:33 1 2,4,6-Tribromophenol (Surr) 102 26 - 139 10/20/19 09:41 10/21/19 00:33 1 2-Fluorophenol (Surr) 69 X 25 - 58 10/20/19 09:41 10/21/19 00:33 1 2-Eluorobinhenyl (Surr) 98 45 107 10/20/19 09:41 10/21/19 00:33

z-riuorobipnenyi (Surr)	96	45 - 107				10/20/19 09.41	10/21/19 00.33	1
Method: 300.0 - Anions, lo					_			
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	1.77	0.10	0.056	mg/L			10/19/19 14:14	1
Nitrite as N	0.076 U	0.12	0.076	mg/L			10/19/19 14:14	1
Sulfate	11.8	0.60	0.35	mg/L			10/19/19 14:14	1
– Method: 300.0 - Anions, lo	n Chromatography - DL							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	51.4 D	2.40	0.28	mg/L			10/19/19 17:13	20

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105A-LS

Lab Sample ID: 460-194328-1

Date Collected: 10/18/19 10:50 Matrix: Water

Date Received: 10/18/19 20:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	29700		250	66.8	ug/L		10/24/19 05:06	10/24/19 11:07	5
Magnesium	5280		250	24.8	ug/L		10/24/19 05:06	10/24/19 11:07	5
Potassium	2790		250	73.5	ug/L		10/24/19 05:06	10/24/19 11:07	5
Calcium	16200		250	233	ug/L		10/24/19 05:06	10/24/19 11:07	5
Method: 6010D - Metals (ICP) -	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	14.9	J	50.0	1.7	ug/L		10/23/19 09:43	10/23/19 21:04	1
Iron, Dissolved	147	J	150	34.2	ug/L		10/23/19 09:43	10/23/19 21:04	1
Manganese, Dissolved	1220		15.0	0.99	ug/L		10/23/19 09:43	10/23/19 21:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			10/22/19 10:19	1
Bicarbonate Alkalinity as CaCO3	38.9		5.0	5.0	mg/L			10/23/19 11:50	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/23/19 11:50	1
Sulfide	0.58	11	1.0	0.58	mg/L			10/22/19 13:00	

Client Sample ID: UPA-105A-US

Date Collected: 10/18/19 11:00

Date Received: 10/18/19 20:55

Lab Sample ID: 460-194328-2

Matrix: Water

Method: 8260C SIM - Vol	atile Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	6.3		0.40	0.20	ug/L			10/20/19 06:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	91		72 - 133					10/20/19 06:18	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/23/19 19:35	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/23/19 19:35	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/23/19 19:35	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/23/19 19:35	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/23/19 19:35	1
Acetone	4.4	U	5.0	4.4	ug/L			10/23/19 19:35	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/23/19 19:35	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/23/19 19:35	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/23/19 19:35	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/23/19 19:35	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/23/19 19:35	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/23/19 19:35	1
1,2-Dichloroethane	0.83	J	1.0	0.43	ug/L			10/23/19 19:35	1
2-Butanone (MEK)	1.9	U *	5.0	1.9	ug/L			10/23/19 19:35	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/23/19 19:35	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/23/19 19:35	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/23/19 19:35	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/23/19 19:35	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/23/19 19:35	1
Trichloroethene	0.66	J	1.0	0.31	ug/L			10/23/19 19:35	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105A-US

Lab Sample ID: 460-194328-2 Date Collected: 10/18/19 11:00

Matrix: Water

Date	Received:	10/18/19	20:55
m 49 5 m	5 600 000 1 8 0 01	10011001100	m or * or or

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Dibromochloromethane	0.28		1.0		ug/L			10/23/19 19:35	
1,1,2-Trichloroethane	0.43	U	1.0		ug/L			10/23/19 19:35	
Benzene	1.2		1.0	0.20	ug/L			10/23/19 19:35	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/23/19 19:35	
3romoform	0.54	U	1.0	0.54	ug/L			10/23/19 19:35	
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/23/19 19:35	
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/23/19 19:35	
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/23/19 19:35	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/23/19 19:35	
Toluene	0.38	U	1.0	0.38	ug/L			10/23/19 19:35	
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/23/19 19:35	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/23/19 19:35	
Styrene	0.42	U	1.0	0.42	ug/L			10/23/19 19:35	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/23/19 19:35	
Diethyl ether	0.23	J	1.0	0.21	ug/L			10/23/19 19:35	
MTBE	0.47	U	1.0	0.47	ug/L			10/23/19 19:35	
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/23/19 19:35	
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/23/19 19:35	
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/23/19 19:35	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/23/19 19:35	
sopropylbenzene	0.34	U	1.0	0.34	ug/L			10/23/19 19:35	
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/23/19 19:35	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/23/19 19:35	
ndane	0.35	U	1.0		ug/L			10/23/19 19:35	
Dichlorofluoromethane	0.52	J	1.0		ug/L			10/23/19 19:35	
1,2,3-Trimethylbenzene	0.36	U	1.0		ug/L			10/23/19 19:35	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/23/19 19:35	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	108		74 - 132					10/23/19 19:35	
Toluene-d8 (Surr)	96		80 - 120					10/23/19 19:35	
4-Bromofluorobenzene	110		77 - 124					10/23/19 19:35	
Dibromofluoromethane (Surr)	109		72 - 131					10/23/19 19:35	
Method: 8270D SIM - Semivo ^{Analyte}		c Compo	unds (GC/M RL		Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]anthracene	0.016		0.050	0.016		b	•	10/21/19 18:06	
	0.016		0.050	0.016	-			10/21/19 18:06	
Benzo[a]pyrene Benzo[b]fluoranthene	0.022		0.050	0.022	•			10/21/19 18:06	
Hexachlorobenzene	0.024		0.030	0.024	-			10/21/19 18:06	
	0.013							10/21/19 18:06	
Pentachlorophenol Bis(2-chloroethyl)ether	0.15 1.3	U	0.20 0.030	0.15	ug/L ug/L			10/21/19 18:06	
. • • •			. (CC/85C)		-				
Mathada 00700 O									
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte		Qualifier	•			<u>D</u>	Prepared 10/20/19 09:41	Analyzed 10/21/19 00:54	
Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol	Result	Qualifier U	ŘL	0.29	Unit ug/L ug/L	<u>D</u>		10/21/19 00:54	Dil Fa

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105A-US

Date Received: 10/18/19 20:55

Lab Sample ID: 460-194328-2 Date Collected: 10/18/19 11:00

Matrix: Water

Method: 8270D - Semivolatile ^{Analyte}		Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fa
i-Methylphenol	0.24	U	10	0.24	ug/L		10/20/19 09:41	10/21/19 00:54	
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/20/19 09:41	10/21/19 00:54	
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/20/19 09:41	10/21/19 00:54	
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/20/19 09:41	10/21/19 00:54	
1-Chloro-3-methylphenol	0.58	U	10		ug/L		10/20/19 09:41	10/21/19 00:54	
2,4,6-Trichlorophenol	0.30	U	10	0.30	-		10/20/19 09:41	10/21/19 00:54	
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/20/19 09:41	10/21/19 00:54	
2,4-Dinitrophenol	14	U	20		ug/L		10/20/19 09:41	10/21/19 00:54	
1-Nitrophenol	0.69	U	20		-		10/20/19 09:41	10/21/19 00:54	
1,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/20/19 09:41	10/21/19 00:54	
I,3-Dichlorobenzene	2.0	U	10	2.0	•		10/20/19 09:41	10/21/19 00:54	
I,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/20/19 09:41	10/21/19 00:54	
I,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/20/19 09:41	10/21/19 00:54	
v-Nitrosodi-n-propylamine	0.43		1.0		ug/L		10/20/19 09:41	10/21/19 00:54	
Hexachloroethane	1.2		2.0		ug/L		10/20/19 09:41	10/21/19 00:54	
Vitrobenzene	0.57		1.0		ug/L		10/20/19 09:41	10/21/19 00:54	
sophorone	0.80		10	0.80	_		10/20/19 09:41	10/21/19 00:54	
Bis(2-chloroethoxy)methane	0.24		10		ug/L		10/20/19 09:41	10/21/19 00:54	
1,2,4-Trichlorobenzene	1.3		2.0				10/20/19 09:41		
Naphthalene	1.1		10	1.1	ug/L		10/20/19 09:41	10/21/19 00:54	
1-Chloroaniline	1.9		10	1.9	ug/L		10/20/19 09:41	10/21/19 00:54	
Hexachlorobutadiene	0.78		1.0	0.78	ug/L		10/20/19 09:41		
2-Methylnaphthalene	1.1		10	1.1	ug/L		10/20/19 09:41	10/21/19 00:54	
Hexachlorocyclopentadiene	1.7		10	1.7	-		10/20/19 09:41	10/21/19 00:54	
2-Chloronaphthalene	1.2		10				10/20/19 09:41		
2-Nitroaniline	0.47		10	0.47	-		10/20/19 09:41	10/21/19 00:54	
Dimethyl phthalate	0.47		10	0.77			10/20/19 09:41	10/21/19 00:54	
Acenaphthylene	0.77		10		ug/L ug/L		10/20/19 09:41	10/21/19 00:54	
` *	0.39		2.0	0.39	ug/L ug/L		10/20/19 09:41		
2,6-Dinitrotoluene 3-Nitroaniline	0.39		2.0 10		ug/L ug/L		10/20/19 09:41	10/21/19 00:54	
	1.1		10		_		10/20/19 09:41	10/21/19 00:54	
Acenaphthene				1.1	ug/L				
Dibenzofuran	1.1		10	1.1	ug/L		10/20/19 09:41		
2,4-Dinitrotoluene	1.0		2.0	1.0	ug/L		10/20/19 09:41	10/21/19 00:54	
Diethyl phthalate	0.98		10		ug/L		10/20/19 09:41		
I-Chlorophenyl phenyl ether	1.3		10		ug/L			10/21/19 00:54	
Fluorene	0.91		10		ug/L		10/20/19 09:41		
1-Nitroaniline	0.54		10		ug/L		10/20/19 09:41		
N-Nitrosodiphenylamine	0.89		10		ug/L		10/20/19 09:41		
1-Bromophenyl phenyl ether	0.75		10		ug/L		10/20/19 09:41		
Phenanthrene	0.58		10		ug/L		10/20/19 09:41		
Anthracene	0.63		10		ug/L		10/20/19 09:41		
Carbazole	0.68		10		ug/L		10/20/19 09:41		
Di-n-butyl phthalate	0.84		10		ug/L		10/20/19 09:41		
Fluoranthene	0.84		10		ug/L		10/20/19 09:41		
Pyrene	1.6		10		ug/L		10/20/19 09:41		
Butyl benzyl phthalate	0.85		10		ug/L		10/20/19 09:41		
3,3'-Dichlorobenzidine	1.4		10		ug/L		10/20/19 09:41		
Chrysene	0.91	U	2.0	0.91	ug/L		10/20/19 09:41	10/21/19 00:54	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105A-US

Lab Sample ID: 460-194328-2 Date Collected: 10/18/19 11:00

Matrix: Water

Date Received: 10/18/19 20:55

Method: 8270D - Semivolatile Analyte		Qualifier	RL		, Unit	D	Prepared	Analyzed	Dil Fa
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/20/19 09:41	10/21/19 00:54	
Benzo[k]fluoranthene	0.67	U	1.0	0.67	_		10/20/19 09:41	10/21/19 00:54	
Indeno[1,2,3-cd]pyrene	1.3		2.0	1.3	ug/L		10/20/19 09:41	10/21/19 00:54	
Dibenz(a,h)anthracene	0.72		1.0	0.72	-		10/20/19 09:41	10/21/19 00:54	
Benzo[g,h,i]perylene	1.4		10	1.4	-		10/20/19 09:41	10/21/19 00:54	
Diphenyl ether	1.2	_	10		ug/L		10/20/19 09:41	10/21/19 00:54	
n,n'-Dimethylaniline	0.91		1.0	0.91	ug/L		10/20/19 09:41	10/21/19 00:54	
Caprolactam	0.68		10	0.68	_		10/20/19 09:41	10/21/19 00:54	
bis (2-chloroisopropyl) ether	0.63		10	0.63			10/20/19 09:41	10/21/19 00:54	
Bisphenol-A	9.9		10	9.9	ug/L		10/20/19 09:41	10/21/19 00:54	
N-Methylaniline	0.48		5.0		ug/L		10/20/19 09:41	10/21/19 00:54	
TV Welliylanine	0.40	O	0.0	0.40	ugiL		10/20/10 00.41	10/2 1/ 10 00:04	
Tentatively Identified Compound	Est. Result		Unit		RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	17	J	ug/L	5.	.11		10/20/19 09:41	10/21/19 00:54	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	108		51 - 108				10/20/19 09:41	10/21/19 00:54	
Phenol-d5 (Surr)	32		14 - 39				10/20/19 09:41	10/21/19 00:54	
Terphenyl-d14 (Surr)	62		40 - 148				10/20/19 09:41	10/21/19 00:54	
2,4,6-Tribromophenol (Surr)	103		26 - 139				10/20/19 09:41	10/21/19 00:54	
2-Fluorophenol (Surr)	50		25 ₋ 58				10/20/19 09:41	10/21/19 00:54	
2-Fluorobiphenyl (Surr)	98		45 - 107				10/20/19 09:41	10/21/19 00:54	
Method: 300.0 - Anions, Ion C Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Method: 300.0 - Anions, Ion C Analyte	Result	Qualifier				D	Prepared		Dil Fa
Method: 300.0 - Anions, Ion C	_	Qualifier U	RL 0.10 0.12	MDL 0.056 0.076	mg/L	<u>D</u>	Prepared	Analyzed 10/19/19 14:29 10/19/19 14:29	
Method: 300.0 - Anions, Ion C Analyte Nitrate as N	0.056	Qualifier U	0.10	0.056 0.076	mg/L	<u>D</u>	Prepared	10/19/19 14:29	
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate	Result 0.056 0.076 5.24	Qualifier U	0.10 0.12	0.056 0.076	mg/L mg/L	<u> </u>	Prepared	10/19/19 14:29 10/19/19 14:29	
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C	Result	Qualifier U	0.10 0.12 0.60	0.056 0.076 0.35	mg/L mg/L mg/L			10/19/19 14:29 10/19/19 14:29 10/19/19 14:29	
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte	Result 0.056 0.076 5.24 Chromatogra Result	Qualifier U U uphy - DL Qualifier	0.10 0.12 0.60 RL	0.056 0.076 0.35	mg/L mg/L mg/L	<u>D</u>	Prepared Prepared	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed	Dil Fac
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C	Result	Qualifier U U uphy - DL Qualifier	0.10 0.12 0.60	0.056 0.076 0.35	mg/L mg/L mg/L			10/19/19 14:29 10/19/19 14:29 10/19/19 14:29	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M	Result 0.056 0.076 5.24 Chromatogra Result 31.4 ##\$ Total Result	Qualifier U U uphy - DL Qualifier D ecoverab	0.10 0.12 0.60 RL 1.44	0.056 0.076 0.35 MDL 0.17	mg/L mg/L mg/L Unit mg/L	D	Prepared	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Malyzed 10/19/19 17:28	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride	Result 0.056 0.076 5.24 Chromatogra Result 31.4 (IS) - Total Result	Qualifier U U uphy - DL Qualifier D	0.10 0.12 0.60 RL 1.44	0.056 0.076 0.35 MDL 0.17	mg/L mg/L mg/L Unit mg/L		Prepared	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28	Dil Fac
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M	Result 0.056 0.076 5.24 Chromatogra Result 31.4 ##\$ Total Result	Qualifier U U uphy - DL Qualifier D ecoverab	0.10 0.12 0.60 RL 1.44 Ie RL 250	0.056 0.076 0.35 MDL 0.17	mg/L mg/L mg/L Unit mg/L	D	Prepared Prepared 10/24/19 05:06	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24	Dil Fac
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte	Result 0.056 0.076 5.24 Chromatogra Result 31.4 (IS) - Total Result	Qualifier U U uphy - DL Qualifier D ecoverab	0.10 0.12 0.60 RL 1.44 Ie RL 250 250	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8	mg/L mg/L mg/L Unit mg/L Unit ug/L	D	Prepared 10/24/19 05:06 10/24/19 05:06	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24 10/24/19 11:24	Dil Fac
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium	Result	Qualifier U U uphy - DL Qualifier D ecoverab	0.10 0.12 0.60 RL 1.44 Ie RL 250	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8	mg/L mg/L mg/L Unit mg/L	D	Prepared 10/24/19 05:06 10/24/19 05:06	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24	Dil Fac
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium	Result	Qualifier U U uphy - DL Qualifier D ecoverab	0.10 0.12 0.60 RL 1.44 Ie RL 250 250	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5	mg/L mg/L mg/L Unit mg/L Unit ug/L	D	Prepared Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24 10/24/19 11:24	Dil Fac
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium	Result 0.056 0.076 5.24 Chromatogra Result 31.4 (IS) - Total R Result 15600 4300 1840 12500	Qualifier U uphy - DL Qualifier D ecoverab Qualifier	0.10 0.12 0.60 RL 1.44 1.44 250 250 250	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5	mg/L mg/L mg/L Unit mg/L ug/L ug/L	D	Prepared Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium	Result 0.056 0.076 5.24 Chromatogra Result 31.4 (IS) - Total R Result 15600 4300 1840 12500 - Dissolved	Qualifier U uphy - DL Qualifier D ecoverab Qualifier	0.10 0.12 0.60 RL 1.44 1.44 250 250 250	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233	mg/L mg/L mg/L Unit mg/L ug/L ug/L	D	Prepared Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP)	Result 0.056 0.076 5.24 Chromatogra Result 31.4 (IS) - Total R Result 15600 4300 1840 12500 - Dissolved	Qualifier U U uphy - DL Qualifier D ecoverab Qualifier	0.10 0.12 0.60 RL 1.44 le 250 250 250 250	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233	mg/L mg/L Unit mg/L Ug/L ug/L ug/L	D	Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte	Result 0.056 0.076 5.24 Chromatogra Result 31.4 //S) - Total R Result 15600 4300 1840 12500 - Dissolved Result	Qualifier U U uphy - DL Qualifier D ecoverab Qualifier	0.10 0.12 0.60 RL 1.44 Ie 250 250 250 250	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7	mg/L mg/L Unit mg/L Ug/L ug/L ug/L	D	Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/23/19 11:28	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24	Dil Fa Dil Fa
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved	Result	Qualifier U U uphy - DL Qualifier D ecoverab Qualifier	0.10 0.12 0.60 RL 1.44 1e RL 250 250 250 250 RL 50.0	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2	mg/L mg/L mg/L Unit mg/L ug/L ug/L ug/L	D	Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/23/19 11:28 10/23/19 11:28	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24	Dil Fa Dil Fa
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved	Result	Qualifier U U uphy - DL Qualifier D ecoverab Qualifier	0.10 0.12 0.60 RL 1.44 1e RL 250 250 250 250 RL 50.0 150	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2	mg/L mg/L mg/L Unit mg/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/23/19 11:28 10/23/19 11:28	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24	Dil Fa Dil Fa
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved General Chemistry	Result	Qualifier U uphy - DL Qualifier D ecoverab Qualifier U	0.10 0.12 0.60 RL 1.44 1e RL 250 250 250 250 250 150.0 150.0	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99	mg/L mg/L Unit mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	D	Prepared Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/23/19 11:28 10/23/19 11:28	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	Result	Qualifier U uphy - DL Qualifier D ecoverab Qualifier U	0.10 0.12 0.60 RL 1.44 1e RL 250 250 250 250 250 150 150 15.0	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99	mg/L mg/L Unit mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L Unit ug/L Unit ug/L	D	Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/23/19 11:28 10/23/19 11:28	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/23/19 21:08 10/23/19 21:08 10/23/19 21:08	Dil Fa
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved General Chemistry	Result	Qualifier U uphy - DL Qualifier D ecoverab Qualifier U	0.10 0.12 0.60 RL 1.44 1e RL 250 250 250 250 250 150.0 150.0	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99 MDL 0.068	mg/L mg/L Unit mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/23/19 11:28 10/23/19 11:28	10/19/19 14:29 10/19/19 14:29 10/19/19 14:29 Analyzed 10/19/19 17:28 Analyzed 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24 10/24/19 11:24	Dil Fa

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-105A-US

Lab Sample ID: 460-194328-2

Date Collected: 10/18/19 11:00

Date Received: 10/18/19 20:55

Lab Sample ID: 460-194328-3

Matrix: Water

General Chemistry (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfide	0.58	U	1.0	0.58	mg/L			10/22/19 13:00	1

Client Sample ID: UPA-101A-LSA

Date Collected: 10/18/19 15:15

Matrix: Water

Date Received: 10/18/19 20:55

Method: 8260C SIM - Vola	atile Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	50		0.80	0.40	ug/L			10/24/19 13:08	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		72 - 133					10/24/19 13:08	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/23/19 19:59	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/23/19 19:59	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/23/19 19:59	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/23/19 19:59	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/23/19 19:59	1
Acetone	5.8	U	5.0 5.8	4.4	ug/L			10/23/19 19:59	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/23/19 19:59	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/23/19 19:59	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/23/19 19:59	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/23/19 19:59	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/23/19 19:59	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/23/19 19:59	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/23/19 19:59	1
2-Butanone (MEK)	1.9	U*	5.0	1.9	ug/L			10/23/19 19:59	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/23/19 19:59	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/23/19 19:59	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/23/19 19:59	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/23/19 19:59	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/23/19 19:59	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/23/19 19:59	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/23/19 19:59	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/23/19 19:59	1
Benzene	0.93	J	1.0	0.20	ug/L			10/23/19 19:59	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/23/19 19:59	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/23/19 19:59	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/23/19 19:59	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/23/19 19:59	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/23/19 19:59	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/23/19 19:59	1
Toluene	0.38	U	1.0	0.38	ug/L			10/23/19 19:59	1
Chlorobenzene	7.8		1.0	0.38	ug/L			10/23/19 19:59	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/23/19 19:59	1
Styrene	0.42	U	1.0	0.42	ug/L			10/23/19 19:59	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/23/19 19:59	1
Diethyl ether	3.1		1.0	0.21	ug/L			10/23/19 19:59	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-101A-LSA

Lab Sample ID: 460-194328-3 Date Collected: 10/18/19 15:15

Matrix: Water

2,4-Dinitrophenol

4,6-Dinitro-2-methylphenol

N-Nitrosodi-n-propylamine

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Hexachloroethane

4-Nitrophenol

Method: 8260C - Volatile Org	ianic Compo	unds bv (C/MS (Conti	inued)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
MTBE	2.3	-	1.0	0.47	ug/L			10/23/19 19:59	1
Tetrahydrofuran	2.8		2.0	1.0	ug/L			10/23/19 19:59	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/23/19 19:59	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/23/19 19:59	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/23/19 19:59	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/23/19 19:59	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/23/19 19:59	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/23/19 19:59	1
Indane	0.58	J	1.0	0.35	ug/L			10/23/19 19:59	1
Dichlorofluoromethane	1.0		1.0	0.34	ug/L			10/23/19 19:59	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/23/19 19:59	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit E)	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/23/19 19:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		74 - 132					10/23/19 19:59	
Toluene-d8 (Surr)	96		80 - 120					10/23/19 19:59	1
4-Bromofluorobenzene	110		77 - 124					10/23/19 19:59	1
Dibromofluoromethane (Surr)	110		72 - 131					10/23/19 19:59	
			•	•	11		Duamanad	Amalumad	Dil F
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Benzo[a]anthracene	0.016	Qualifier U	RL 0.050	MDL 0.016	ug/L	D	10/20/19 09:41	10/21/19 18:27	1
Analyte Benzo[a]anthracene Benzo[a]pyrene	0.016 0.022	Qualifier U	RL 0.050 0.050	0.016 0.022	ug/L ug/L	<u>D</u>	10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27	1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	Result 0.016 0.022 0.024	Qualifier U U U	RL 0.050 0.050 0.050	0.016 0.022 0.024	ug/L ug/L ug/L	<u>D</u>	10/20/19 09:41 10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27	1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene	Result 0.016 0.022 0.024 0.013	Qualifier U U U U	RL 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L	<u> </u>	10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27	1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol	Result 0.016 0.022 0.024 0.013 0.15	Qualifier U U U U	RL 0.050 0.050 0.050 0.020 0.20	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	<u> </u>	10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27	1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene	Result 0.016 0.022 0.024 0.013	Qualifier U U U U	RL 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27	1 1 1 1
Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol	Result 0.016 0.022 0.024 0.013 0.15 7.5	Qualifier U U U U U U	RL 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27	1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether	Result 0.016 0.022 0.024 0.013 0.15 7.5 e Organic Co	Qualifier U U U U U Compounds Qualifier	RL 0.050 0.050 0.050 0.020 0.20 0.030	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27	1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte	Result 0.016 0.022 0.024 0.013 0.15 7.5 e Organic Co	Qualifier U U U U U Compounds Qualifier	RL 0.050 0.050 0.050 0.020 0.20 0.030 (GC/MS)	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 Analyzed	1 1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte	Result 0.016 0.022 0.024 0.013 0.15 7.5 e Organic Co	Qualifier U U U U U U U U U U Market Mar	RL 0.050 0.050 0.050 0.020 0.20 0.030 s (GC/MS) RL	0.016 0.022 0.024 0.013 0.15 0.026	ug/L ug/L ug/L ug/L ug/L ug/L		10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 Prepared 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 Analyzed	1 1 1 1 1 1 Dil Fac
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol	Result 0.016 0.022 0.024 0.013 0.15 7.5 e Organic Co Result 0.29	Qualifier U U U U U U Compounds Qualifier U U	RL 0.050 0.050 0.050 0.020 0.20 0.030 (GC/MS) RL	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38	ug/L ug/L ug/L ug/L ug/L ug/L		10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 Prepared 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 Analyzed 10/21/19 01:15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol	Result 0.016 0.022 0.024 0.013 0.15 7.5 e Organic Co Result 0.29 0.38	Qualifier U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.20 0.030 (GC/MS) RL 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 Prepared 10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 Analyzed 10/21/19 01:15 10/21/19 01:15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol	Result 0.016 0.022 0.024 0.013 0.15 7.5 e Organic Co Result 0.29 0.38 0.26	Qualifier U U U U U Compounds Qualifier U U U U	RL 0.050 0.050 0.050 0.020 0.20 0.030 (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 Analyzed 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol	Result 0.016 0.022 0.024 0.013 0.15 7.5 e Organic Co Result 0.29 0.38 0.26 0.24	Qualifier U U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.20 0.030 (GC/MS) RL 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 Analyzed 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15	Dil Fac
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol	Result 0.016 0.022 0.024 0.013 0.15 7.5 e Organic Co Result 0.29 0.38 0.26 0.24 0.75	Qualifier U U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15	Dil Fac
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol	Result 0.016 0.022 0.024 0.013 0.15 7.5 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24	Qualifier U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 (GC/MS) RL 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 Analyzed 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15	Dil Fac
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile	Result 0.016 0.022 0.024 0.013 0.15 7.5 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42	Qualifier U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.030 6 (GC/MS) RL 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Bis(2-chloroethyl)ether Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol	Result 0.016 0.022 0.024 0.013 0.15 7.5 e Organic Co Result 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58	Qualifier U U U U U U U U U U U U U U U U U U	RL 0.050 0.050 0.050 0.020 0.20 0.030 (GC/MS) RL 10 10 10 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 0.026 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42 0.58 0.30	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/20/19 09:41 10/20/19 09:41	10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 18:27 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15 10/21/19 01:15	Dil Fa

Eurofins TestAmerica, Edison

10/20/19 09:41 10/21/19 01:15

10/20/19 09:41 10/21/19 01:15

10/20/19 09:41 10/21/19 01:15

10/20/19 09:41 10/21/19 01:15

10/20/19 09:41 10/21/19 01:15

10/20/19 09:41 10/21/19 01:15

10/20/19 09:41 10/21/19 01:15

10/20/19 09:41 10/21/19 01:15

11/12/2019

1

1

1

1

20

20

20

10

10

10

1.0

2.0

14 ug/L

13 ug/L

2.0 ug/L

1.3 ug/L

1.3 ug/L

0.43 ug/L

1.2 ug/L

0.69 ug/L

14 U

13 U

2.0 U

1.3 U

1.3 U

0.43 U

1.2 U

0.69 U

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-101A-LSA

Lab Sample ID: 460-194328-3 Date Collected: 10/18/19 15:15

Matrix: Water

Date Received: 10/18/19 20:55

Method: 8270D - Semivolatile			s (GC/MS) (Continued)				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Nitrobenzene	0.57	U	1.0		ug/L		10/20/19 09:41	10/21/19 01:15	1
Isophorone	0.80	U	10		ug/L		10/20/19 09:41	10/21/19 01:15	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/20/19 09:41	10/21/19 01:15	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/20/19 09:41	10/21/19 01:15	1
Naphthalene	1.1	U	10	1.1	ug/L		10/20/19 09:41	10/21/19 01:15	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/20/19 09:41	10/21/19 01:15	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/20/19 09:41	10/21/19 01:15	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/20/19 09:41	10/21/19 01:15	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/20/19 09:41	10/21/19 01:15	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/20/19 09:41	10/21/19 01:15	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/20/19 09:41	10/21/19 01:15	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/20/19 09:41	10/21/19 01:15	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/20/19 09:41	10/21/19 01:15	1
2,6-Dinitrotoluene	0.39	U	2.0		ug/L		10/20/19 09:41	10/21/19 01:15	1
3-Nitroaniline	0.96	U	10		ug/L		10/20/19 09:41	10/21/19 01:15	1
Acenaphthene	1.1	U	10		ug/L		10/20/19 09:41	10/21/19 01:15	1
Dibenzofuran	1.1	U	10		ug/L		10/20/19 09:41	10/21/19 01:15	1
2,4-Dinitrotoluene	1.0	U	2.0		ug/L		10/20/19 09:41	10/21/19 01:15	1
Diethyl phthalate	0.98		10		ug/L			10/21/19 01:15	1
4-Chlorophenyl phenyl ether	1.3	U	10		ug/L			10/21/19 01:15	1
Fluorene	0.91		10		ug/L			10/21/19 01:15	1
4-Nitroaniline	0.54		10		ug/L			10/21/19 01:15	
N-Nitrosodiphenylamine	0.89		10		ug/L			10/21/19 01:15	1
4-Bromophenyl phenyl ether	0.75		10		ug/L			10/21/19 01:15	1
Phenanthrene	0.58		10		ug/L			10/21/19 01:15	
Anthracene	0.63		10		ug/L			10/21/19 01:15	1
Carbazole	0.68		10		ug/L			10/21/19 01:15	1
Di-n-butyl phthalate	0.84		10		ug/L			10/21/19 01:15	
Fluoranthene	0.84		10		ug/L			10/21/19 01:15	1
Pyrene	1.6		10		ug/L			10/21/19 01:15	1
Butyl benzyl phthalate	0.85		10		ug/L			10/21/19 01:15	
3,3'-Dichlorobenzidine	1.4		10		ug/L			10/21/19 01:15	1
Chrysene	0.91		2.0		ug/L			10/21/19 01:15	1
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/21/19 01:15	
Di-n-octyl phthalate	4.8		10		ug/L ug/L			10/21/19 01:15	1
	0.67		1.0		_			10/21/19 01:15	1
Benzo[k]fluoranthene					ug/L				
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/21/19 01:15	1
Dibenz(a,h)anthracene	0.72		1.0		ug/L			10/21/19 01:15	1
Benzo[g,h,i]perylene	1.4		10		ug/L			10/21/19 01:15	
Diphenyl ether	2.4		10		ug/L			10/21/19 01:15	1
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/21/19 01:15	1
Caprolactam	0.68		10		ug/L			10/21/19 01:15	1
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/21/19 01:15	1
Bisphenol-A	9.9		10		ug/L			10/21/19 01:15	1
N-Methylaniline	0.48	U	5.0	0.48	ug/L		10/20/19 09:41	10/21/19 01:15	1
Tentatively Identified Compound	Est. Result		Unit			S No.	Prepared	Analyzed	Dil Fac
1,4-Dioxane		JN	ug/L			3-91-1			1
Unknown	13		ug/L		.11		10/20/19 09:41		1
Unknown	15	J	ug/L	9	.98		10/20/19 09:41	10/21/19 01:15	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-101A-LSA

Lab Sample ID: 460-194328-3 Date Collected: 10/18/19 15:15

Matrix: Water

Date Received: 10/18/19 20:55

Surrogate %	6Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	93		51 - 108				10/20/19 09:41	10/21/19 01:15	
Phenol-d5 (Surr)	29		14 - 39				10/20/19 09:41	10/21/19 01:15	
Terphenyl-d14 (Surr)	55		40 - 148				10/20/19 09:41	10/21/19 01:15	
2,4,6-Tribromophenol (Surr)	92		26 - 139				10/20/19 09:41	10/21/19 01:15	
2-Fluorophenol (Surr)	45		25 - 58				10/20/19 09:41	10/21/19 01:15	
2-Fluorobiphenyl (Surr)	90		45 - 107				10/20/19 09:41	10/21/19 01:15	
Method: 300.0 - Anions, Ion Chro	omatogra	iphy							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/19/19 14:44	-
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/19/19 14:44	
Sulfate	17.2		0.60	0.35	mg/L			10/19/19 14:44	
Method: 300.0 - Anions, Ion Chro	omatogra	iphy - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	37.7	n	1.68	0.20	mg/L			10/19/19 17:43	14
Chloride	31.1	ъ.	1.00		•				
- -					Ū				
: Method: 200.8 - Metals (ICP/MS)	- Total R		RL		Unit	D	Prepared	Analyzed	Dil Fac
Method: 200.8 - Metals (ICP/MS) Analyte	- Total R	ecoverable		MDL	_	<u>D</u>		Analyzed 10/24/19 11:27	
Method: 200.8 - Metals (ICP/MS)	- Total R Result	ecoverable	RL	MDL 66.8	Unit	<u>D</u>	10/24/19 05:06		
Method: 200.8 - Metals (ICP/MS) Analyte Sodium	- Total R Result 27000	ecoverable	RL 250	MDL 66.8 24.8	Unit ug/L	D_	10/24/19 05:06 10/24/19 05:06	10/24/19 11:27	
Method: 200.8 - Metals (ICP/MS) Analyte Sodium Magnesium	- Total R Result 27000 11200	ecoverable	RL 250 250	MDL 66.8 24.8 73.5	Unit ug/L ug/L	<u>D</u>	10/24/19 05:06 10/24/19 05:06 10/24/19 05:06	10/24/19 11:27 10/24/19 11:27	
Method: 200.8 - Metals (ICP/MS) Analyte Sodium Magnesium Potassium Calcium	- Total R Result 27000 11200 8860 42300	ecoverable Qualifier	RL 250 250 250	MDL 66.8 24.8 73.5	Unit ug/L ug/L ug/L	<u>D</u>	10/24/19 05:06 10/24/19 05:06 10/24/19 05:06	10/24/19 11:27 10/24/19 11:27 10/24/19 11:27	
Method: 200.8 - Metals (ICP/MS) Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) - D	- Total R Result 27000 11200 8860 42300 issolved	ecoverable Qualifier	RL 250 250 250	MDL 66.8 24.8 73.5 233	Unit ug/L ug/L ug/L	<u>D</u>	10/24/19 05:06 10/24/19 05:06 10/24/19 05:06	10/24/19 11:27 10/24/19 11:27 10/24/19 11:27	
Method: 200.8 - Metals (ICP/MS) Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) - D Analyte	- Total R Result 27000 11200 8860 42300 issolved	ecoverable Qualifier	RL 250 250 250 250 250	MDL 66.8 24.8 73.5 233	Unit ug/L ug/L ug/L ug/L		10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06	10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 10/24/19 11:27	Dil Fac
Method: 200.8 - Metals (ICP/MS) Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) - D Analyte Cobalt, Dissolved	- Total R Result 27000 11200 8860 42300 issolved Result	ecoverable Qualifier	RL 250 250 250 250 250	MDL 66.8 24.8 73.5 233 MDL	Unit ug/L ug/L ug/L ug/L		10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared	10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 Analyzed	Dil Fa
Method: 200.8 - Metals (ICP/MS) Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) - D Analyte Cobalt, Dissolved Iron, Dissolved	- Total R Result 27000 11200 8860 42300 issolved Result 9.2	ecoverable Qualifier	RL 250 250 250 250 250	MDL 66.8 24.8 73.5 233 MDL 1.7 34.2	Unit ug/L ug/L ug/L ug/L ug/L		10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 11:28 10/23/19 11:28	10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 Analyzed 10/23/19 23:19	Dil Fa
Method: 200.8 - Metals (ICP/MS) Analyte Sodium Magnesium Potassium	- Total R Result 27000 11200 8860 42300 issolved Result 9.2 44300	ecoverable Qualifier	RL 250 250 250 250 RL 50.0 150	MDL 66.8 24.8 73.5 233 MDL 1.7 34.2	Unit ug/L ug/L ug/L ug/L ug/L ug/L		10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 11:28 10/23/19 11:28	10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 Analyzed 10/23/19 23:19 10/23/19 23:19	Dil Fa
Method: 200.8 - Metals (ICP/MS) Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) - D Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry	- Total R Result 27000 11200 8860 42300 issolved Result 9.2 44300 1440	ecoverable Qualifier	RL 250 250 250 250 RL 50.0 150	MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99	Unit ug/L ug/L ug/L ug/L ug/L ug/L		10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 11:28 10/23/19 11:28	10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 Analyzed 10/23/19 23:19 10/23/19 23:19	Dil Fac
Method: 200.8 - Metals (ICP/MS) Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) - D Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	- Total R Result 27000 11200 8860 42300 issolved Result 9.2 44300 1440	ecoverable Qualifier Qualifier J	RL 250 250 250 250 250 RL 50.0 150	MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99	Unit ug/L ug/L ug/L ug/L ug/L Unit ug/L ug/L ug/L ug/L	D	10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/23/19 11:28 10/23/19 11:28 10/23/19 11:28	10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 Analyzed 10/23/19 23:19 10/23/19 23:19 10/23/19 23:19	Dil Fac
Method: 200.8 - Metals (ICP/MS) Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) - D Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	- Total R Result 27000 11200 8860 42300 issolved Result 9.2 44300 1440 Result	ecoverable Qualifier Qualifier J	RL 250 250 250 250 250 150 15.0 RL	MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99 MDL 0.068	Unit ug/L ug/L ug/L ug/L ug/L Unit ug/L ug/L ug/L ug/L	D	10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/23/19 11:28 10/23/19 11:28 10/23/19 11:28	10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 Analyzed 10/23/19 23:19 10/23/19 23:19 10/23/19 23:19	Dil Fac
Method: 200.8 - Metals (ICP/MS) Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) - D Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	- Total R Result 27000 11200 8860 42300 issolved Result 9.2 44300 1440 Result 0.94	ecoverable Qualifier Qualifier J	RL 250 250 250 250 250 150 15.0 RL 0.10	MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99 MDL 0.068 5.0	Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/23/19 11:28 10/23/19 11:28 10/23/19 11:28	10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 10/24/19 11:27 Analyzed 10/23/19 23:19 10/23/19 23:19 10/23/19 23:19	Dil Fac

Client Sample ID: UPA-101A-LSB

Date Collected: 10/18/19 14:55

Date Received: 10/18/19 20:55

Lab	Sample	ID:	460-1	94328-4	

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/23/19 20:23	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/23/19 20:23	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/23/19 20:23	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/23/19 20:23	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/23/19 20:23	1
Acetone	4.4	U	5.0	4.4	ug/L			10/23/19 20:23	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/23/19 20:23	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/23/19 20:23	1
1,1-Dichloroethane	0.30	J	1.0	0.26	ug/L			10/23/19 20:23	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-101A-LSB

Lab Sample ID: 460-194328-4 Data Callacted: 10/12/19 14:55

Matrix: Water

pate	collectea:	10/10/19	14:00
Date	Received:	10/18/19	20:55

Method: 8260C - Volatile Orga Analyte		Qualifier	` RL		Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/23/19 20:23	
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/23/19 20:23	
Chloroform	0.33	U	1.0	0.33	ug/L			10/23/19 20:23	
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/23/19 20:23	
2-Butanone (MEK)	1.9	U *	5.0	1.9	ug/L			10/23/19 20:23	
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/23/19 20:23	
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/23/19 20:23	
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/23/19 20:23	
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/23/19 20:23	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/23/19 20:23	
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/23/19 20:23	
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/23/19 20:23	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/23/19 20:23	•
Benzene	12		1.0	0.20	ug/L			10/23/19 20:23	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/23/19 20:23	•
Bromoform	0.54	U	1.0	0.54	ug/L			10/23/19 20:23	
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/23/19 20:23	
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/23/19 20:23	•
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/23/19 20:23	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/23/19 20:23	
Toluene	0.38	U	1.0	0.38	ug/L			10/23/19 20:23	•
Chlorobenzene	14		1.0	0.38	ug/L			10/23/19 20:23	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/23/19 20:23	
Styrene	0.42	U	1.0	0.42	ug/L			10/23/19 20:23	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/23/19 20:23	
Diethyl ether	5.1		1.0	0.21	ug/L			10/23/19 20:23	
MTBE	1.8		1.0	0.47	ug/L			10/23/19 20:23	
Tetrahydrofuran	7.0		2.0	1.0	ug/L			10/23/19 20:23	
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/23/19 20:23	
1,4-Dioxane	120		50	28	ug/L			10/23/19 20:23	•
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/23/19 20:23	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/23/19 20:23	
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/23/19 20:23	•
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/23/19 20:23	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/23/19 20:23	
Indane	0.35	U	1.0	0.35	ug/L			10/23/19 20:23	•
Dichlorofluoromethane	1.2		1.0	0.34	ug/L			10/23/19 20:23	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/23/19 20:23	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/23/19 20:23	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	109		74 - 132					10/23/19 20:23	
Toluene-d8 (Surr)	98		80 - 120					10/23/19 20:23	-
4-Bromofluorobenzene	111		77 - 124					10/23/19 20:23	

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-101A-LSB

Lab Sample ID: 460-194328-4 Date Collected: 10/18/19 14:55

Matrix: Water

Date Received: 10/18/19 20:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.078	U	0.25	0.078	ug/L		10/20/19 09:41	10/22/19 16:58	5
Benzo[a]pyrene	0.11	U	0.25	0.11	ug/L		10/20/19 09:41	10/22/19 16:58	5
Benzo[b]fluoranthene	0.12	U	0.25	0.12	ug/L		10/20/19 09:41	10/22/19 16:58	5
Hexachlorobenzene	0.066	U	0.10	0.066	ug/L		10/20/19 09:41	10/22/19 16:58	5
Pentachlorophenol	0.77	U	1.0	0.77	ug/L		10/20/19 09:41	10/22/19 16:58	5
Bis(2-chloroethyl)ether	20		0.15	0.13	ug/L		10/20/19 09:41	10/22/19 16:58	5
Method: 8270D - Semivolati	ile Organic Co	mpounds (G	GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/20/19 09:41	10/21/19 01:35	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/20/19 09:41	10/21/19 01:35	1
2-Methylphenol	0.26	U	10	0.26	ua/L		10/20/19 09:41	10/21/19 01:35	1

Method: 8270D - Semivolat Analyte		mpounus Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/20/19 09:41	10/21/19 01:35	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/20/19 09:41	10/21/19 01:35	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/20/19 09:41	10/21/19 01:35	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/20/19 09:41	10/21/19 01:35	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/20/19 09:41	10/21/19 01:35	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/20/19 09:41	10/21/19 01:35	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/20/19 09:41	10/21/19 01:35	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/20/19 09:41	10/21/19 01:35	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/20/19 09:41	10/21/19 01:35	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/20/19 09:41	10/21/19 01:35	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/20/19 09:41	10/21/19 01:35	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/20/19 09:41	10/21/19 01:35	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/20/19 09:41	10/21/19 01:35	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/20/19 09:41	10/21/19 01:35	1
1,4-Dichlorobenzene	1.3	U	10		ug/L		10/20/19 09:41	10/21/19 01:35	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/20/19 09:41	10/21/19 01:35	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/20/19 09:41	10/21/19 01:35	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/20/19 09:41	10/21/19 01:35	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/20/19 09:41	10/21/19 01:35	1
Isophorone	0.80	U	10	0.80	ug/L		10/20/19 09:41	10/21/19 01:35	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/20/19 09:41	10/21/19 01:35	1
1,2,4-Trichlorobenzene	1.3	U	2.0	1.3	ug/L		10/20/19 09:41	10/21/19 01:35	1
Naphthalene	1.1	U	10	1.1	ug/L		10/20/19 09:41	10/21/19 01:35	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/20/19 09:41	10/21/19 01:35	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/20/19 09:41	10/21/19 01:35	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/20/19 09:41	10/21/19 01:35	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/20/19 09:41	10/21/19 01:35	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/20/19 09:41	10/21/19 01:35	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/20/19 09:41	10/21/19 01:35	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/20/19 09:41	10/21/19 01:35	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/20/19 09:41	10/21/19 01:35	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	ug/L		10/20/19 09:41	10/21/19 01:35	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/20/19 09:41	10/21/19 01:35	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/20/19 09:41	10/21/19 01:35	1
Dibenzofuran	1.1	U	10	1.1	ug/L		10/20/19 09:41	10/21/19 01:35	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/20/19 09:41	10/21/19 01:35	1
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/20/19 09:41	10/21/19 01:35	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/20/19 09:41	10/21/19 01:35	1
Fluorene	0.91	U	10	0.91	ug/L		10/20/19 09:41	10/21/19 01:35	1
4-Nitroaniline	0.54	U	10		ug/L		10/20/19 09:41		1
N-Nitrosodiphenylamine	0.89	U	10		ug/L		10/20/19 09:41		1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-101A-LSB

Lab Sample ID: 460-194328-4 Date Collected: 10/18/19 14:55

Matrix: Water

Date Received: 10/18/19 20:55

Method: 8270D - Semivolatile Analyte		Qualifier	RL		<i>)</i> Unit	D	Prepared	Analyzed	Dil Fa
4-Bromophenyl phenyl ether	0.75		10	0.75	ug/L		10/20/19 09:41		
Phenanthrene	0.58		10		ug/L		10/20/19 09:41		
Anthracene	0.63		10		ug/L		10/20/19 09:41	10/21/19 01:35	
Carbazole	0.68	_	10		ug/L		10/20/19 09:41	10/21/19 01:35	
Di-n-butyl phthalate	0.84		10		ug/L		10/20/19 09:41		
Fluoranthene	0.84		10		ug/L		10/20/19 09:41	10/21/19 01:35	
Pyrene	1.6	_	10		ug/L		10/20/19 09:41	10/21/19 01:35	
Butyl benzyl phthalate	0.85		10		ug/L		10/20/19 09:41		
3,3'-Dichlorobenzidine	1.4		10		ug/L		10/20/19 09:41		
Chrysene	0.91		2.0		ug/L		10/20/19 09:41		
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/21/19 01:35	
Di-n-octyl phthalate	4.8		10		ug/L		10/20/19 09:41		
Benzo[k]fluoranthene	0.67		1.0		ug/L		10/20/19 09:41		
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L		10/20/19 09:41		
Dibenz(a,h)anthracene	0.72		1.0		ug/L		10/20/19 09:41	10/21/19 01:35	
Benzo[g,h,i]perylene	1.4		10		ug/L		10/20/19 09:41		
Diphenyl ether	2.9		10		ug/L		10/20/19 09:41		
n,n'-Dimethylaniline	0.91		1.0		ug/L		10/20/19 09:41		
Caprolactam	0.68		10		ug/L		10/20/19 09:41		
bis (2-chloroisopropyl) ether	0.63		10		ug/L		10/20/19 09:41		
Bisphenol-A	9.9		10		ug/L		10/20/19 09:41		
N-Methylaniline	0.48		5.0		ug/L			10/21/19 01:35	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
1,4-Dioxane	17	JN	ug/L		.90	123-91-1	10/20/19 09:41	10/21/19 01:35	
Unknown	6.7	J	ug/L	6	.87		10/20/19 09:41	10/21/19 01:35	
Unknown	8.1	J	ug/L	7.	.11		10/20/19 09:41	10/21/19 01:35	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	103		51 - 108				10/20/19 09:41	10/21/19 01:35	
Phenol-d5 (Surr)	31		14 - 39				10/20/19 09:41	10/21/19 01:35	
Terphenyl-d14 (Surr)	73		40 - 148				10/20/19 09:41	10/21/19 01:35	
2,4,6-Tribromophenol (Surr)	107		26 - 139				10/20/19 09:41	10/21/19 01:35	
2-Fluorophenol (Surr)	51		25 - 58				10/20/19 09:41	10/21/19 01:35	
2-Fluorobiphenyl (Surr)	98		45 - 107				10/20/19 09:41	10/21/19 01:35	
Method: 300.0 - Anions, Ion C									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/19/19 14:59	
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/19/19 14:59	
Sulfate	9.34		0.60	0.35	mg/L			10/19/19 14:59	
Method: 300.0 - Anions, Ion C									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	37.0	D	1.68	0.20	mg/L			10/19/19 17:57	1
Method: 200.8 - Metals (ICP/N						_	D	A 1	D.: -
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Sodium	29000		250		ug/L		10/24/19 05:06	10/24/19 11:29	
Magnesium	10200		250		ug/L		10/24/19 05:06	10/24/19 11:29	
Potassium	5380		250	70.5	ug/L		10/24/19 05:06	40/04/40 44:00	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-101A-LSB

Lab Sample ID: 460-194328-4 Date Collected: 10/18/19 14:55

Matrix: Water

Date Received: 10/18/19 20:55

Method: 200.8 - Metals (ICP/M Analyte	,	ecoverable (Qualifier	(Continued RL) MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	36000		250		ug/L		10/24/19 05:06	10/24/19 11:29	5
Method: 6010D - Metals (ICP) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	38.2	J	50.0	1.7	ug/L		10/23/19 11:28	10/23/19 23:23	1
Iron, Dissolved	24200		150	34.2	ug/L		10/23/19 11:28	10/23/19 23:23	1
Manganese, Dissolved	1610		15.0	0.99	ug/L		10/23/19 11:28	10/23/19 23:23	1
General Chemistry Analyte	Pocult	Qualifier	RL	MDL	Unit	D	Brongrad	Analyzad	Dil Fac
	0.81	Quanner	0.10	0.068		U	Prepared	Analyzed 10/22/19 10:38	DIIFAC
Ammonia (as N)			5.0					10/23/19 10:30	1
Bicarbonate Alkalinity as CaCO3	148				mg/L				i
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/23/19 12:11	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/22/19 13:00	1

Client Sample ID: TBGW_101819

Date Collected: 10/18/19 00:00

Date Received: 10/18/19 20:55

Lab Sample ID: 460-194328-5

Matrix: Water

Method: 8260C SIM - Volatile	Organic Co	mpounds (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/20/19 01:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92		72 - 133					10/20/19 01:15	1

Method: 8260C - Volatile O				B A PO I		_	D	A I I	DU E
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40		1.0	0.40	ug/L			10/23/19 16:22	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/23/19 16:22	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/23/19 16:22	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/23/19 16:22	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/23/19 16:22	1
Acetone	7.0		5.0	4.4	ug/L			10/23/19 16:22	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/23/19 16:22	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/23/19 16:22	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/23/19 16:22	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/23/19 16:22	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/23/19 16:22	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/23/19 16:22	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/23/19 16:22	1
2-Butanone (MEK)	1.9	U *	5.0	1.9	ug/L			10/23/19 16:22	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/23/19 16:22	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/23/19 16:22	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/23/19 16:22	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/23/19 16:22	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/23/19 16:22	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/23/19 16:22	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/23/19 16:22	1
1,1,2-Trichloroethane	0.43	. U	1.0	0.43	ug/L			10/23/19 16:22	1
Benzene	0.20	U	1.0	0.20	ug/L			10/23/19 16:22	1
					_				

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194006-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_101819

Lab Sample ID: 460-194328-5 Date Collected: 10/18/19 00:00

Matrix: Water

Date Received: 10/18/19 20:55

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.49	U	1.0	0.49	ug/L			10/23/19 16:22	1
0.54	U	1.0	0.54	ug/L			10/23/19 16:22	1
1.3	U	5.0	1.3	ug/L			10/23/19 16:22	1
1.1	U	5.0	1.1	ug/L			10/23/19 16:22	1
0.25	U	1.0	0.25	ug/L			10/23/19 16:22	1
0.37	U	1.0	0.37	ug/L			10/23/19 16:22	1
0.38	U	1.0	0.38	ug/L			10/23/19 16:22	1
0.38	U	1.0	0.38	ug/L			10/23/19 16:22	1
0.30	U	1.0	0.30	ug/L			10/23/19 16:22	1
0.42	U	1.0	0.42	ug/L			10/23/19 16:22	1
0.65	U	2.0	0.65	ug/L			10/23/19 16:22	1
0.21	U	1.0	0.21	ug/L			10/23/19 16:22	1
0.47	U	1.0	0.47	ug/L			10/23/19 16:22	1
1.0	U	2.0	1.0	ug/L			10/23/19 16:22	1
0.32	U	1.0	0.32	ug/L			10/23/19 16:22	1
0.37	U	1.0	0.37	ug/L			10/23/19 16:22	1
0.33	U	1.0	0.33	ug/L			10/23/19 16:22	1
0.34	U	1.0	0.34	ug/L			10/23/19 16:22	1
0.32	U	1.0	0.32	ug/L			10/23/19 16:22	1
0.26	U	1.0	0.26	ug/L			10/23/19 16:22	1
0.35	U	1.0	0.35	ug/L			10/23/19 16:22	1
0.34	U	1.0	0.34	ug/L			10/23/19 16:22	1
0.36	U	1.0	0.36	ug/L			10/23/19 16:22	1
Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
None		ug/L	****				10/23/19 16:22	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
111		74 - 132					10/23/19 16:22	1
96		80 - 120					10/23/19 16:22	1
110		77 - 124					10/23/19 16:22	1
108		72 - 131					10/23/19 16:22	1
	0.49 0.54 1.3 1.1 0.25 0.37 0.38 0.38 0.30 0.42 0.65 0.21 0.47 1.0 0.32 0.37 0.33 0.34 0.32 0.26 0.35 0.34 0.36 Est. Result None %Recovery 111 96 110	0.49 U 0.54 U 1.3 U 1.1 U 0.25 U 0.37 U 0.38 U 0.38 U 0.30 U 0.42 U 0.65 U 0.21 U 0.47 U 1.0 U 0.32 U 0.37 U 0.33 U 0.34 U 0.35 U 0.26 U 0.35 U 0.36 U 0.36 U 0.36 U 0.37 U 0.38 U 0.99	0.49 U 1.0 0.54 U 1.0 1.3 U 5.0 1.1 U 5.0 0.25 U 1.0 0.37 U 1.0 0.38 U 1.0 0.38 U 1.0 0.30 U 1.0 0.42 U 1.0 0.65 U 2.0 0.21 U 1.0 0.47 U 1.0 0.32 U 1.0 0.33 U 1.0 0.33 U 1.0 0.34 U 1.0 0.35 U 1.0 0.35 U 1.0 0.36 U 1.0 0.36 U 1.0 0.37 U 1.0 0.38 U 1.0 0.39 U 1.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.49 U 1.0 0.49 0.54 U 1.0 0.54 1.3 U 5.0 1.3 1.1 U 5.0 1.1 0.25 U 1.0 0.25 0.37 U 1.0 0.37 0.38 U 1.0 0.38 0.38 U 1.0 0.38 0.30 U 1.0 0.38 0.30 U 1.0 0.38 0.30 U 1.0 0.30 0.42 U 1.0 0.30 0.42 U 1.0 0.42 0.65 U 2.0 0.65 0.21 U 1.0 0.47 1.0 U 2.0 1.0 0.32 U 1.0 0.32 0.37 U 1.0 0.33 0.34 U 1.0 0.34 0.35 U 1.0 0.34 0.36 U 1.0 0.34 0.36 U	0.49 U 1.0 0.49 ug/L 0.54 U 1.0 0.54 ug/L 1.3 U 5.0 1.3 ug/L 1.1 U 5.0 1.1 ug/L 0.25 U 1.0 0.25 ug/L 0.37 U 1.0 0.37 ug/L 0.38 U 1.0 0.38 ug/L 0.39 U 1.0 0.30 ug/L 0.42 U 1.0 0.42 ug/L 0.42 U 1.0 0.42 ug/L 0.42 U 1.0 0.42 ug/L 0.44 U 1.0 0.47 ug/L 0.47 U 1.0 0.32 ug/L 0.32 U 1.0 0.33 <td>0.49 U 1.0 0.49 ug/L 0.54 U 1.0 0.54 ug/L 1.3 U 5.0 1.3 ug/L 1.1 U 5.0 1.1 ug/L 0.25 U 1.0 0.25 ug/L 0.37 U 1.0 0.37 ug/L 0.38 U 1.0 0.38 ug/L 0.38 U 1.0 0.38 ug/L 0.30 U 1.0 0.38 ug/L 0.30 U 1.0 0.38 ug/L 0.30 U 1.0 0.33 ug/L 0.42 U 1.0 0.42 ug/L 0.65 U 2.0 0.65 ug/L 0.21 U 1.0 0.47 ug/L 0.47 U 1.0 0.47 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.33 ug/L 0.34 Ug/L 0.34 ug/L</td> <td> 0.49 U</td> <td>0.49 U 1.0 0.49 ug/L 10/23/19 16:22 0.54 U 1.0 0.54 ug/L 10/23/19 16:22 1.3 U 5.0 1.3 ug/L 10/23/19 16:22 1.1 U 5.0 1.1 ug/L 10/23/19 16:22 0.25 U 1.0 0.25 ug/L 10/23/19 16:22 0.37 U 1.0 0.37 ug/L 10/23/19 16:22 0.38 U 1.0 0.38 ug/L 10/23/19 16:22 0.38 U 1.0 0.38 ug/L 10/23/19 16:22 0.30 U 1.0 0.38 ug/L 10/23/19 16:22 0.30 U 1.0 0.30 ug/L 10/23/19 16:22 0.65 U 2.0 0.65 ug/L 10/23/19 16:22 0.65 U 2.0 0.65 ug/L 10/23/19 16:22 0.61 U 1.0 0.47 ug/L 10/23/19 16:22 0.47 U 1.0 0.47 ug/L 10/23/19 16:22 0.47 U 1.0 0.47 ug/L 10/23/19 16:22 0.32 U 1.0 0.32 ug/L 10/23/19 16:22 0.33 U 1.0 0.33 ug/L 10/23/19 16:22 0.37 U 1.0 0.32 ug/L 10/23/19 16:22 0.37 U 1.0 0.32 ug/L 10/23/19 16:22 0.37 U 1.0 0.32 ug/L 10/23/19 16:22 0.33 U 1.0 0.33 ug/L 10/23/19 16:22 0.34 U 1.0 0.34 ug/L 10/23/19 16:22 0.35 U 1.0 0.34 ug/L 10/23/19 16:22 0.36 U 1.0 0.35 ug/L 10/23/19 16:22 0.37 U 1.0 0.34 ug/L 10/23/19 16:22 0.38 U 1.0 0.35 ug/L 10/23/19 16:22 0.39 U 1.0 0.35 ug/L 10/23/19 16:22 0.36 U 1.0 0.36 ug/L 10/23/19 16:22 0.37 U 1.0 0.36 ug/L 10/23/19 16:22 0.38 U 1.0 0.39 ug/L 10/23/19 16:22 0.39 U 1.0 0.39 ug/L 10/23/19 16:22</td>	0.49 U 1.0 0.49 ug/L 0.54 U 1.0 0.54 ug/L 1.3 U 5.0 1.3 ug/L 1.1 U 5.0 1.1 ug/L 0.25 U 1.0 0.25 ug/L 0.37 U 1.0 0.37 ug/L 0.38 U 1.0 0.38 ug/L 0.38 U 1.0 0.38 ug/L 0.30 U 1.0 0.38 ug/L 0.30 U 1.0 0.38 ug/L 0.30 U 1.0 0.33 ug/L 0.42 U 1.0 0.42 ug/L 0.65 U 2.0 0.65 ug/L 0.21 U 1.0 0.47 ug/L 0.47 U 1.0 0.47 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.33 ug/L 0.34 Ug/L 0.34 ug/L	0.49 U	0.49 U 1.0 0.49 ug/L 10/23/19 16:22 0.54 U 1.0 0.54 ug/L 10/23/19 16:22 1.3 U 5.0 1.3 ug/L 10/23/19 16:22 1.1 U 5.0 1.1 ug/L 10/23/19 16:22 0.25 U 1.0 0.25 ug/L 10/23/19 16:22 0.37 U 1.0 0.37 ug/L 10/23/19 16:22 0.38 U 1.0 0.38 ug/L 10/23/19 16:22 0.38 U 1.0 0.38 ug/L 10/23/19 16:22 0.30 U 1.0 0.38 ug/L 10/23/19 16:22 0.30 U 1.0 0.30 ug/L 10/23/19 16:22 0.65 U 2.0 0.65 ug/L 10/23/19 16:22 0.65 U 2.0 0.65 ug/L 10/23/19 16:22 0.61 U 1.0 0.47 ug/L 10/23/19 16:22 0.47 U 1.0 0.47 ug/L 10/23/19 16:22 0.47 U 1.0 0.47 ug/L 10/23/19 16:22 0.32 U 1.0 0.32 ug/L 10/23/19 16:22 0.33 U 1.0 0.33 ug/L 10/23/19 16:22 0.37 U 1.0 0.32 ug/L 10/23/19 16:22 0.37 U 1.0 0.32 ug/L 10/23/19 16:22 0.37 U 1.0 0.32 ug/L 10/23/19 16:22 0.33 U 1.0 0.33 ug/L 10/23/19 16:22 0.34 U 1.0 0.34 ug/L 10/23/19 16:22 0.35 U 1.0 0.34 ug/L 10/23/19 16:22 0.36 U 1.0 0.35 ug/L 10/23/19 16:22 0.37 U 1.0 0.34 ug/L 10/23/19 16:22 0.38 U 1.0 0.35 ug/L 10/23/19 16:22 0.39 U 1.0 0.35 ug/L 10/23/19 16:22 0.36 U 1.0 0.36 ug/L 10/23/19 16:22 0.37 U 1.0 0.36 ug/L 10/23/19 16:22 0.38 U 1.0 0.39 ug/L 10/23/19 16:22 0.39 U 1.0 0.39 ug/L 10/23/19 16:22

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: RT-1-UP

Lab Sample ID: 460-194514-1 Date Collected: 10/21/19 10:00

Matrix: Water

Date Received: 10/21/19 20:35

Method: 8260C - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40		1.0	0.40			•	10/25/19 19:51	
Bromomethane	0.55	U	1.0	0.55	_			10/25/19 19:51	
Vinyl chloride	0.17		1.0	0.17	_			10/25/19 19:51	
Chloroethane	0.32		1.0	0.32	_			10/25/19 19:51	
Methylene Chloride	0.32		1.0	0.32	_			10/25/19 19:51	
Acetone	4.4		5.0		ug/L			10/25/19 19:51	
Carbon disulfide	0.82		1.0	0.82	_			10/25/19 19:51	
1.1-Dichloroethene	0.26		1.0	0.26	_			10/25/19 19:51	
1.1-Dichloroethane	0.26	_	1.0	0.26	_			10/25/19 19:51	
trans-1,2-Dichloroethene	0.24		1.0	0.24	_			10/25/19 19:51	
cis-1,2-Dichloroethene	0.22		1.0	0.22	_			10/25/19 19:51	
Chloroform	0.33		1.0	0.22	_			10/25/19 19:51	
1,2-Dichloroethane	0.43		1.0	0.43	_			10/25/19 19:51	
·	1.9		5.0		ug/L			10/25/19 19:51	
2-Butanone (MEK) 1,1,1-Trichloroethane	0.24		1.0	0.24	-			10/25/19 19:51	
	0.24				-			10/25/19 19:51	
Carbon tetrachloride			1.0	0.21	-				
Bromodichloromethane	0.34		1.0	0.34	-			10/25/19 19:51	
1,2-Dichloropropane	0.35		1.0	0.35	-			10/25/19 19:51	
cis-1,3-Dichloropropene	0.22		1.0	0.22				10/25/19 19:51	
Trichloroethene	0.31		1.0	0.31	-			10/25/19 19:51	•
Dibromochloromethane	0.28		1.0	0.28	-			10/25/19 19:51	•
1,1,2-Trichloroethane	0.43		1.0	0.43	-			10/25/19 19:51	
Benzene	0.20		1.0	0.20	-			10/25/19 19:51	•
trans-1,3-Dichloropropene	0.49		1.0	0.49	-			10/25/19 19:51	• • • • • • • • •
Bromoform	0.54		1.0	0.54	-			10/25/19 19:51	
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/25/19 19:51	
2-Hexanone	1.1		5.0		ug/L			10/25/19 19:51	
Tetrachloroethene	0.25		1.0	0.25	-			10/25/19 19:51	
1,1,2,2-Tetrachloroethane	0.37		1.0	0.37	-			10/25/19 19:51	•
Toluene	0.38		1.0	0.38	-			10/25/19 19:51	
Chlorobenzene	0.38		1.0	0.38	-			10/25/19 19:51	•
Ethylbenzene	0.30		1.0	0.30	-			10/25/19 19:51	•
Styrene	0.42		1.0	0.42	-			10/25/19 19:51	
Xylenes, Total	0.65	U	2.0	0.65	-			10/25/19 19:51	
Diethyl ether	0.21		1.0	0.21				10/25/19 19:51	•
MTBE	0.47	U	1.0	0.47	-			10/25/19 19:51	
Tetrahydrofuran	1.4	J	2.0	1.0	ug/L			10/25/19 19:51	
Cyclohexane	0.32	U	1.0		ug/L			10/25/19 19:51	•
1,4-Dioxane	78		50		ug/L			10/25/19 19:51	
1,2,4-Trimethylbenzene	0.37	U	1.0		ug/L			10/25/19 19:51	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/25/19 19:51	
Isopropylbenzene	0.34	U	1.0	0.34	-			10/25/19 19:51	
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/25/19 19:51	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/25/19 19:51	
Indane	0.35	U	1.0	0.35	ug/L			10/25/19 19:51	
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/25/19 19:51	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/25/19 19:51	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT (CAS No.	Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: RT-1-UP

Lab Sample ID: 460-194514-1

Matrix: Water

Date	Collected:	10/21/19	10:00
Date	Received:	10/21/19	20:35

Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	74 - 132		10/25/19 19:51	1
Toluene-d8 (Surr)	97	80 - 120		10/25/19 19:51	1
4-Bromofluorobenzene	96	77 - 124		10/25/19 19:51	1
Dibromofluoromethane (Surr)	108	72 - 131		10/25/19 19:51	1

Method: 8270D SIM - Semi	volatile Organic Comp	ounds (GC/M	S SIM)				
Analyte	Result Qualifier	RL	MDL U	nit [) Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016 U	0.050	0.016 ug	g/L	10/22/19 17:37	10/24/19 09:35	1
Benzo[a]pyrene	0.022 U	0.050	0.022 ug	g/L	10/22/19 17:37	10/24/19 09:35	1
Benzo[b]fluoranthene	0.024 U	0.050	0.024 ug	g/L	10/22/19 17:37	10/24/19 09:35	1
Hexachlorobenzene	0.013 U	0.020	0.013 ug	g/L	10/22/19 17:37	10/24/19 09:35	1
Pentachlorophenol	0.15 U *	0.20	0.15 ug	g/L	10/22/19 17:37	10/24/19 09:35	1
Bis(2-chloroethyl)ether	0.026 U	0.030	0.026 ug	g/L	10/22/19 17:37	10/24/19 09:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/22/19 17:37	10/23/19 11:38	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/22/19 17:37	10/23/19 11:38	1
2-Methylphenol	0.26	U	10	0.26	ug/L		10/22/19 17:37	10/23/19 11:38	1
4-Methylphenol	0.24	U	10	0.24	ug/L		10/22/19 17:37	10/23/19 11:38	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/22/19 17:37	10/23/19 11:38	1
2,4-Dimethylphenol	0.24	U	10	0.24	ug/L		10/22/19 17:37	10/23/19 11:38	1
2,4-Dichlorophenol	0.42	U	10	0.42	ug/L		10/22/19 17:37	10/23/19 11:38	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/22/19 17:37	10/23/19 11:38	1
2,4,6-Trichlorophenol	0.30	U	10	0.30	ug/L		10/22/19 17:37	10/23/19 11:38	1
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/22/19 17:37	10/23/19 11:38	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/22/19 17:37	10/23/19 11:38	1
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/22/19 17:37	10/23/19 11:38	1
4,6-Dinitro-2-methylphenol	13	U	20	13			10/22/19 17:37	10/23/19 11:38	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/22/19 17:37	10/23/19 11:38	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/22/19 17:37	10/23/19 11:38	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/22/19 17:37	10/23/19 11:38	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/22/19 17:37	10/23/19 11:38	1
Hexachloroethane	1.2	U	2.0	1.2	ug/L		10/22/19 17:37	10/23/19 11:38	1
Nitrobenzene	0.57	. U	1.0	0.57	ug/L		10/22/19 17:37	10/23/19 11:38	1
Isophorone	0.80	U	10	0.80	ug/L		10/22/19 17:37	10/23/19 11:38	1
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	ug/L		10/22/19 17:37	10/23/19 11:38	1
1,2,4-Trichlorobenzene	1.3	. U	2.0	1.3	ug/L		10/22/19 17:37	10/23/19 11:38	1
Naphthalene	1.1	U	10	1.1	ug/L		10/22/19 17:37	10/23/19 11:38	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/22/19 17:37	10/23/19 11:38	1
Hexachlorobutadiene	0.78	. U	1.0	0.78	ug/L		10/22/19 17:37	10/23/19 11:38	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/22/19 17:37	10/23/19 11:38	1
Hexachlorocyclopentadiene	1.7	U	10	1.7	ug/L		10/22/19 17:37	10/23/19 11:38	1
2-Chloronaphthalene	1.2	. U	10	1.2	ug/L		10/22/19 17:37	10/23/19 11:38	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/22/19 17:37	10/23/19 11:38	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/22/19 17:37	10/23/19 11:38	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/22/19 17:37	10/23/19 11:38	1
2,6-Dinitrotoluene	0.39	U	2.0	0.39	-		10/22/19 17:37	10/23/19 11:38	1
3-Nitroaniline	0.96	U	10	0.96	ug/L		10/22/19 17:37	10/23/19 11:38	1
Acenaphthene	1.1	U	10		ug/L		10/22/19 17:37	10/23/19 11:38	1

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: RT-1-UP

Date Received: 10/21/19 20:35

Chloride

Lab Sample ID: 460-194514-1 Date Collected: 10/21/19 10:00

Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Dibenzofuran 1.1 U 10 10/22/19 17:37 1.1 ug/L 10/23/19 11:38 1.0 U 2.0 2,4-Dinitrotoluene 10/22/19 17:37 10/23/19 11:38 1.0 ug/L 1 0.98 U 10 Diethyl phthalate 0.98 ug/L 10/22/19 17:37 10/23/19 11:38 10 10/23/19 11:38 4-Chlorophenyl phenyl ether 1.3 U 1.3 ug/L 10/22/19 17:37 1 Fluorene 0.91 10 0.91 ug/L 10/22/19 17:37 10/23/19 11:38 4-Nitroaniline П 10 10/23/19 11:38 0.54 0.54 10/22/19 17:37 ug/L N-Nitrosodiphenylamine U 10 10/22/19 17:37 10/23/19 11:38 0.89 0.89 ug/L 1 4-Bromophenyl phenyl ether 0.75 U 10 10/22/19 17:37 10/23/19 11:38 0.75 ug/L 1 Phenanthrene 0.58 U 10 0.58 10/22/19 17:37 10/23/19 11:38 1 ug/L Anthracene 0.63 U 10 0.63 ug/L 10/22/19 17:37 10/23/19 11:38 1 Carbazole 0.68 U 10 0.68 10/22/19 17:37 10/23/19 11:38 ug/L 0.84 U 10 10/23/19 11:38 Di-n-butyl phthalate 0.84 ug/L 10/22/19 17:37 ug/L Fluoranthene 0.84 U 10 0.84 10/22/19 17:37 10/23/19 11:38 1 10 10/22/19 17:37 10/23/19 11:38 Pyrene 1.6 U 1.6 ug/L 1 Butyl benzyl phthalate 0.85 Ü 10 0.85 ug/L 10/22/19 17:37 10/23/19 11:38 3.3'-Dichlorobenzidine 1.4 U 10 10/22/19 17:37 10/23/19 11:38 1.4 ug/L 1 Chrysene 0.91 U 2.0 0.91 ug/L 10/22/19 17:37 10/23/19 11:38 1 Bis(2-ethylhexyl) phthalate 1.7 U 2.0 1.7 ug/L 10/22/19 17:37 10/23/19 11:38 Di-n-octyl phthalate 4.8 U 10 4.8 ug/L 10/22/19 17:37 10/23/19 11:38 Benzo[k]fluoranthene 0.67 U 1.0 0.67 ug/L 10/22/19 17:37 10/23/19 11:38 1.3 U 20 10/22/19 17:37 10/23/19 11:38 Indeno[1,2,3-cd]pyrene 1.3 ug/L Dibenz(a,h)anthracene 0.72 U 1.0 0.72 ug/L 10/22/19 17:37 10/23/19 11:38 10 U 10/22/19 17:37 10/23/19 11:38 Benzo[g,h,i]perylene 1.4 1.4 ug/L 10 10/23/19 11:38 Diphenyl ether 1.2 U 1.2 ug/L 10/22/19 17:37 n,n'-Dimethylaniline 0.91 U 1.0 0.91 10/22/19 17:37 10/23/19 11:38 ug/L 1 0.68 U 10 Caprolactam 0.68 ug/L 10/22/19 17:37 10/23/19 11:38 10 0.63 U 0.63 ug/L 10/22/19 17:37 10/23/19 11:38 bis (2-chloroisopropyl) ether Bisphenol-A 9.9 U 10 10/22/19 17:37 10/23/19 11:38 9.9 ug/L 5.0 N-Methylaniline 0.48 U 0.48 ug/L 10/22/19 17:37 10/23/19 11:38 1 Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Dil Fac Prepared Analyzed 1.90 <u>123-91-1</u> <u>10/22/19 17:37</u> <u>10/23/19 11:38</u> 1,4-Dioxane 12 JN ug/L Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 93 10/22/19 17:37 10/23/19 11:38 Nitrobenzene-d5 (Surr) 51 - 108 31 14 - 39 10/22/19 17:37 10/23/19 11:38 Phenol-d5 (Surr) 1 89 40 - 148 10/23/19 11:38 Terphenyl-d14 (Surr) 10/22/19 17:37 2,4,6-Tribromophenol (Surr) 106 26 - 139 10/22/19 17:37 10/23/19 11:38 1 2-Fluorophenol (Surr) 46 25 - 58 10/22/19 17:37 10/23/19 11:38 1 2-Fluorobiphenyl (Surr) 80 45 - 107 10/22/19 17:37 10/23/19 11:38 1 Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.056 mg/L Nitrate as N 0.056 U 0.10 10/22/19 20:58 Nitrite as N 0.076 U 0.12 0.076 mg/L 10/22/19 20:58 1 Sulfate 0.86 0.60 0.35 mg/L 10/22/19 20:58 1 Method: 300.0 - Anions, Ion Chromatography - DL Result Qualifier RL Analyte MDL Unit D Prepared Analyzed Dil Fac

Eurofins TestAmerica, Edison

10/23/19 05:18

10/31/2019

1.20

0.14 mg/L

26.6 D

Client: Golder Associates Inc.

Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: RT-1-UP

Lab Sample ID: 460-194514-1

Date Collected: 10/21/19 10:00 Matrix: Water Date Received: 10/21/19 20:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	5980		250	66.8	ug/L		10/24/19 05:06	10/24/19 11:36	5
Magnesium	3100		250	24.8	ug/L		10/24/19 05:06	10/24/19 11:36	5
Potassium	2070		250	73.5	ug/L		10/24/19 05:06	10/24/19 11:36	5
Calcium	10200		250	233	ug/L		10/24/19 05:06	10/24/19 11:36	5
₋ Method: 6010D - Metals (ICP) - I	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	18.5	J	50.0	1.7	ug/L		10/25/19 08:01	10/25/19 20:37	1
Iron, Dissolved	4670		150	34.2	ug/L		10/25/19 08:01	10/25/19 20:37	1
Manganese, Dissolved	167		15.0	0.99	ug/L		10/25/19 08:01	10/25/19 20:37	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			10/23/19 13:14	1
Bicarbonate Alkalinity as CaCO3	15.2		5.0	5.0	mg/L			10/23/19 13:46	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/23/19 13:46	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/23/19 16:00	1

Client Sample ID: UPA-01 Lab Sample ID: 460-194514-2

Date Collected: 10/21/19 11:35 Matrix: Water Date Received: 10/21/19 20:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/25/19 20:09	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/25/19 20:09	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/25/19 20:09	1
Chloroethane	0.52	J	1.0	0.32	ug/L			10/25/19 20:09	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/25/19 20:09	1
Acetone	4.4	U	5.0	4.4	ug/L			10/25/19 20:09	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/25/19 20:09	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/25/19 20:09	1
1,1-Dichloroethane	1.3		1.0	0.26	ug/L			10/25/19 20:09	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/25/19 20:09	1
cis-1,2-Dichloroethene	0.68	J	1.0	0.22	ug/L			10/25/19 20:09	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/25/19 20:09	1
1,2-Dichloroethane	0.74	J	1.0	0.43	ug/L			10/25/19 20:09	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/25/19 20:09	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/25/19 20:09	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/25/19 20:09	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/25/19 20:09	1
1,2-Dichloropropane	0.35	U *	1.0	0.35	ug/L			10/25/19 20:09	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/25/19 20:09	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/25/19 20:09	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/25/19 20:09	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/25/19 20:09	1
Benzene	110		1.0	0.20	ug/L			10/25/19 20:09	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/25/19 20:09	1
Bromoform	0.54	U	1.0		ug/L			10/25/19 20:09	1
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			10/25/19 20:09	1

Client: Golder Associates Inc.

Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-01 Lab Sample ID: 460-194514-2

Date Collected: 10/21/19 11:35 Matrix: Water Date Received: 10/21/19 20:35

	Result	Qualifier	GC/MS (Cor RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/25/19 20:09	
Tetrachloroethene	1.5		1.0	0.25	ug/L			10/25/19 20:09	
1,1,2,2-Tetrachloroethane	0.37	U	1.0		ug/L			10/25/19 20:09	
Toluene	0.38	U	1.0	0.38	ug/L			10/25/19 20:09	
Chlorobenzene	4.3		1.0	0.38	ug/L			10/25/19 20:09	
Ethylbenzene	12		1.0		ug/L			10/25/19 20:09	
Styrene	0.42	U	1.0		ug/L			10/25/19 20:09	
Xylenes, Total	0.65		2.0		ug/L			10/25/19 20:09	
Diethyl ether	2.7		1.0		ug/L			10/25/19 20:09	
MTBE	0.47	11	1.0		ug/L			10/25/19 20:09	
Tetrahydrofuran	1.0		2.0		ug/L			10/25/19 20:09	
Cyclohexane	0.32		1.0		ug/L			10/25/19 20:09	
•	130	O	50		ug/L			10/25/19 20:09	
1,4-Dioxane 1,2,4-Trimethylbenzene	0.37		1.0		ug/L ug/L			10/25/19 20:09	
	0.37				_			10/25/19 20:09	
1,3,5-Trimethylbenzene		U	1.0		ug/L			10/25/19 20:09	
Isopropylbenzene	11		1.0		ug/L				
N-Propylbenzene	12		1.0		ug/L			10/25/19 20:09	
Methylcyclohexane	0.26	U	1.0		ug/L			10/25/19 20:09	
Indane	10		1.0		ug/L			10/25/19 20:09	
Dichlorofluoromethane	8.5		1.0		ug/L			10/25/19 20:09	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/25/19 20:09	
Tentatively Identified Compound	Est. Result		Unit		RT _	CAS No.	Prepared	Analyzed	Dil Fa
1,4-Benzenediol, diacetate	20	JN	ug/L	13.	.70	1205-91-0		10/25/19 20:09	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	106		74 - 132					10/25/19 20:09	
Toluene-d8 (Surr)	97		80 - 120					10/25/19 20:09	
Toluene-d8 (Surr) 4-Bromofluorobenzene	97 97							10/25/19 20:09 10/25/19 20:09	
			80 - 120						
4-Bromofluorobenzene Dibromofluoromethane (Surr)	97 108	c Compo	80 - 120 77 - 124 72 - 131	IS SIM)				10/25/19 20:09	
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo	97 108 Iatile Organi	c Compo Qualifier	80 - 120 77 - 124 72 - 131	MDL	Unit	D	Prepared	10/25/19 20:09	
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte	97 108 Iatile Organi Result 0.016	Qualifier U	80 - 120 77 - 124 72 - 131 unds (GC/N	-		<u> </u>	Prepared 10/22/19 17:37	10/25/19 20:09 10/25/19 20:09 Analyzed 10/24/19 09:56	
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene	97 108 Iatile Organi Result	Qualifier U	80 - 120 77 - 124 72 - 131 unds (GC/N RL	MDL	ug/L	<u>D</u>		10/25/19 20:09 10/25/19 20:09 Analyzed 10/24/19 09:56	Dil Fa
4-Bromofluorobenzene	97 108 Iatile Organi Result 0.016	Qualifier U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050	MDL 0.016	ug/L ug/L	<u>D</u>	10/22/19 17:37 10/22/19 17:37	10/25/19 20:09 10/25/19 20:09 Analyzed 10/24/19 09:56	Dil Fa
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene	97 108 latile Organi Result 0.016 0.022	Qualifier U U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050	0.016 0.022	ug/L ug/L ug/L	<u>D</u>	10/22/19 17:37 10/22/19 17:37 10/22/19 17:37	10/25/19 20:09 10/25/19 20:09 Analyzed 10/24/19 09:56 10/24/19 09:56	Dil Fa
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene	97 108 latile Organi Result 0.016 0.022 0.024	Qualifier U U U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050	0.016 0.022 0.024 0.013	ug/L ug/L ug/L	<u>D</u>	10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37	10/25/19 20:09 10/25/19 20:09 Analyzed 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56	Dil Fa
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol	97 108 Iatile Organi Result 0.016 0.022 0.024 0.013 0.15	Qualifier U U U U U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013	ug/L ug/L ug/L ug/L	<u>D</u>	10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37	10/25/19 20:09 10/25/19 20:09 Analyzed 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56	
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile	97 108 latile Organi Result 0.016 0.022 0.024 0.013 0.15	Qualifier U U U U U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L	<u>D</u>	10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37	10/25/19 20:09 10/25/19 20:09 Analyzed 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56	
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte	97 108 latile Organi Result 0.016 0.022 0.024 0.013 0.15 e Organic Co	Qualifier U U U U ### U ### U ### U ### U ### ###	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20	0.016 0.022 0.024 0.013 0.15	ug/L ug/L ug/L ug/L ug/L		10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37	10/25/19 20:09 10/25/19 20:09 Analyzed 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56	Dil Fa
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol	97 108 latile Organi Result 0.016 0.022 0.024 0.013 0.15 e Organic Co Result 0.56	Qualifier U U U U ± mpounds Qualifier J	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL	0.016 0.022 0.024 0.013 0.15 MDL 0.29	ug/L ug/L ug/L ug/L ug/L		10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 Prepared	10/25/19 20:09 10/25/19 20:09 Analyzed 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 10:56	Dil Fa
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol	97 108 latile Organi Result 0.016 0.022 0.024 0.013 0.15 e Organic Co Result 0.56 0.38	Qualifier U U U U U ** ** ** ** ** ** **	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38	ug/L ug/L ug/L ug/L ug/L ug/L		10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 Prepared 10/22/19 17:37 10/22/19 17:37	Analyzed 10/25/19 20:09 Analyzed 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 10:56 10/24/19 11:59	Dil Fa
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol	97 108 latile Organi Result 0.016 0.022 0.024 0.013 0.15 e Organic Co Result 0.56 0.38 0.26	Qualifier U U U U ** ** ** ** ** ** ** **	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 Prepared 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37	10/25/19 20:09 10/25/19 20:09 Analyzed 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 11:59 10/23/19 11:59 10/23/19 11:59	Dil Fa
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol	97 108 latile Organi Result 0.016 0.022 0.024 0.013 0.15 e Organic Co Result 0.56 0.38 0.26	Qualifier U U U U ± mpounds Qualifier J U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 Prepared 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37	Analyzed 10/25/19 20:09 Analyzed 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 10:56 Analyzed 10/23/19 11:59 10/23/19 11:59 10/23/19 11:59	Dil Fa
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol	97 108 latile Organi Result 0.016 0.022 0.024 0.013 0.15 e Organic Co Result 0.56 0.38 0.26 0.24 0.75	Qualifier U U U U ± mpounds Qualifier J U U	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26 0.24 0.75	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 Prepared 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37 10/22/19 17:37	Analyzed 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 10:56 10/24/19 11:59 10/23/19 11:59 10/23/19 11:59 10/23/19 11:59 10/23/19 11:59	Dil Fa
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile Analyte Phenol 2-Chlorophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 2,4-Dimethylphenol	97 108 latile Organi Result 0.016 0.022 0.024 0.013 0.15 e Organic Co Result 0.56 0.38 0.26 0.24 0.75 0.24	Qualifier U U U U ** ** ** ** ** ** ** ** ** ** *	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10 10 10 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26 0.24 0.75 0.24	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/22/19 17:37 10/22/19 17:37	Analyzed 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 10:56 10/24/19 11:59 10/23/19 11:59 10/23/19 11:59 10/23/19 11:59 10/23/19 11:59 10/23/19 11:59	Dil Fa
4-Bromofluorobenzene Dibromofluoromethane (Surr) Method: 8270D SIM - Semivo Analyte Benzo[a]anthracene Benzo[a]pyrene Benzo[b]fluoranthene Hexachlorobenzene Pentachlorophenol Method: 8270D - Semivolatile	97 108 latile Organi Result 0.016 0.022 0.024 0.013 0.15 e Organic Co Result 0.56 0.38 0.26 0.24 0.75	Qualifier U U U U * ** ** ** ** ** ** ** ** ** **	80 - 120 77 - 124 72 - 131 unds (GC/N RL 0.050 0.050 0.050 0.020 0.20 s (GC/MS) RL 10 10	MDL 0.016 0.022 0.024 0.013 0.15 MDL 0.29 0.38 0.26 0.24 0.75 0.24 0.42	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/22/19 17:37 10/22/19 17:37	Analyzed 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 09:56 10/24/19 10:56 10/24/19 11:59 10/23/19 11:59 10/23/19 11:59 10/23/19 11:59 10/23/19 11:59	Dil Fa

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-01

Date Received: 10/21/19 20:35

Lab Sample ID: 460-194514-2 Date Collected: 10/21/19 11:35

Matrix: Water

Method: 8270D - Semivolatile Analyte		Qualifier	ŔĹ	MDL		D	Prepared	Analyzed	Dil Fa
2,4,5-Trichlorophenol	0.28	U	10	0.28	ug/L		10/22/19 17:37	10/23/19 11:59	·-
2,4-Dinitrophenol	14	U	20	14	ug/L		10/22/19 17:37	10/23/19 11:59	
4-Nitrophenol	0.69	U	20	0.69	ug/L		10/22/19 17:37	10/23/19 11:59	
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/22/19 17:37	10/23/19 11:59	
Bis(2-chloroethyl)ether	55		1.0	0.30	ug/L		10/22/19 17:37	10/23/19 11:59	
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/22/19 17:37	10/23/19 11:59	
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/22/19 17:37	10/23/19 11:59	
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/22/19 17:37	10/23/19 11:59	
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/22/19 17:37	10/23/19 11:59	
Hexachloroethane	1.2	U	2.0		ug/L		10/22/19 17:37	10/23/19 11:59	
Nitrobenzene	0.57	U	1.0	0.57	_		10/22/19 17:37	10/23/19 11:59	
Isophorone	0.80	U	10	0.80	-			10/23/19 11:59	
Bis(2-chloroethoxy)methane	0.24	U	10	0.24	-			10/23/19 11:59	
1,2,4-Trichlorobenzene	1.3		2.0		ug/L			10/23/19 11:59	
Naphthalene	1.1		10		ug/L			10/23/19 11:59	
4-Chloroaniline	1.9		10		ug/L			10/23/19 11:59	
Hexachlorobutadiene	0.78		1.0	0.78	=			10/23/19 11:59	
2-Methylnaphthalene	1.1		10		ug/L			10/23/19 11:59	
Hexachlorocyclopentadiene	1.7		10		ug/L			10/23/19 11:59	
2-Chloronaphthalene	1.2		10		ug/L			10/23/19 11:59	
2-Nitroaniline	0.47		10	0.47	-			10/23/19 11:59	
Dimethyl phthalate	0.77		10	0.77	_			10/23/19 11:59	
Acenaphthylene	0.82		10	0.82	-			10/23/19 11:59	
2,6-Dinitrotoluene	0.39		2.0	0.39	-			10/23/19 11:59	
3-Nitroaniline	0.96		10		ug/L			10/23/19 11:59	
Acenaphthene		U	10		ug/L			10/23/19 11:59	
Dibenzofuran	1.1		10		ug/L			10/23/19 11:59	
2,4-Dinitrotoluene	1.0		2.0					10/23/19 11:59	
	0.98		10		ug/L			10/23/19 11:59	
Diethyl phthalate	1.3		10	0.98	_			10/23/19 11:59	
4-Chlorophenyl phenyl ether					ug/L			10/23/19 11:59	
Fluorene 4 Nitroppiline	0.91 0.54		10 10	0.91	_			10/23/19 11:59	
4-Nitroaniline				0.54	_			10/23/19 11:59	
N-Nitrosodiphenylamine	0.89		10	0.89	•				
4-Bromophenyl phenyl ether	0.75		10	0.75	-			10/23/19 11:59	
Phenanthrene	0.58		10	0.58				10/23/19 11:59	
Anthracene	0.63		10	0.63	-			10/23/19 11:59	
Carbazole	0.68		10		ug/L			10/23/19 11:59	
Di-n-butyl phthalate	0.84		10		ug/L			10/23/19 11:59	
Fluoranthene	0.84		10		ug/L			10/23/19 11:59	
Pyrene	1.6		10		ug/L			10/23/19 11:59	
Butyl benzyl phthalate	0.85		10		ug/L			10/23/19 11:59	
3,3'-Dichlorobenzidine	1.4		10		ug/L			10/23/19 11:59	
Chrysene	0.91		2.0		ug/L			10/23/19 11:59	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/23/19 11:59	
Di-n-octyl phthalate	4.8		10		ug/L			10/23/19 11:59	
Benzo[k]fluoranthene	0.67		1.0	0.67			10/22/19 17:37	10/23/19 11:59	
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L			10/23/19 11:59	
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/22/19 17:37	10/23/19 11:59	
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/22/19 17:37	10/23/19 11:59	

Eurofins TestAmerica, Edison 10/31/2019

Page 27 of 2689

Client: Golder Associates Inc.

Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-01 Lab Sample ID: 460-194514-2

Date Collected: 10/21/19 11:35 Matrix: Water Date Received: 10/21/19 20:35

Analyte	Result	Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fa
Diphenyl ether	1.6	J	10		1.2	ug/L		10/22/19 17:37	10/23/19 11:59	-
n,n'-Dimethylaniline	5.8		1.0	0	.91	ug/L		10/22/19 17:37	10/23/19 11:59	
Caprolactam	0.68	U	10	0	68	ug/L		10/22/19 17:37	10/23/19 11:59	
bis (2-chloroisopropyl) ether	0.63	U	10	0	.63	ug/L		10/22/19 17:37	10/23/19 11:59	
3isphenol-A	9.9	U	10		9.9	ug/L		10/22/19 17:37	10/23/19 11:59	
N-Methylaniline	3.2	J	5.0	0	.48	ug/L		10/22/19 17:37	10/23/19 11:59	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fa
1,4-Dioxane	21	JN	ug/L		1.	90	123-91-1	10/22/19 17:37	10/23/19 11:59	
Benzene, (1-methylethyl)-	9.0	JN	ug/L		3.	73	98-82-8	10/22/19 17:37	10/23/19 11:59	
Benzene, propyl-	8.8	JN	ug/L		3.	99	103-65-1	10/22/19 17:37	10/23/19 11:59	
ndane	12	JN	ug/L		4.	65	496-11-7	10/22/19 17:37	10/23/19 11:59	
?-Isopropoxyphenol	31	JN	ug/L		5.	54	4812-20-8	10/22/19 17:37	10/23/19 11:59	
?-Propanone, 1-phenoxy-	7.1	JN	ug/L		5.	80	621-87-4	10/22/19 17:37	10/23/19 11:59	
Inknown	17	J	ug/L		6.	11		10/22/19 17:37	10/23/19 11:59	
Unknown	13	J	ug/L		6.	27		10/22/19 17:37	10/23/19 11:59	
Jnknown	14	J	ug/L		6.	50		10/22/19 17:37	10/23/19 11:59	
Inknown	120	J	ug/L		7.	12		10/22/19 17:37	10/23/19 11:59	
Benzenamine, 3-methyl-	16	JN	ug/L		7.	41	108-44-1	10/22/19 17:37	10/23/19 11:59	
Inknown	12	J	ug/L		7.	92		10/22/19 17:37	10/23/19 11:59	
Inknown	7.2		ug/L		<u>.</u> 9.	06		10/22/19 17:37	10/23/19 11:59	
Inknown	8.5	J	ug/L		9.	80		10/22/19 17:37	10/23/19 11:59	
Jnknown	10	J	ug/L		11.	71		10/22/19 17:37	10/23/19 11:59	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	94		51 _ 108					10/22/19 17:37	10/23/19 11:59	
Phenol-d5 (Surr)	33		14 - 39					10/22/19 17:37	10/23/19 11:59	
Terphenyl-d14 (Surr)	84		40 - 148					10/22/19 17:37	10/23/19 11:59	
2,4,6-Tribromophenol (Surr)	115		26 - 139					10/22/19 17:37	10/23/19 11:59	
?-Fluorophenol (Surr)	48		25 - 58					10/22/19 17:37	10/23/19 11:59	
2-Fluorobiphenyl (Surr)	82		45 - 107					10/22/19 17:37	10/23/19 11:59	
Method: 300.0 - Anions, Ion C	hromatogra	phy								
Analyte	Result	Qualifier	RL	М	DL	Unit	D	Prepared	Analyzed	Dil Fa
litrate as N	0.056	U	0.10			mg/L			10/22/19 21:43	
Nitrite as N	0.076	U	0.12	0.0)76	mg/L			10/22/19 21:43	
Sulfate	7.11		0.60	0	.35	mg/L			10/22/19 21:43	
Method: 300.0 - Anions, Ion C										
Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fa
Chloride	48.3	D	2.16	0	.25	mg/L			10/23/19 05:33	1
Method: 200.8 - Metals (ICP/N								_		_
Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil F
Sodium	22400		250			ug/L		10/24/19 05:06	10/24/19 11:39	
Magnesium	6030		250			ug/L			10/24/19 11:39	
Potassium	2870		250	7	3.5	ug/L		10/24/19 05:06	10/24/19 11:39	
Calcium	18000		250			ug/L			10/24/19 11:39	

Client: Golder Associates Inc.

Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: UPA-01 Lab Sample ID: 460-194514-2

Date Collected: 10/21/19 11:35 Date Received: 10/21/19 20:35 . Matrix: Water

Method: 6010D - Metals (ICI	P) - Dissolved							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	20.3 J	50.0	1.7	ug/L		10/25/19 08:01	10/25/19 20:41	1
Iron, Dissolved	20500	150	34.2	ug/L		10/25/19 08:01	10/25/19 20:41	1
Manganese, Dissolved	2880	15.0	0.99	ug/L		10/25/19 08:01	10/25/19 20:41	1

General Chemistry Analyte Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed 0.10 Ammonia (as N) 0.12 0.068 mg/L 10/23/19 13:16 5.0 5.0 mg/L 10/23/19 13:53 Bicarbonate Alkalinity as CaCO3 58.1 1 Carbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L 10/23/19 13:53 1 Sulfide 0.58 U 1.0 0.58 mg/L 10/23/19 16:00 1

Client Sample ID: DDA-12-US

Date Collected: 10/21/19 11:20

Lab Sample ID: 460-194514-3

Matrix: Water

Date Received: 10/21/19 20:35

Method: 8260C SIM - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 75 J-2.0 10/24/19 07:04 1,4-Dioxane 1.0 ug/L Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene 68 X 72 - 133 10/24/19 07:04

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	2.0	U	5.0	2.0	ug/L			10/25/19 05:23	5
Bromomethane	2.8	U	5.0	2.8	ug/L			10/25/19 05:23	5
Vinyl chloride	0.86	U	5.0	0.86	ug/L			10/25/19 05:23	5
Chloroethane	1.6	U	5.0	1.6	ug/L			10/25/19 05:23	5
Methylene Chloride	1.6	U	5.0	1.6	ug/L			10/25/19 05:23	5
Acetone	22	U	25	22	ug/L			10/25/19 05:23	5
Carbon disulfide	4.1	U	5.0	4.1	ug/L			10/25/19 05:23	5
1,1-Dichloroethene	1.3	U	5.0	1.3	ug/L			10/25/19 05:23	5
1,1-Dichloroethane	1.3	U	5.0	1.3	ug/L			10/25/19 05:23	5
trans-1,2-Dichloroethene	1.2	U	5.0	1.2	ug/L			10/25/19 05:23	5
cis-1,2-Dichloroethene	1.1	U	5.0	1.1	ug/L			10/25/19 05:23	5
Chloroform	1.6	U	5.0	1.6	ug/L			10/25/19 05:23	5
1,2-Dichloroethane	2.2	U	5.0	2.2	ug/L			10/25/19 05:23	5
2-Butanone (MEK)	9.3	U	25	9.3	ug/L			10/25/19 05:23	5
1,1,1-Trichloroethane	1.2	U	5.0	1.2	ug/L			10/25/19 05:23	5
Carbon tetrachloride	1.0	U	5.0	1.0	ug/L			10/25/19 05:23	5
Bromodichloromethane	1.7	U	5.0	1.7	ug/L			10/25/19 05:23	5
1,2-Dichloropropane	1.8	U	5.0	1.8	ug/L			10/25/19 05:23	5
cis-1,3-Dichloropropene	1.1	U	5.0	1.1	ug/L			10/25/19 05:23	5
Trichloroethene	1.6	U	5.0	1.6	ug/L			10/25/19 05:23	5
Dibromochloromethane	1.4	U	5.0	1.4	ug/L			10/25/19 05:23	5
1,1,2-Trichloroethane	2.2	U	5.0	2.2	ug/L			10/25/19 05:23	5
Benzene	38		5.0	1.0	ug/L			10/25/19 05:23	5
trans-1,3-Dichloropropene	2.4	U	5.0	2.4	ug/L			10/25/19 05:23	5
Bromoform	2.7	U	5.0	2.7	ug/L			10/25/19 05:23	5
4-Methyl-2-pentanone	6.5	U	25	6.5	ug/L			10/25/19 05:23	5
2-Hexanone	5.7	U	25	5.7	ug/L			10/25/19 05:23	5

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-12-US

Lab Sample ID: 460-194514-3 Date Collected: 10/21/19 11:20

Matrix: Water

Date Received: 10/21/19 20:35

Phenol

2-Chlorophenol

2-Methylphenol

4-Methylphenol

Analyte		Qualifier	RL	-	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	1.2	U	5.0)	1.2	ug/L			10/25/19 05:23	
1,1,2,2-Tetrachloroethane	1.8	U	5.0)	1.8	ug/L			10/25/19 05:23	5
Toluene	3.3	J	5.0)	1.9	ug/L			10/25/19 05:23	5
Chlorobenzene	4.0	J	5.0)	1.9	ug/L			10/25/19 05:23	5
Ethylbenzene	12		5.0)	1.5	ug/L			10/25/19 05:23	5
Styrene	2.1	U	5.0)	2.1	ug/L			10/25/19 05:23	5
Xylenes, Total	1600		10)	3.3	ug/L			10/25/19 05:23	5
Diethyl ether	1.1	U	5.0)	1.1	ug/L			10/25/19 05:23	5
MTBE	2.3	U	5.0)	2.3	ug/L			10/25/19 05:23	5
Tetrahydrofuran	5.2	U	10)	5.2	ug/L			10/25/19 05:23	5
Cyclohexane	56		5.0)	1.6	ug/L			10/25/19 05:23	5
1,2,4-Trimethylbenzene	1200		5.0)	1.9	ug/L			10/25/19 05:23	5
1,3,5-Trimethylbenzene	280		5.0)	1.6	ug/L			10/25/19 05:23	5
Isopropylbenzene	88		5.0)	1.7	ug/L			10/25/19 05:23	5
N-Propylbenzene	160		5.0)	1.6	ug/L			10/25/19 05:23	5
Methylcyclohexane	120		5.0)	1.3	ug/L			10/25/19 05:23	5
Indane	110		5.0)	1.7	ug/L			10/25/19 05:23	5
Dichlorofluoromethane	2.0	J	5.0)	1.7	ug/L			10/25/19 05:23	5
1,2,3-Trimethylbenzene	260		5.0)	1.8	ug/L			10/25/19 05:23	5
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	,	RT	CAS No.	Prepared	Analyzed	Dil Fac
Cyclopentane, 1,2-dimethyl-	28	JN	ug/L		4.	.88	2452-99-5		10/25/19 05:23	- 5
Benzene, 1-ethyl-3-methyl-	230	JN	ug/L		10.	.28	620-14-4		10/25/19 05:23	
Benzene, 1-ethyl-4-methyl-	130	JN	ug/L		10.	.30	622-96-8		10/25/19 05:23	
Benzene, 1-ethyl-2-methyl-	240	JN	ug/L		10.	.57	611-14-3		10/25/19 05:23	
Benzene, 1-methyl-2-(1-methylethyl)-	27	JN	ug/L		11.	.39	527-84-4		10/25/19 05:23	
Benzene, 4-ethyl-1,2-dimethyl-	27	JN	ug/L		11.	.71	934-80-5		10/25/19 05:23	
Naphthalene, 2-methyl-	26	JN	ug/L		13.	.79	91-57-6		10/25/19 05:23	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		74 - 132						10/25/19 05:23	;
Toluene-d8 (Surr)	105		80 - 120						10/25/19 05:23	
4-Bromofluorobenzene	103		77 - 124						10/25/19 05:23	5
Dibromofluoromethane (Surr)	95		72 - 131						10/25/19 05:23	
Method: 8270D SIM - Semivol	atile Organi	c Compo	unds (GC/I	MS SI	M)					
Analyte	Result	Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.024	J	0.050)	0.016	ug/L			10/24/19 08:19	1
Benzo[a]pyrene	0.022	U	0.050)	0.022	ug/L		10/22/19 17:37	10/24/19 08:19	1
Benzo[b]fluoranthene	0.024	U	0.050)	0.024	-		10/22/19 17:37	10/24/19 08:19	•
Hexachlorobenzene	0.023		0.020)	0.013	ug/L		10/22/19 17:37	10/24/19 08:19	
Pentachlorophenol	0.15	U *	0.20)	0.15	ug/L		10/22/19 17:37	10/24/19 08:19	
Bis(2-chloroethyl)ether	2.8		0.030)	0.026	ug/L		10/22/19 17:37	10/24/19 08:19	•
Method: 8270D - Semivolatile	Organic Co	mpounds	(GC/MS)							
Analyte		Qualifier	` ŔĹ	•	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Edison

1

1

1

10/22/19 17:37 10/23/19 12:20

10/22/19 17:37 10/23/19 12:20

10/22/19 17:37 10/23/19 12:20

10/22/19 17:37 10/23/19 12:20

10

10

10

10

0.29 ug/L

0.38 ug/L

0.26 ug/L

0.24 ug/L

0.29 U

0.38 U

0.26 U

0.24 U

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-12-US

Date Received: 10/21/19 20:35

Lab Sample ID: 460-194514-3 Date Collected: 10/21/19 11:20

Matrix: Water

Method: 8270D - Semivolatilo Analyte		Qualifier	ŔĹ	MDL	•	D	Prepared	Analyzed	Dil Fa
2-Nitrophenol	0.75	U –	10	0.75	ug/L		10/22/19 17:37	10/23/19 12:20	
2,4-Dimethylphenol	3.6	J	10		ug/L		10/22/19 17:37	10/23/19 12:20	
2,4-Dichlorophenol	0.42		10		ug/L		10/22/19 17:37	10/23/19 12:20	
4-Chloro-3-methylphenol	0.58		10		ug/L		10/22/19 17:37	10/23/19 12:20	
2,4,6-Trichlorophenol	0.30		10		ug/L		10/22/19 17:37	10/23/19 12:20	
2,4,5-Trichlorophenol	0.28		10				10/22/19 17:37		
2,4-Dinitrophenol	14		20		ug/L		10/22/19 17:37	10/23/19 12:20	
4-Nitrophenol	0.69		20		ug/L		10/22/19 17:37		
4,6-Dinitro-2-methylphenol	13		20		ug/L			10/23/19 12:20	
1,3-Dichlorobenzene	2.0		10	2.0	-		10/22/19 17:37	10/23/19 12:20	
1,4-Dichlorobenzene	1.7		10		ug/L		10/22/19 17:37		
1,2-Dichlorobenzene	2.6		10					10/23/19 12:20	
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L		10/22/19 17:37	10/23/19 12:20	
Hexachloroethane	1.2		2.0		ug/L		10/22/19 17:37		
Nitrobenzene	0.57		1.0		ug/L			10/23/19 12:20	
Isophorone	0.80		1.0	0.80			10/22/19 17:37		
Bis(2-chloroethoxy)methane	0.24		10		ug/L		10/22/19 17:37		
1,2,4-Trichlorobenzene	1.3		2.0					10/23/19 12:20	
Naphthalene	14	O	10	1.1	ug/L		10/22/19 17:37		
4-Chloroaniline	1.9	11	10	1.9	ug/L			10/23/19 12:20	
Hexachlorobutadiene	0.78		1.0	0.78	ug/L			10/23/19 12:20	
	2.0		1.0	1.1	ug/L ug/L		10/22/19 17:37		
2-Methylnaphthalene Hexachlorocyclopentadiene	1.7		10					10/23/19 12:20	
2-Chloronaphthalene	1.7		10					10/23/19 12:20	
2-Onloronaprinalene 2-Nitroaniline	0.47		10		ug/L ug/L		10/22/19 17:37		
Dimethyl phthalate	0.47		10		ug/L		10/22/19 17:37		
	0.77		10		ug/L			10/23/19 12:20	
Acenaphthylene 2,6-Dinitrotoluene	0.82		2.0		-		10/22/19 17:37		
2,6-Diritiotoidene 3-Nitroaniline	0.39		10		•		10/22/19 17:37		
					ug/L			10/23/19 12:20	
Acenaphthene	1.1		10	1.1	ug/L				
Dibenzofuran		U	10		ug/L			10/23/19 12:20	
2,4-Dinitrotoluene	1.0	U	2.0		ug/L			10/23/19 12:20	
Diethyl phthalate	0.98		10		U			10/23/19 12:20	
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/23/19 12:20	
Fluorene	0.91		10		ug/L		10/22/19 17:37		
4-Nitroaniline	0.54		10		ug/L			10/23/19 12:20	
N-Nitrosodiphenylamine	0.89		10		ug/L			10/23/19 12:20	
4-Bromophenyl phenyl ether	0.75		10		ug/L			10/23/19 12:20	
Phenanthrene	0.58		10		ug/L			10/23/19 12:20	
Anthracene	0.63		10		ug/L			10/23/19 12:20	
Carbazole	0.68		10		ug/L			10/23/19 12:20	
Di-n-butyl phthalate	0.84		10		ug/L			10/23/19 12:20	
Fluoranthene	0.84		10	0.84	-			10/23/19 12:20	
Pyrene	1.6		10		ug/L		10/22/19 17:37	10/23/19 12:20	
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/22/19 17:37	10/23/19 12:20	
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/22/19 17:37	10/23/19 12:20	
Chrysene	0.91	U	2.0	0.91	ug/L		10/22/19 17:37	10/23/19 12:20	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/22/19 17:37	10/23/19 12:20	
Di-n-octyl phthalate	4.8	U	10		ug/L		10/22/19 17:37	10/23/19 12:20	

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-12-US

Lab Sample ID: 460-194514-3 Date Collected: 10/21/19 11:20

Matrix: Water

Date Received: 10/21/19 20:35

Method: 8270D - Semivolatile ^{Analyte}		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil Fac
Benzo[k]fluoranthene	0.67	U	1.0		0.67	ug/L		10/22/19 17:37	10/23/19 12:20	
Indeno[1,2,3-cd]pyrene	1.3	U	2.0		1.3	ug/L		10/22/19 17:37	10/23/19 12:20	
Dibenz(a,h)anthracene	0.72	U	1.0			ug/L		10/22/19 17:37	10/23/19 12:20	
Benzo[g,h,i]perylene	1.4	U	10			ug/L		10/22/19 17:37	10/23/19 12:20	
Diphenyl ether	14		10			ug/L		10/22/19 17:37	10/23/19 12:20	
n,n'-Dimethylaniline	9.3		1.0			ug/L		10/22/19 17:37	10/23/19 12:20	
Caprolactam	0.68	U	10			ug/L		10/22/19 17:37		
bis (2-chloroisopropyl) ether	0.63	U	10			ug/L			10/23/19 12:20	
Bisphenol-A	11		10			ug/L			10/23/19 12:20	
N-Methylaniline	2.5	J	5.0			ug/L			10/23/19 12:20	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
1,4-Dioxane	12	JN	ug/L		1.	90	123-91-1	10/22/19 17:37	10/23/19 12:20	
Benzene, (1-methylethyl)-	67	JN	ug/L		3.	74	98-82-8	10/22/19 17:37	10/23/19 12:20	
Benzene, propyl-	110	J N	ug/L		3.	99	103-65-1	10/22/19 17:37	10/23/19 12:20	
Benzene, 1-ethyl-2-methyl-	230	JN	ug/L			05	611-14-3	10/22/19 17:37		
Benzene, 1-ethyl-3-methyl-	160	J N	ug/L		4.	20	620-14-4	10/22/19 17:37	10/23/19 12:20	
Benzene, 1,3,5-trimethyl-	600	J N	ug/L		4.	33	108-67-8	10/22/19 17:37	10/23/19 12:20	
Benzene, 1,2,3-trimethyl-	190	J N	ug/L		4.	54	526-73-8	10/22/19 17:37	10/23/19 12:20	
Benzene, 1,3-diethyl-	12	J N	ug/L		4.	71	141-93-5	10/22/19 17:37	10/23/19 12:20	
Benzene, 1-ethyl-2,3-dimethyl-	26	J N	ug/L		4.	78	933-98-2	10/22/19 17:37	10/23/19 12:20	
Benzene, 2-ethyl-1,4-dimethyl-	23	J N	ug/L		4.	92	1758-88-9	10/22/19 17:37	10/23/19 12:20	
Benzene, 1,2,3,5-tetramethyl-	12	J N	ug/L		5.	23	527-53-7	10/22/19 17:37	10/23/19 12:20	
Unknown	18	J	ug/L		6.	11		10/22/19 17:37	10/23/19 12:20	
Unknown	96	J	ug/L		7.	11			10/23/19 12:20	
Unknown	9.8	J	ug/L		7.	41		10/22/19 17:37	10/23/19 12:20	
Unknown	12	J	ug/L		7.	75			10/23/19 12:20	
1,3,5-Triazine-2,4,6(1H,3H,5H) -trione, 1,3,5-tri-2-propenyl-	62	JN	ug/L		8.	06	1025-15-6	10/22/19 17:37	10/23/19 12:20	
Unknown	9.1	J	ug/L		8.	32		10/22/19 17:37	10/23/19 12:20	
Urea, N,N'-dimethyl-N,N'-diphenyl-	8.6	J N	ug/L		8.	90	611-92-7	10/22/19 17:37	10/23/19 12:20	
Unknown	14	J	ug/L		10.	81		10/22/19 17:37	10/23/19 12:20	
Unknown	38	J	ug/L		12.	58		10/22/19 17:37	10/23/19 12:20	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	87		51 - 108						10/23/19 12:20	
Phenol-d5 (Surr)	27		14 - 39					10/22/19 17:37	10/23/19 12:20	
Terphenyl-d14 (Surr)	75		40 - 148					10/22/19 17:37	10/23/19 12:20	•
2,4,6-Tribromophenol (Surr)	108		26 - 139					10/22/19 17:37	10/23/19 12:20	-
2-Fluorophenol (Surr)	42		25 - 58					10/22/19 17:37	10/23/19 12:20	•
2-Fluorobiphenyl (Surr)	77		45 - 107					10/22/19 17:37	10/23/19 12:20	•
Method: 300.0 - Anions, Ion C Analyte		phy Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fa
Nitrate as N	0.056		0.10			mg/L			10/22/19 21:58	
Nitrite as N	0.076		0.10			mg/L			10/22/19 21:58	
Sulfate	0.35		0.60			mg/L			10/22/19 21:58	
oundio	0.00	5	0.00		5.55	mg/L			. 5/22/10 21.00	
Method: 300.0 - Anions, Ion C ^{Analyte}		phy - DL Qualifier	RL		MDL	11=:4		Prepared	Analyzed	nii ==
	RASIUT	SUBMER	KI.		wit Si	LIMIT	D	riebared	Anaivzed	Dil Fa

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-12-US

Lab Sample ID: 460-194514-3 Date Collected: 10/21/19 11:20

Matrix: Water

Date Received: 10/21/19 20:35

Method: 200.8 - Metals (ICP/MS) - Total R	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	17800		250	66.8	ug/L		10/24/19 05:06	10/24/19 11:41	5
Magnesium	2200		250	24.8	ug/L		10/24/19 05:06	10/24/19 11:41	5
Potassium	4470		250	73.5	ug/L		10/24/19 05:06	10/24/19 11:41	5
Calcium	7420		250	233	ug/L		10/24/19 05:06	10/24/19 11:41	5
- Method: 6010D - Metals (ICP) - I	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	15.4	J	100	3.3	ug/L		10/25/19 08:01	10/25/19 20:44	2
Iron, Dissolved	46100		300	68.4	ug/L		10/25/19 08:01	10/25/19 20:44	2
Manganese, Dissolved	330		30.0	2.0	ug/L		10/25/19 08:01	10/25/19 20:44	2
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	4.4		0.10	0.068	mg/L			10/23/19 12:05	1
Bicarbonate Alkalinity as CaCO3	36.1		5.0	5.0	mg/L			10/23/19 14:00	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/23/19 14:00	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/23/19 16:00	1

Lab Sample ID: 460-194514-4 Client Sample ID: DDA-02 Date Collected: 10/21/19 13:40

Matrix: Water

Date Received: 10/21/19 20:35

Method: 8260C SIM - Vola	tile Organic Cor	mpounds (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	4.8		0.40	0.20	ug/L			10/25/19 13:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		72 - 133			-		10/25/19 13:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/25/19 12:52	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/25/19 12:52	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/25/19 12:52	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/25/19 12:52	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/25/19 12:52	1
Acetone	4.4	U	5.0	4.4	ug/L			10/25/19 12:52	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/25/19 12:52	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/25/19 12:52	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/25/19 12:52	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/25/19 12:52	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/25/19 12:52	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/25/19 12:52	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/25/19 12:52	
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/25/19 12:52	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/25/19 12:52	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/25/19 12:52	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/25/19 12:52	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/25/19 12:52	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/25/19 12:52	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/25/19 12:52	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-02 Lab Sample ID: 460-194514-4

Date Collected: 10/21/19 13:40 Matrix: Water Date Received: 10/21/19 20:35

Method: 8260C - Volatile Org Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dibromochloromethane	0.28		1.0		ug/L		Trepared	10/25/19 12:52	Diriu
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/25/19 12:52	
Benzene	0.70		1.0		ug/L			10/25/19 12:52	
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/25/19 12:52	
Bromoform	0.54		1.0		ug/L			10/25/19 12:52	
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/25/19 12:52	
2-Hexanone	1.1		5.0		ug/L			10/25/19 12:52	
Tetrachloroethene	0.25		1.0		ug/L			10/25/19 12:52	
1.1.2.2-Tetrachloroethane	0.37	_	1.0		ug/L			10/25/19 12:52	
Toluene	0.38		1.0		ug/L			10/25/19 12:52	
Chlorobenzene	0.38		1.0		ug/L			10/25/19 12:52	
Ethylbenzene	0.42		1.0		ug/L			10/25/19 12:52	
Styrene	0.42		1.0		ug/L			10/25/19 12:52	
Xylenes, Total	0.65		2.0		ug/L			10/25/19 12:52	· · · · · · .
Diethyl ether	0.03		1.0		ug/L			10/25/19 12:52	1
MTBE	0.21		1.0		ug/L ug/L			10/25/19 12:52	1
Tetrahydrofuran	1.0		2.0		ug/L			10/25/19 12:52	
Cyclohexane	0.32		1.0		ug/L			10/25/19 12:52	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/25/19 12:52	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L ug/L			10/25/19 12:52	
Isopropylbenzene	0.34		1.0		ug/L			10/25/19 12:52	
N-Propylbenzene	0.32		1.0		ug/L			10/25/19 12:52	
Methylcyclohexane	0.26		1.0		ug/L			10/25/19 12:52	
Indane	0.35		1.0		ug/L			10/25/19 12:52	
Dichlorofluoromethane	0.34		1.0		ug/L			10/25/19 12:52	
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/25/19 12:52	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None	Qualifier	ug/L	<u> </u>		CAS NO.		10/25/19 12:52	DII Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		74 - 132					10/25/19 12:52	2,,, u
Toluene-d8 (Surr)	102		80 - 120					10/25/19 12:52	1
4-Bromofluorobenzene	96		77 - 124					10/25/19 12:52	1
Dibromofluoromethane (Surr)	95		72 - 131					10/25/19 12:52	
	I-4:I- 0								
Method: 8270D SIM - Semivo Analyte		C Compor Qualifier	unas (GC/N RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016		0.050	0.016				10/24/19 08:40	1
Benzo[a]pyrene	0.022	U	0.050	0.022			10/22/19 17:37	10/24/19 08:40	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/22/19 17:37	10/24/19 08:40	1
Hexachlorobenzene	0.014	J	0.020	0.013	ug/L		10/22/19 17:37	10/24/19 08:40	1
Pentachlorophenol	0.15		0.20		ug/L		10/22/19 17:37	10/24/19 08:40	1
Bis(2-chloroethyl)ether	0.15		0.030	0.026	ug/L		10/22/19 17:37	10/24/19 08:40	1
: Method: 8270D - Semivolatile	e Organic Co	ebnuogm	(GC/MS)						
	₩	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	ittoani						-		
	0.29		10	0.29	ug/L		10/22/19 17:37	10/23/19 12:41	-
Analyte Phenol 2-Chlorophenol		U	10 10		ug/L ug/L		10/22/19 17:37 10/22/19 17:37		1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-02

Date Received: 10/21/19 20:35

Lab Sample ID: 460-194514-4 Date Collected: 10/21/19 13:40

Matrix: Water

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 4-Methylphenol 0.24 U 10 0.24 ug/L 10/22/19 17:37 10/23/19 12:41 0.75 U 10 10/23/19 12:41 2-Nitrophenol 0.75 ug/L 1 10/22/19 17:37 10 2,4-Dimethylphenol 0.24 U 0.24 ug/L 10/22/19 17:37 10/23/19 12:41 1 10 2,4-Dichlorophenol 0.42 U 0.42 ug/L 10/22/19 17:37 10/23/19 12:41 1 4-Chloro-3-methylphenol 0.58 U 10 0.58 ug/L 10/22/19 17:37 10/23/19 12:41 U 10 2,4,6-Trichlorophenol 0.30 0.30 10/22/19 17:37 10/23/19 12:41 1 ug/L 2,4,5-Trichlorophenol 0.28 U 10 10/22/19 17:37 10/23/19 12:41 0.28 ug/L 2,4-Dinitrophenol 14 11 20 10/23/19 12:41 1 14 ug/L 10/22/19 17:37 0.69 U 20 0.69 10/22/19 17:37 10/23/19 12:41 1 4-Nitrophenol ug/L 4,6-Dinitro-2-methylphenol 13 U 20 13 ug/L 10/22/19 17:37 10/23/19 12:41 1 1.3-Dichlorobenzene 2.0 U 10 2.0 10/22/19 17:37 10/23/19 12:41 ug/L 1.3 U 10 10/22/19 17:37 10/23/19 12:41 1.4-Dichlorobenzene ug/L 1 1.3 1,2-Dichlorobenzene 1.3 U 10 ug/L 10/22/19 17:37 10/23/19 12:41 10/22/19 17:37 10/23/19 12:41 0.43 U 1.0 N-Nitrosodi-n-propylamine 0.43 ug/L 1 Hexachloroethane 1.2 U 2.0 1.2 ug/L 10/22/19 17:37 10/23/19 12:41 Nitrobenzene 0.57 Ü 1.0 10/22/19 17:37 10/23/19 12:41 1 0.57 ug/L Isophorone 0.80 U 10 0.80 ug/L 10/22/19 17:37 10/23/19 12:41 1 Bis(2-chloroethoxy)methane 0.24 U 10 0.24 ug/L 10/22/19 17:37 10/23/19 12:41 1 1.3 U 10/22/19 17:37 10/23/19 12:41 1,2,4-Trichlorobenzene 2.0 1.3 ug/L Naphthalene 1.1 U 10 ug/L 10/22/19 17:37 10/23/19 12:41 1.1 10/22/19 17:37 10/23/19 12:41 10 4-Chloroaniline 1.9 U 1.9 ug/L 1 Hexachlorobutadiene 0.78 U 1.0 0.78 ug/L 10/22/19 17:37 10/23/19 12:41 10/22/19 17:37 10/23/19 12:41 2-Methylnaphthalene U 10 1.1 ug/L 10 Hexachlorocyclopentadiene 1.7 U 1.7 ug/L 10/22/19 17:37 10/23/19 12:41 1 2-Chloronaphthalene 1.2 U 10 1.2 10/22/19 17:37 10/23/19 12:41 1 ug/L 10 2-Nitroaniline 047 U 0.47 ug/L 10/22/19 17:37 10/23/19 12:41 1 10 Dimethyl phthalate 0.77 U 0.77 10/22/19 17:37 10/23/19 12:41 1 ug/L 10 Acenaphthylene 0.82 П 0.82 ug/L 10/22/19 17:37 10/23/19 12:41 0.39 2,6-Dinitrotoluene 0.39 U 2.0 ug/L 10/22/19 17:37 10/23/19 12:41 1 3-Nitroaniline 0.96 U 10 0.96 ug/L 10/22/19 17:37 10/23/19 12:41 10 Acenaphthene Ü 10/22/19 17:37 10/23/19 12:41 1 1.1 1.1 ug/L 10 Dibenzofuran 1.1 U 1.1 ug/L 10/22/19 17:37 10/23/19 12:41 1 2.0 U 2,4-Dinitrotoluene 1.0 1.0 ug/L 10/22/19 17:37 10/23/19 12:41 1 Diethyl phthalate 0.98 Ü 10 0.98 ug/L 10/22/19 17:37 10/23/19 12:41 1 U 10 1 4-Chlorophenyl phenyl ether 1.3 1.3 ug/L 10/22/19 17:37 10/23/19 12:41 0.91 U 10 0.91 10/22/19 17:37 10/23/19 12:41 Fluorene ug/L 10 0.54 Ш 0.54 ug/L 10/22/19 17:37 10/23/19 12:41 1 4-Nitroaniline N-Nitrosodiphenylamine 0.89 U 10 0.89 10/22/19 17:37 10/23/19 12:41 ug/L 4-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/22/19 17:37 10/23/19 12:41 1 Phenanthrene 0.58 Ü 10 0.58 ug/L 10/22/19 17:37 10/23/19 12:41 1 0.63 U 10 0.63 10/22/19 17:37 10/23/19 12:41 Anthracene ug/L 1 Carbazole 0.68 U 10 0.68 ug/L 10/22/19 17:37 10/23/19 12:41 1 0.84 U 10 10/22/19 17:37 10/23/19 12:41 1 Di-n-butyl phthalate 0.84 ug/L Fluoranthene 0.84 U 10 0.84 ug/L 10/22/19 17:37 10/23/19 12:41 Pyrene 1.6 U 10 10/22/19 17:37 10/23/19 12:41 1.6 ug/L 1 Butyl benzyl phthalate 0.85 U 10 0.85 ug/L 10/22/19 17:37 10/23/19 12:41 1 3.3'-Dichlorobenzidine 1.4 U 10 1.4 ug/L 10/22/19 17:37 10/23/19 12:41 1 0.91 U 2.0 Chrysene 0.91 ug/L 10/22/19 17:37 10/23/19 12:41 Bis(2-ethylhexyl) phthalate 1.7 U 2.0 1.7 ug/L 10/22/19 17:37 10/23/19 12:41

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-02

Lab Sample ID: 460-194514-4 Date Collected: 10/21/19 13:40 Matrix: Water

Date Received: 10/21/19 20:35

Analyte	organic Co Result	Qualifier	RL		, Unit	D	Prepared	Analyzed	Dil Fa
Di-n-octyl phthalate	4.8		10	4.8	ug/L		10/22/19 17:37	10/23/19 12:41	
Benzo[k]fluoranthene	0.67		1.0		ug/L		10/22/19 17:37	10/23/19 12:41	
Indeno[1,2,3-cd]pyrene	1.3	U	2.0		ug/L		10/22/19 17:37	10/23/19 12:41	
Dibenz(a,h)anthracene	0.72		1.0		ug/L			10/23/19 12:41	
Benzo[g,h,i]perylene	1.4		10		ug/L			10/23/19 12:41	
Diphenyl ether	1.2		10		ug/L			10/23/19 12:41	
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/23/19 12:41	
Caprolactam	0.68		10		ug/L			10/23/19 12:41	
ois (2-chloroisopropyl) ether	0.63		10		ug/L			10/23/19 12:41	
Bisphenol-A	9.9	_	10		ug/L			10/23/19 12:41	
N-Methylaniline	0.48		5.0		ug/L			10/23/19 12:41	
N-Metrylaninie			0.0				10/22/13 11.57	10/20/10 12.41	
Tentatively Identified Compound Tentatively Identified Compound	Est. Result None	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared 10/22/19 17:37	Analyzed 10/23/19 12:41	Dil F
entatively luentified Compound	None		ug/L				10/22/19 17.37	10/23/19 12.41	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Nitrobenzene-d5 (Surr)	88		51 - 108				10/22/19 17:37	10/23/19 12:41	
Phenol-d5 (Surr)	29		14 - 39				10/22/19 17:37	10/23/19 12:41	
Terphenyl-d14 (Surr)	75		40 - 148				10/22/19 17:37	10/23/19 12:41	
2,4,6-Tribromophenol (Surr)	97		26 - 139				10/22/19 17:37	10/23/19 12:41	
2-Fluorophenol (Surr)	42		25 - 58				10/22/19 17:37	10/23/19 12:41	
2-Fluorobiphenyl (Surr)	75		45 - 107				10/22/19 17:37	10/23/19 12:41	
•	•	ıphy Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Analyte	Result	Qualifier				D	Prepared		Dil F
Analyte Vitrate as N	•	Qualifier U	RL 0.10 0.12	MDL 0.056 0.076	mg/L	<u>D</u>	Prepared	Analyzed 10/22/19 22:33 10/22/19 22:33	Dil F
Analyte Nitrate as N Nitrite as N	Result 0.056	Qualifier U	0.10	0.056 0.076	mg/L	<u>D</u>	Prepared	10/22/19 22:33	Dil F
Analyte Nitrate as N Nitrite as N Sulfate	Result 0.056 0.076 17.2	Qualifier U U	0.10 0.12	0.056 0.076	mg/L mg/L	<u>D</u>	Prepared	10/22/19 22:33 10/22/19 22:33	Dil F
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C	Result 0.056 0.076 17.2 Chromatogra	Qualifier U U	0.10 0.12	0.056 0.076 0.35	mg/L mg/L	<u>D</u>	Prepared Prepared	10/22/19 22:33 10/22/19 22:33	
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte	Result 0.056 0.076 17.2 Chromatogra	Qualifier U U uphy - DL Qualifier	0.10 0.12 0.60	0.056 0.076 0.35	mg/L mg/L mg/L			10/22/19 22:33 10/22/19 22:33 10/22/19 22:33	Dil F
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride	Result	Qualifier U U uphy - DL Qualifier D	0.10 0.12 0.60 RL 1.44	0.056 0.076 0.35	mg/L mg/L mg/L			10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed	Dil F
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M	Result	Qualifier U U uphy - DL Qualifier D ecoverab	0.10 0.12 0.60 RL 1.44	0.056 0.076 0.35 MDL 0.17	mg/L mg/L mg/L Unit mg/L	<u>_</u>	Prepared	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02	DilF
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte	Result	Qualifier U U uphy - DL Qualifier D	0.10 0.12 0.60 RL 1.44	0.056 0.076 0.35 MDL 0.17	mg/L mg/L mg/L Unit mg/L		Prepared Prepared	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02	DilF
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte Sodium	Result	Qualifier U U uphy - DL Qualifier D ecoverab	0.10 0.12 0.60 RL 1.44 Ie RL 250	0.056 0.076 0.35 MDL 0.17	mg/L mg/L mg/L Unit mg/L Unit ug/L	<u>_</u>	Prepared Prepared 10/24/19 05:06	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44	Dil F
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium	Result	Qualifier U U uphy - DL Qualifier D ecoverab	0.10 0.12 0.60 RL 1.44 le RL 250 250	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8	mg/L mg/L mg/L Unit mg/L Unit ug/L	<u>_</u>	Prepared Prepared 10/24/19 05:06 10/24/19 05:06	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44 10/24/19 11:44	Dil F
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium	Result	Qualifier U U uphy - DL Qualifier D ecoverab	0.10 0.12 0.60 RL 1.44 1.44 250 250 250	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5	mg/L mg/L mg/L Unit mg/L Unit ug/L ug/L ug/L	<u>_</u>	Prepared Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44	DilF
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium	Result	Qualifier U U uphy - DL Qualifier D ecoverab	0.10 0.12 0.60 RL 1.44 le RL 250 250	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5	mg/L mg/L mg/L Unit mg/L Unit ug/L	<u>_</u>	Prepared Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44 10/24/19 11:44	DilF
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP)	Result 0.056 0.076 17.2 Chromatogra Result 30.3 MS) - Total R Result 19400 5420 2680 10500 - Dissolved	Qualifier U U uphy - DL Qualifier D ecoverab Qualifier	0.10 0.12 0.60 RL 1.44 le 250 250 250 250	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233	mg/L mg/L mg/L Unit mg/L ug/L ug/L ug/L	D	Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44	Dil F
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte	Result 0.056 0.076 17.2 Chromatogra Result 30.3 MS) - Total R Result 19400 5420 2680 10500 - Dissolved Result	Qualifier U U uphy - DL Qualifier D ecoverab Qualifier	0.10 0.12 0.60 RL 1.44 de RL 250 250 250 250	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233	mg/L mg/L mg/L Unit mg/L ug/L ug/L ug/L	<u>_</u>	Prepared Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44	Dil F
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved	Result	Qualifier U U uphy - DL Qualifier D ecoverab Qualifier	0.10 0.12 0.60 RL 1.44 1.44 250 250 250 250 RL 50.0	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7	mg/L mg/L mg/L Unit mg/L ug/L ug/L ug/L ug/L	D	Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/25/19 08:01	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44	Dil F
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved	Result	Qualifier U U uphy - DL Qualifier D ecoverab Qualifier	0.10 0.12 0.60 RL 1.44 1e RL 250 250 250 250 RL 50.0 150	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2	mg/L mg/L mg/L Unit mg/L ug/L ug/L ug/L ug/L	D	Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/25/19 08:01 10/25/19 08:01	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 20:48 10/25/19 20:48	Dil F
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/N Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved	Result	Qualifier U U uphy - DL Qualifier D ecoverab Qualifier	0.10 0.12 0.60 RL 1.44 1.44 250 250 250 250 RL 50.0	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2	mg/L mg/L mg/L Unit mg/L ug/L ug/L ug/L ug/L	D	Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/25/19 08:01	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44	Dil F
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry	Result	Qualifier U uphy - DL Qualifier D ecoverab Qualifier J	0.10 0.12 0.60 RL 1.44 1e RL 250 250 250 250 250 150.0 150.0	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99	mg/L mg/L mg/L Unit mg/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/25/19 08:01 10/25/19 08:01 10/25/19 08:01	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/25/19 20:48 10/25/19 20:48 10/25/19 20:48	Dil F
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	Result	Qualifier U U uphy - DL Qualifier D ecoverab Qualifier	0.10 0.12 0.60 RL 1.44 1.44 1.45	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99	mg/L mg/L mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/25/19 08:01 10/25/19 08:01	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/25/19 20:48 10/25/19 20:48 10/25/19 20:48	Dil F
Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	Result 0.056 0.076 17.2 Chromatogra Result 30.3 MS) - Total R Result 19400 5420 2680 10500 1- Dissolved Result 18.8 19100 1520 Result 0.77	Qualifier U uphy - DL Qualifier D ecoverab Qualifier J	0.10 0.12 0.60 RL 1.44 1e RL 250 250 250 250 150 150 15.0 RL 0.10	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99 MDL 0.068	mg/L mg/L mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/25/19 08:01 10/25/19 08:01 10/25/19 08:01	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/25/19 20:48 10/25/19 20:48 10/25/19 20:48 10/25/19 20:48	Dil F
Method: 300.0 - Anions, Ion C Analyte Nitrate as N Nitrite as N Sulfate Method: 300.0 - Anions, Ion C Analyte Chloride Method: 200.8 - Metals (ICP/M Analyte Sodium Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N) Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3	Result	Qualifier U uphy - DL Qualifier D ecoverab Qualifier J	0.10 0.12 0.60 RL 1.44 1.44 1.45	0.056 0.076 0.35 MDL 0.17 MDL 66.8 24.8 73.5 233 MDL 1.7 34.2 0.99 MDL 0.068 5.0	mg/L mg/L mg/L Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	D	Prepared Prepared 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 10/24/19 05:06 Prepared 10/25/19 08:01 10/25/19 08:01 10/25/19 08:01	10/22/19 22:33 10/22/19 22:33 10/22/19 22:33 Analyzed 10/23/19 06:02 Analyzed 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/24/19 11:44 10/25/19 20:48 10/25/19 20:48 10/25/19 20:48	DilF

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Lab Sample ID: 460-194514-4 Client Sample ID: DDA-02

Date Collected: 10/21/19 13:40 Matrix: Water

Date Received: 10/21/19 20:35

General Chemistry (Continued)	•								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfide	0.58	U	1.0	0.58	mg/L			10/23/19 16:00	1

Client Sample ID: TBGW_102119

Lab Sample ID: 460-194514-5 Date Collected: 10/21/19 13:40 Matrix: Water

Date Received: 10/21/19 20:35

Method: 8260C SIM - Vol	atile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/23/19 11:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	89		72 - 133			-		10/23/19 11:18	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/24/19 23:48	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/24/19 23:48	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/24/19 23:48	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/24/19 23:48	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/24/19 23:48	1
Acetone	13		5.0	4.4	ug/L			10/24/19 23:48	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/24/19 23:48	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/24/19 23:48	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/24/19 23:48	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/24/19 23:48	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/24/19 23:48	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/24/19 23:48	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/24/19 23:48	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/24/19 23:48	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/24/19 23:48	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/24/19 23:48	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/24/19 23:48	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/24/19 23:48	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/24/19 23:48	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/24/19 23:48	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/24/19 23:48	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/24/19 23:48	1
Benzene	0.20	U	1.0	0.20	ug/L			10/24/19 23:48	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/24/19 23:48	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/24/19 23:48	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/24/19 23:48	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/24/19 23:48	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/24/19 23:48	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/24/19 23:48	1
Toluene	0.38	U	1.0	0.38	ug/L			10/24/19 23:48	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/24/19 23:48	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/24/19 23:48	1
Styrene	0.42	U	1.0	0.42	ug/L			10/24/19 23:48	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/24/19 23:48	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/24/19 23:48	1

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_102119

Lab Sample ID: 460-194514-5 Date Collected: 10/21/19 13:40

Date Received: 10/21/19 20:35

Matrix: Water

Analyte	Result	Qualifier	RL	MD	L Unit	D	Prepared	Analyzed	Dil Fac
MTBE	0.47	U	1.0	0.4	7 ug/L			10/24/19 23:48	1
Tetrahydrofuran	1.0	U	2.0	1.	0 ug/L			10/24/19 23:48	1
Cyclohexane	0.32	U	1.0	0.3	2 ug/L			10/24/19 23:48	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.3	7 ug/L			10/24/19 23:48	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.3	3 ug/L			10/24/19 23:48	1
Isopropylbenzene	0.34	U	1.0	0.3	4 ug/L			10/24/19 23:48	1
N-Propylbenzene	0.32	U	1.0	0.3	2 ug/L			10/24/19 23:48	1
Methylcyclohexane	0.26	U	1.0	0.2	6 ug/L			10/24/19 23:48	1
Indane	0.35	U	1.0	0.3	5 ug/L			10/24/19 23:48	1
Dichlorofluoromethane	0.34	U	1.0	0.3	4 ug/L			10/24/19 23:48	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.3	6 ug/L			10/24/19 23:48	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/24/19 23:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		74 - 132					10/24/19 23:48	1
Toluene-d8 (Surr)	100		80 - 120					10/24/19 23:48	1
4-Bromofluorobenzene	101		77 - 124					10/24/19 23:48	1
Dibromofluoromethane (Surr)	102		72 - 131					10/24/19 23:48	1

Client Sample ID: DDA-03 Lab Sample ID: 460-194632-1

Date Collected: 10/22/19 10:40 Matrix: Water

Method: 300.0 - Anions, Ion Ch	-					_	_		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/23/19 19:43	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/23/19 19:43	1
Sulfate	20.4		0.60	0.35	mg/L			10/23/19 19:43	1
Method: 300.0 - Anions, Ion Ch	romatogra	phy - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	71.5	D	3.24	0.38	mg/L			10/24/19 05:00	27
Method: 200.8 - Metals (ICP/MS) - Total R	ecoverable							
,	•	ecoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	•		RL 250	MD L 66.8	Unit ug/L	<u>D</u>	Prepared 10/25/19 08:02	Analyzed 10/25/19 17:48	Dil Fac
Analyte Sodium	Result			66.8		<u>D</u>		10/25/19 17:48	
Method: 200.8 - Metals (ICP/MS Analyte Sodium Magnesium Potassium	Result 40300		250	66.8	ug/L ug/L	<u>D</u>	10/25/19 08:02 10/25/19 08:02	10/25/19 17:48	
Analyte Sodium Magnesium	Result 40300 8740		250 250	66.8 24.8 73.5	ug/L ug/L	<u>D</u>	10/25/19 08:02 10/25/19 08:02 10/25/19 08:02	10/25/19 17:48 10/25/19 17:48	
Analyte Sodium Magnesium Potassium	Result 40300 8740 3420		250 250 250	66.8 24.8 73.5	ug/L ug/L ug/L	<u>D</u>	10/25/19 08:02 10/25/19 08:02 10/25/19 08:02	10/25/19 17:48 10/25/19 17:48 10/25/19 17:48	
Analyte Sodium Magnesium Potassium Calcium General Chemistry	Result 40300 8740 3420 16700		250 250 250	66.8 24.8 73.5	ug/L ug/L ug/L ug/L	<u>D</u>	10/25/19 08:02 10/25/19 08:02 10/25/19 08:02	10/25/19 17:48 10/25/19 17:48 10/25/19 17:48	
Analyte Sodium Magnesium Potassium Calcium General Chemistry Analyte	Result 40300 8740 3420 16700	Qualifier Qualifier	250 250 250 250 250	66.8 24.8 73.5 233	ug/L ug/L ug/L ug/L	=	10/25/19 08:02 10/25/19 08:02 10/25/19 08:02 10/25/19 08:02	10/25/19 17:48 10/25/19 17:48 10/25/19 17:48 10/25/19 17:48	Dil Fac
Analyte Sodium Magnesium Potassium Calcium General Chemistry Analyte	Result 40300 8740 3420 16700	Qualifier Qualifier	250 250 250 250 250	66.8 24.8 73.5 233 MDL 0.068	ug/L ug/L ug/L ug/L	=	10/25/19 08:02 10/25/19 08:02 10/25/19 08:02 10/25/19 08:02	10/25/19 17:48 10/25/19 17:48 10/25/19 17:48 10/25/19 17:48 Analyzed	Dil Fac
Analyte Sodium Magnesium Potassium Calcium General Chemistry Analyte Ammonia (as N)	Result 40300 8740 3420 16700 Result 0.079	Qualifier Qualifier J	250 250 250 250 250 250	66.8 24.8 73.5 233 MDL 0.068 5.0	ug/L ug/L ug/L ug/L ug/L	=	10/25/19 08:02 10/25/19 08:02 10/25/19 08:02 10/25/19 08:02	10/25/19 17:48 10/25/19 17:48 10/25/19 17:48 10/25/19 17:48 Analyzed 10/25/19 10:47	5

Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

Lab Sample ID: 460-194632-2 Client Sample ID: DDA-06

Date Collected: 10/22/19 12:20 Date Received: 10/22/19 20:40

Matrix: Water

Job ID: 460-194514-1

Analyte	Result	iphy Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.20		0.10	0.056	mg/L			10/24/19 01:18	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/24/19 01:18	1
Sulfate	5.65		0.60	0.35	mg/L			10/24/19 01:18	1
Method: 300.0 - Anions, Ion Chr	omatogra	phy - DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	85.9	9	3.84	0.45	mg/L			10/24/19 07:28	32
_ Method: 200.8 - Metals (ICP/MS)	- Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	35800		250	66.8	ug/L		10/25/19 08:02	10/25/19 18:39	5
Magnesium	34900		250	24.8	ug/L		10/25/19 08:02	10/25/19 18:39	5
Potassium	3510		250	73.5	ug/L		10/25/19 08:02	10/25/19 18:39	5
Calcium	13200		250	233	ug/L		10/25/19 08:02	10/25/19 18:39	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	2.6		0.10	0.068	mg/L			10/25/19 10:49	1
Bicarbonate Alkalinity as CaCO3	119		5.0	5.0	mg/L			10/25/19 17:51	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/25/19 17:51	1
Sulfide	0.58		1.0		mg/L			10/25/19 17:30	

Client Sample ID: PW-1(U) Lab Sample ID: 460-194632-3 Date Collected: 10/22/19 15:15

Date Received: 10/22/19 20:40

Matrix: Water

Method: 8260C SIM - Volatile	Organic Com	pounds (GC/MS)						
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	41		0.40	0.20	ug/L			10/24/19 03:37	1
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92		72 - 133			-		10/24/19 03:37	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/27/19 03:01	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/27/19 03:01	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/27/19 03:01	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/27/19 03:01	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/27/19 03:01	1
Acetone	4.4	U	5.0	4.4	ug/L			10/27/19 03:01	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/27/19 03:01	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/27/19 03:01	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/27/19 03:01	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/27/19 03:01	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/27/19 03:01	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/27/19 03:01	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/27/19 03:01	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/27/19 03:01	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/27/19 03:01	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/27/19 03:01	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: PW-1(U)

Lab Sample ID: 460-194632-3 Date Collected: 10/22/19 15:15

Matrix: Water

Date Received: 10/22/19 20:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/27/19 03:01	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/27/19 03:01	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/27/19 03:01	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/27/19 03:01	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/27/19 03:01	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/27/19 03:01	1
Benzene	15		1.0	0.20	ug/L			10/27/19 03:01	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/27/19 03:01	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/27/19 03:01	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/27/19 03:01	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/27/19 03:01	1
Tetrachloroethene	3.0		1.0	0.25	ug/L			10/27/19 03:01	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/27/19 03:01	1
Toluene	0.38	U	1.0	0.38	ug/L			10/27/19 03:01	1
Chlorobenzene	1.9		1.0	0.38	ug/L			10/27/19 03:01	1
Ethylbenzene	3.0		1.0	0.30	ug/L			10/27/19 03:01	1
Styrene	0.42	U	1.0	0.42	ug/L			10/27/19 03:01	1
Xylenes, Total	17		2.0	0.65	ug/L			10/27/19 03:01	1
Diethyl ether	0.56	J	1.0	0.21	ug/L			10/27/19 03:01	1
MTBE	0.47	U	1.0	0.47	ug/L			10/27/19 03:01	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/27/19 03:01	1
Cyclohexane	0.75	J	1.0	0.32	ug/L			10/27/19 03:01	1
1,4-Dioxane	47	J	50	28	ug/L			10/27/19 03:01	1
1,2,4-Trimethylbenzene	8.4		1.0	0.37	ug/L			10/27/19 03:01	1
1,3,5-Trimethylbenzene	2.0		1.0	0.33	ug/L			10/27/19 03:01	1
Isopropylbenzene	1.5		1.0	0.34	ug/L			10/27/19 03:01	1
N-Propylbenzene	1.7		1.0	0.32	ug/L			10/27/19 03:01	1
Methylcyclohexane	1.3		1.0	0.26	ug/L			10/27/19 03:01	1
Indane	2.8		1.0	0.35	ug/L			10/27/19 03:01	1
Dichlorofluoromethane	0.40	J	1.0	0.34	ug/L			10/27/19 03:01	1
1,2,3-Trimethylbenzene	2.1		1.0	0.36	ug/L			10/27/19 03:01	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/27/19 03:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		74 - 132					10/27/19 03:01	1
Toluene-d8 (Surr)	99		80 - 120					10/27/19 03:01	1
4-Bromofluorobenzene	98		77 - 124					10/27/19 03:01	1
Dibromofluoromethane (Surr)	99		72 - 131					10/27/19 03:01	1

Method: 8270D SIM - Semivolati	le Organi	ic Compoun	ds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	Ū	0.050	0.016	ug/L		10/24/19 09:54	10/25/19 06:52	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/24/19 09:54	10/25/19 06:52	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/24/19 09:54	10/25/19 06:52	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/24/19 09:54	10/25/19 06:52	1
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/24/19 09:54	10/25/19 06:52	1
Bis(2-chloroethyl)ether	5.6		0.030	0.026	ug/L		10/24/19 09:54	10/25/19 06:52	1

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: PW-1(U)

Date Received: 10/22/19 20:40

Lab Sample ID: 460-194632-3 Date Collected: 10/22/19 15:15

Matrix: Water

Method: 8270D - Semivolatil ^{Analyte}		Qualifier	ŔL	MDL	Unit	D	Prepared	Analyzed	Dil F
Phenol	0.29	U —	10	0.29	ug/L		10/24/19 09:54	10/25/19 03:48	
2-Chlorophenol	0.38		10		ug/L		10/24/19 09:54	10/25/19 03:48	
2-Methylphenol	0.26		10		ug/L		10/24/19 09:54	10/25/19 03:48	
4-Methylphenol	0.24		10		ug/L		10/24/19 09:54	10/25/19 03:48	
2-Nitrophenol	0.75		10		ug/L		10/24/19 09:54		
2,4-Dimethylphenol	0.24		10		ug/L		10/24/19 09:54		
2,4-Dichlorophenol	0.42		10		ug/L		10/24/19 09:54		
4-Chloro-3-methylphenol	0.58		10		ug/L			10/25/19 03:48	
2,4,6-Trichlorophenol	0.30		10		ug/L			10/25/19 03:48	
2,4,5-Trichlorophenol	0.28		10		ug/L			10/25/19 03:48	
2,4-Dinitrophenol	14		20		ug/L			10/25/19 03:48	
4-Nitrophenol	0.69		20		ug/L			10/25/19 03:48	
4,6-Dinitro-2-methylphenol	13		20		ug/L			10/25/19 03:48	
1,3-Dichlorobenzene	2.0		10		•			10/25/19 03:48	
1,4-Dichlorobenzene	1.3		10		ug/L			10/25/19 03:48	
I,2-Dichlorobenzene	1.3		10		ug/L			10/25/19 03:48	
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L			10/25/19 03:48	
Hexachloroethane	1.2		2.0		ug/L			10/25/19 03:48	
Vitrobenzene	0.57		1.0		ug/L			10/25/19 03:48	
sophorone	0.80		1.0		ug/L			10/25/19 03:48	
Bis(2-chloroethoxy)methane	0.24		10		ug/L			10/25/19 03:48	
,2,4-Trichlorobenzene	1.3		2.0		ug/L ug/L			10/25/19 03:48	
laphthalene	1.1		10		ug/L			10/25/19 03:48	
l-Chloroaniline	1.9		10		-			10/25/19 03:48	
Hexachlorobutadiene	0.78		1.0		ug/L ug/L			10/25/19 03:48	
2-Methylnaphthalene	1.1		1.0		ug/L			10/25/19 03:48	
Hexachlorocyclopentadiene	1.7		10		ug/L			10/25/19 03:48	
2-Chloronaphthalene	1.2		10		ug/L			10/25/19 03:48	
•	0.47				-			10/25/19 03:48	
2-Nitroaniline	0.47		10 10		-			10/25/19 03:48	
Dimethyl phthalate			10		ug/L ug/L			10/25/19 03:48	
Acenaphthylene 2.6-Dinitrotoluene	0.82		10 2.0		-			10/25/19 03:48	
,	0.39				-			10/25/19 03:48	
3-Nitroaniline	0.96		10		ug/L			10/25/19 03:48	
Acenaphthene	1.1		10		ug/L				
Dibenzofuran		U	10		ug/L			10/25/19 03:48	
2,4-Dinitrotoluene	1.0		2.0		ug/L			10/25/19 03:48	
Diethyl phthalate	0.98		10		ug/L			10/25/19 03:48	
I-Chlorophenyl phenyl ether	1.3		10		ug/L			10/25/19 03:48	
Fluorene	0.91		10		ug/L			10/25/19 03:48	
l-Nitroaniline	0.54		10		ug/L			10/25/19 03:48	
N-Nitrosodiphenylamine	0.89		10		ug/L			10/25/19 03:48	
l-Bromophenyl phenyl ether	0.75		10		ug/L			10/25/19 03:48	
Phenanthrene	0.58		10		ug/L			10/25/19 03:48	
Anthracene	0.63		10		ug/L			10/25/19 03:48	
Carbazole	0.68		10		ug/L			10/25/19 03:48	
Di-n-butyl phthalate	0.84		10		ug/L			10/25/19 03:48	
Fluoranthene	0.84		10		ug/L			10/25/19 03:48	
Pyrene	1.6		10		ug/L		10/24/19 09:54	10/25/19 03:48	
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/24/19 09:54	10/25/19 03:48	

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: PW-1(U)

Lab Sample ID: 460-194632-3 Date Collected: 10/22/19 15:15

Matrix: Water

Date Received: 10/22/19 20:40

Method: 8270D - Semivolatile ^{Analyte}	***	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/24/19 09:54	10/25/19 03:48	
Chrysene	0.91	U	2.0		ug/L		10/24/19 09:54	10/25/19 03:48	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/24/19 09:54	10/25/19 03:48	
Di-n-octyl phthalate	4.8	U	10		ug/L		10/24/19 09:54	10/25/19 03:48	
Benzo[k]fluoranthene	0.67	U	1.0		ug/L		10/24/19 09:54	10/25/19 03:48	
Indeno[1,2,3-cd]pyrene	1.3	Ü	2.0		ug/L		10/24/19 09:54	10/25/19 03:48	
Dibenz(a,h)anthracene	0.72		1.0		ug/L		10/24/19 09:54	10/25/19 03:48	
Benzo[g,h,i]perylene	1.4		10		ug/L		10/24/19 09:54	10/25/19 03:48	
Diphenyl ether	1.2		10		ug/L			10/25/19 03:48	
n,n'-Dimethylaniline	0.91		1.0		ug/L		10/24/19 09:54	10/25/19 03:48	
Caprolactam		U .* []]	10		ug/L		10/24/19 09:54	10/25/19 03:48	
ois (2-chloroisopropyl) ether	0.63	~ .	10		ug/L			10/25/19 03:48	
Bisphenol-A	9.9		10		ug/L ug/L		10/24/19 09:54	10/25/19 03:48	
N-Methylaniline	0.48		5.0		ug/L ug/L			10/25/19 03:48	
v-ivieu iyiai iiii ie	0.46	J	5.0	0.40	ug/L		10/24/19 09.04	10/23/18 03.40	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L				•	10/25/19 03:48	
			g/ =				, , , , , , , , , , , , , , , , , , , ,		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	70		51 - 108				10/24/19 09:54	10/25/19 03:48	
Phenol-d5 (Surr)	22		14 - 39				10/24/19 09:54	10/25/19 03:48	
Ferphenyl-d14 (Surr)	72		40 - 148				10/24/19 09:54	10/25/19 03:48	
2,4,6-Tribromophenol (Surr)	67		26 - 139				10/24/19 09:54	10/25/19 03:48	
2-Fluorophenol (Surr)	33		25 ₋ 58				10/24/19 09:54	10/25/19 03:48	
2-Fluorobiphenyl (Surr)	68		45 - 107				10/24/19 09:54	10/25/19 03:48	
. , , ,									
Method: 300.0 - Anions, Ion (Chromatogra	iphy							
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Nitrate as N	0.91		0.10	0.056	mg/L			10/24/19 00:35	
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/24/19 00:35	
Sulfate	15.5		0.60	0.35	mg/L			10/24/19 00:35	
Method: 300.0 - Anions, Ion (Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	50.0	Đ	2.28	0.27	mg/L			10/24/19 03:03	1
Method: 200.8 - Metals (ICP/I	•								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Sodium	29300		250		ug/L			10/25/19 18:08	
V lagnesium	9710		250		ug/L			10/25/19 18:08	
Potassium	3060		250		ug/L			10/25/19 18:08	
Calcium	15600		250	233	ug/L		10/25/19 08:02	10/25/19 18:08	
Method: 6010D - Metals (ICP)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Cobalt, Dissolved	23.9	J	50.0		ug/L		10/26/19 09:47		
Iron, Dissolved	25800		150 15.0		ug/L ug/L		10/26/19 09:47	10/30/19 02:55 10/30/19 02:55	

Client: Golder Associates Inc.

Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: PW-1(U)

Lab Sample ID: 460-194632-3

Date Collected: 10/22/19 15:15 Matrix: Water Date Received: 10/22/19 20:40

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.38		0.10	0.068	mg/L			10/25/19 10:50	1
Bicarbonate Alkalinity as CaCO3	81.7		5.0	5.0	mg/L			10/25/19 17:58	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/25/19 17:58	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/25/19 17:30	1

Client Sample ID: TBGW_102219 Lab Sample ID: 460-194632-4

Date Collected: 10/22/19 15:15 Matrix: Water

Date Received: 10/22/19 20:40

Method: 8260C SIM - Volatile (Organic Coi	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.20	U	0.40	0.20	ug/L			10/24/19 03:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		72 - 133			-		10/24/19 03:12	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/26/19 09:20	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/26/19 09:20	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/26/19 09:20	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/26/19 09:20	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/26/19 09:20	1
Acetone	9.5		5.0	4.4	ug/L			10/26/19 09:20	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/26/19 09:20	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/26/19 09:20	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/26/19 09:20	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/26/19 09:20	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/26/19 09:20	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/26/19 09:20	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/26/19 09:20	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/26/19 09:20	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/26/19 09:20	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/26/19 09:20	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/26/19 09:20	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/26/19 09:20	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/26/19 09:20	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/26/19 09:20	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/26/19 09:20	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/26/19 09:20	1
Benzene	0.20	U	1.0	0.20	ug/L			10/26/19 09:20	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/26/19 09:20	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/26/19 09:20	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/26/19 09:20	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/26/19 09:20	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/26/19 09:20	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/26/19 09:20	1
Toluene	0.38	U	1.0	0.38	ug/L			10/26/19 09:20	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/26/19 09:20	1
Ethylbenzene	0.30	U	1.0	0.30	ua/L			10/26/19 09:20	1

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_102219

Lab Sample ID: 460-194632-4 Date Collected: 10/22/19 15:15

Matrix: Water

Date Received: 10/22/19 20:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	0.42	U	1.0	0.42	ug/L			10/26/19 09:20	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/26/19 09:20	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/26/19 09:20	1
MTBE	0.47	U	1.0	0.47	ug/L			10/26/19 09:20	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/26/19 09:20	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/26/19 09:20	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/26/19 09:20	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/26/19 09:20	
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/26/19 09:20	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/26/19 09:20	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/26/19 09:20	1
Indane	0.35	U	1.0	0.35	ug/L			10/26/19 09:20	1
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/26/19 09:20	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/26/19 09:20	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Isopropyl Alcohol	5.4	JN	ug/L		2.61	67-63-0		10/26/19 09:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		74 - 132					10/26/19 09:20	-
Toluene-d8 (Surr)	97		80 - 120					10/26/19 09:20	i
4-Bromofluorobenzene	95		77 - 124					10/26/19 09:20	5
Dibromofluoromethane (Surr)	106		72 - 131					10/26/19 09:20	

Client Sample ID: DGC-2S

Date Collected: 10/23/19 10:40

Date Received: 10/23/19 20:50

Lab	Sample	ID:	460-	194	732-1	

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	22.5	1.08	0.13	mg/L			10/25/19 06:45	9
Nitrate as N	0.062 J	0.10	0.056	mg/L			10/24/19 23:24	1
Nitrite as N	0.076 U	0.12	0.076	mg/L			10/24/19 23:24	1
Sulfate	21.0	0.60	0.35	mg/L			10/24/19 23:24	1

Method: 200.8 - Metals (ICP/MS) - Total Recoverable							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	15800	250	66.8	ug/L		10/29/19 09:04	10/29/19 13:21	5
Magnesium	6980	250	24.8	ug/L		10/29/19 09:04	10/29/19 13:21	5
Potassium	3070	250	73.5	ug/L		10/29/19 09:04	10/29/19 13:21	5
Calcium	14900	250	233	ug/L		10/29/19 09:04	10/29/19 13:21	5

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.13		0.10	0.068	mg/L			10/25/19 16:30	1
Bicarbonate Alkalinity as CaCO3	51.3		5.0	5.0	mg/L			10/29/19 09:05	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/29/19 09:05	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/25/19 17:30	1

Client: Golder Associates Inc.

0.87 U

0.43 J

0.97 U

1.1 U

2.6 U

2.3 U

0.50 U

0.73 U *

110

2.4

310

700

0.83 U

0.42 U

0.93 U

2.1

8.9

600

78

51

74

15

U

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: PZ-5-EXT

1,1,2-Trichloroethane

4-Methyl-2-pentanone

Tetrachloroethene

Chlorobenzene

Ethylbenzene

Xylenes, Total

Tetrahydrofuran

Cyclohexane

1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene

Isopropylbenzene

N-Propylbenzene

Methylcyclohexane

Diethyl ether

trans-1,3-Dichloropropene

1,1,2,2-Tetrachloroethane

Benzene

Bromoform

2-Hexanone

Toluene

Styrene

MTBE

Lab Sample ID: 460-194826-3

Job ID: 460-194514-1

Pate Collected: 10/24/19 10 Pate Received: 10/25/19 10						Matrix:				
Method: 8260C SIM - Vola Analyte	~~~	mpounds ((GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,4-Dioxane	1.7	U	2.0	1.7	ug/L			10/27/19 06:21	5	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	79		72 - 133					10/27/19 06:21		
Method: 8260C - Volatile										
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac	
Chloromethane	0.80	-	2.0		ug/L			10/30/19 10:03	2	
Bromomethane	1.1	-	2.0		ug/L			10/30/19 10:03	2	
Vinyl chloride	0.74		2.0		ug/L			10/30/19 10:03		
Chloroethane	0.64	_	2.0		ug/L			10/30/19 10:03	2	
Methylene Chloride	0.63	-	2.0		ug/L			10/30/19 10:03	2	
Acetone	8.8		10		ug/L			10/30/19 10:03	2	
Carbon disulfide	1.6	_	2.0		ug/L			10/30/19 10:03	2	
1,1-Dichloroethene	0.53		2.0	0.53	_			10/30/19 10:03	2	
1,1-Dichloroethane	0.53		2.0	0.53	_			10/30/19 10:03	2	
trans-1,2-Dichloroethene	0.47	U	2.0		ug/L			10/30/19 10:03	2	
cis-1,2-Dichloroethene	13		2.0	0.44	ug/L			10/30/19 10:03	2	
Chloroform	0.65	U	2.0		ug/L			10/30/19 10:03	2	
1,2-Dichloroethane	0.86		2.0		ug/L			10/30/19 10:03	2	
2-Butanone (MEK)	3.7	U	10		ug/L			10/30/19 10:03	2	
1,1,1-Trichloroethane	0.48	U	2.0		ug/L			10/30/19 10:03	2	
Carbon tetrachloride	0.42	U	2.0		ug/L			10/30/19 10:03	2	
Bromodichloromethane	0.69	U	2.0		ug/L			10/30/19 10:03	2	
1,2-Dichloropropane	0.71	U	2.0	0.71	ug/L			10/30/19 10:03	2	
cis-1,3-Dichloropropene	0.44	U	2.0	0.44	ug/L			10/30/19 10:03	2	
Trichloroethene	0.63	U	2.0	0.63	ug/L			10/30/19 10:03	2	
Dibromochloromethane	0.56	U	2.0	0.56	ug/L			10/30/19 10:03	2	

2.0

2.0

2.0

2.0

10

10

2.0

2.0

2.0

2.0

2.0

2.0

4.0

2.0

2.0

4.0

2.0

2.0

2.0

2.0

2.0

2.0

0.87 ug/L 0.41 ug/L

0.97 ug/L

1.1 ug/L

2.6 ug/L

2.3 ug/L

0.50 ug/L

0.73 ug/L

0.76 ug/L

0.75 ug/L

0.60 ug/L

0.83 ug/L

1.3 ug/L

0.42 ug/L

0.93 ug/L

2.1 ug/L

0.64 ug/L

0.75 ug/L

0.65 ug/L

0.67 ug/L

0.64 ug/L

0.52 ug/L

Eurofins TestAmerica, Edison

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

10/30/19 10:03

2

2

2

2

2 2

2

2

2

2

2 2

2

2

2 2

2

2

2

2

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: PZ-5-EXT

Lab Sample ID: 460-194826-3 Date Collected: 10/24/19 10:30

Matrix: Water

Date Received: 10/25/19 10:09

Method: 8260C - Volatile Organic C	ompo	unds by (GC/MS (Coi	ntinu	ıed)					
Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indane	64	·-	2.0		0.69	ug/L			10/30/19 10:03	2
Dichlorofluoromethane	0.68	U	2.0		0.68	ug/L			10/30/19 10:03	2
1,2,3-Trimethylbenzene	150		2.0		0.72	ug/L			10/30/19 10:03	2
Tentatively Identified Compound Est.	Result	Qualifier	Unit	D	,	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	16	\overline{J}	ug/L		4.	54			10/30/19 10:03	
Benzene, 1-ethyl-3-methyl-	45	JN	ug/L		10.	07	620-14-4		10/30/19 10:03	2
Benzene, 1-ethyl-4-methyl-	92	JN	ug/L		10.	09	622-96-8		10/30/19 10:03	2
Benzene, 1-ethyl-2-methyl-	100	JN	ug/L		10.	37	611-14-3		10/30/19 10:03	2
Benzene, 1,4-diethyl-	14	JN	ug/L		11.	21	105-05-5		10/30/19 10:03	2
Benzene, 2-ethyl-1,4-dimethyl-	11	JN	ug/L		11.	46	1758-88-9		10/30/19 10:03	2
Benzene, 1-ethyl-2,4-dimethyl-	17	JN	ug/L		11.	54	874-41-9		10/30/19 10:03	2
Naphthalene	11	JN	ug/L		12.	77	91-20-3		10/30/19 10:03	2
Unknown	35	J	ug/L		13.	16			10/30/19 10:03	2
Surrogate %Re	covery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		74 - 132						10/30/19 10:03	- 2
Toluene-d8 (Surr)	97		80 - 120						10/30/19 10:03	2
4-Bromofluorobenzene	93		77 - 124						10/30/19 10:03	2
Dibromofluoromethane (Surr)	100		72 - 131						10/30/19 10:03	2

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/26/19 09:05	10/27/19 00:32	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/26/19 09:05	10/27/19 00:32	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/26/19 09:05	10/27/19 00:32	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/26/19 09:05	10/27/19 00:32	1
Pentachlorophenol	0.15	₩* UJ	0.20	0.15	ug/L		10/26/19 09:05	10/27/19 00:32	1
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026	ug/L		10/26/19 09:05	10/27/19 00:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	1.0	J	10	0.29	ug/L		10/26/19 09:05	10/27/19 03:55	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:05	10/27/19 03:55	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/26/19 09:05	10/27/19 03:55	1
4-Methylphenol	0.89	J	10	0.65	ug/L		10/26/19 09:05	10/27/19 03:55	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:05	10/27/19 03:55	1
2,4-Dimethylphenol	1.5	J	10	0.62	ug/L		10/26/19 09:05	10/27/19 03:55	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:05	10/27/19 03:55	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:05	10/27/19 03:55	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/26/19 09:05	10/27/19 03:55	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:05	10/27/19 03:55	1
2,4-Dinitrophenol	14	U *	20	14	ug/L		10/26/19 09:05	10/27/19 03:55	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:05	10/27/19 03:55	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/26/19 09:05	10/27/19 03:55	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/26/19 09:05	10/27/19 03:55	1
1,4-Dichlorobenzene	1.6	J	10	1.3	ug/L		10/26/19 09:05	10/27/19 03:55	1
1,2-Dichlorobenzene	1.6	J	10	1.3	ug/L		10/26/19 09:05	10/27/19 03:55	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/26/19 09:05	10/27/19 03:55	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/26/19 09:05	10/27/19 03:55	1

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: PZ-5-EXT

Lab Sample ID: 460-194826-3

Matrix: Water

Date Collected: 10/24/19 10:30 Date Received: 10/25/19 10:09

Sephorone 0.80 U	10/27/19 03:55 10/27/19 03:55	Dil Fa
Sophorone 0.80	10/27/19 03:55 10/27/19 03:55	
Bis(2-chloroethoxy)methane 0.59 U 10 0.59 Ug/L 10/26/19 09:05 1,2,4-Trichlorobenzene 1.2 J 2.0 0.64 ug/L 10/26/19 09:05 Naphthalene 6.5 J 10 1.1 ug/L 10/26/19 09:05 4-Chloroaniline 1.9 U 10 0.78 ug/L 10/26/19 09:05 2-Methylnaphthalene 1.1 U 10 1.1 ug/L 10/26/19 09:05 2-Methylnaphthalene 1.1 U 10 3.6 ug/L 10/26/19 09:05 2-Chloronaphthalene 1.2 U 10 3.6 ug/L 10/26/19 09:05 2-Chloronaphthalene 1.2 U 10 0.47 ug/L 10/26/19 09:05 2-Chloronaphthalene 1.2 U 10 0.47 ug/L 10/26/19 09:05 2-Nitroaniline 0.47 U 10 0.77 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 0.82 <	10/27/19 03:55 10/27/19 03:55	
1,2,4-Trichlorobenzene 1.2 J 2.0 0.64 ug/L 10/26/19 09:05 Naphthalene 6.5 J 10 1.1 ug/L 10/26/19 09:05 4-Chloroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 2-Methylnaphthalene 0.78 U 1.0 0.78 ug/L 10/26/19 09:05 2-Methylnaphthalene 1.1 U 10 1.1 ug/L 10/26/19 09:05 2-Chloronaphthalene 3.6 U 10 3.6 ug/L 10/26/19 09:05 2-Chloroaniline 0.47 U 10 0.47 ug/L 10/26/19 09:05 2-Chloroaniline 0.47 U 10 0.47 ug/L 10/26/19 09:05 2-Chloroaniline 0.47 U 10 0.47 ug/L 10/26/19 09:05 2-Chloromaphthalate 0.77 U 10 0.77 ug/L 10/26/19 09:05 2-Choinitrotoluene 0.83 U 10 0.82 ug	10/27/19 03:55 10/27/19 03:55	
Naphthalene 6.5 J 10 1.1 ug/L 10/26/19 09:05 4-Chloroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 4-Chloroaniline 0.78 U 1.0 0.78 ug/L 10/26/19 09:05 2-Methylnaphthalene 1.1 U 10 1.1 ug/L 10/26/19 09:05 2-Methylnaphthalene 1.1 U 10 3.6 ug/L 10/26/19 09:05 2-Chloronaphthalene 1.2 U 10 3.6 ug/L 10/26/19 09:05 2-Nitroaniline 0.47 U 10 0.47 ug/L 10/26/19 09:05 2-Dinitrotoluene 0.82 U 10 0.77 ug/L 10/26/19 09:05 2-G-Dinitrotoluene 0.83 U 2.0 0.83 ug/L 10/26/19 09:05 2-G-Dinitrotoluene 1.9 U 10 0.82 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 1.9 ug/L	10/27/19 03:55 10/27/19 03:55	
4-Chloroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 Hexachlorobutadiene 0.78 U 1.0 0.78 ug/L 10/26/19 09:05 2-Methylnaphthalene 1.1 U 10 1.1 ug/L 10/26/19 09:05 Hexachlorocyclopentadiene 3.6 U 10 3.6 ug/L 10/26/19 09:05 2-Chloronaphthalene 1.2 U 10 0.47 ug/L 10/26/19 09:05 2-Nitroaniline 0.47 U 10 0.47 ug/L 10/26/19 09:05 2-Nitroaniline 0.82 U 10 0.77 ug/L 10/26/19 09:05 Acenaphthylene 0.82 U 10 0.77 ug/L 10/26/19 09:05 3-Nitroaniline 0.83 U 2.0 0.83 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 1.1 ug/L 10/26/19 09:05 3-Nitroaniline 1.1 U 10 1.1 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 10	10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55	
Hexachlorobutadiene 0.78 U	10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55	
2-Methylnaphthalene 1.1 U 10 1.1 ug/L 10/26/19 09:05 2-Chloronaphthalene 3.6 U 10 3.6 ug/L 10/26/19 09:05 2-Chloronaphthalene 1.2 U 10 1.2 ug/L 10/26/19 09:05 2-Nitroaniline 0.47 U 10 0.47 ug/L 10/26/19 09:05 Dimethyl phthalate 0.77 U 10 0.82 ug/L 10/26/19 09:05 Acenaphthylene 0.82 U 10 0.82 ug/L 10/26/19 09:05 2-6-Dinitrotoluene 0.83 U 2.0 0.83 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 3-Nitroaniline 1.1 U 10 1.1 ug/L 10/26/19 09:05 2-4-Dinitrotoluene 1.1 U 10 1.1 ug/L 10/26/19 09:05 2-4-Dinitrotoluene 1.0 0 2.0 <t< td=""><td>10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55</td><td></td></t<>	10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55	
Hexachlorocyclopentadiene 3.6 U 10 3.6 ug/L 10/26/19 09:05 2-Chloronaphthalene 1.2 U 10 1.2 ug/L 10/26/19 09:05 2-Nitroaniline 0.47 U 10 0.47 ug/L 10/26/19 09:05 Dimethyl phthalate 0.77 U 10 0.77 ug/L 10/26/19 09:05 Acenaphthylene 0.82 U 10 0.82 ug/L 10/26/19 09:05 2,6-Dinitrotoluene 0.83 U 2.0 0.83 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 3-Nitroaniline 1.1 U 10 1.1 ug/L 10/26/19 09:05 2-4-Dinitrotoluene 1.1 U 10 1.1 ug/L 10/26/19 09:05 2-4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L <td>10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55</td> <td></td>	10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55	
2-Chloronaphthalene 1.2 U 10 10 1.2 ug/L 10/26/19 09:05 2-Nitroaniline 0.47 U 10 0.47 ug/L 10/26/19 09:05 Dimethyl phthalate 0.77 U 10 0.77 ug/L 10/26/19 09:05 Acenaphthylene 0.82 U 10 0.82 ug/L 10/26/19 09:05 2,6-Dinitrotoluene 0.83 U 2.0 0.83 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 1.1 ug/L 10/26/19 09:05 3-Nitroaniline 1.1 U 10 10 1.1 ug/L 10/26/19 09:05 Dibenzofuran 1.1 U 10 10 1.1 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 Diethyl phthalate 0.98 U 10 0.98 ug/L 10/26/19 09:05 4-Chlorophenyl phenyl ether 1.3 U 10 1.3 ug/L 10/26/19 09:05 4-Nitroaniline 1.2 U 10 0.91 ug/L 10/26/19 09:05 4-Nitroaniline 1.2 U 10 0.91 ug/L 10/26/19 09:05 N-Nitrosodiphenylamine 0.89 U 10 0.91 ug/L 10/26/19 09:05 A-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/26/19 09:05 A-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/26/19 09:05 A-Bromophenyl phenyl ether 0.75 U 10 0.58 ug/L 10/26/19 09:05 A-Bromophenyl phenyl ether 0.75 U 10 0.58 ug/L 10/26/19 09:05 A-Bromophenyl phenyl ether 0.75 U 10 0.58 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.68 ug/L 10/26/19 09:05 Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 D-In-butyl pht	10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55	
2-Nitroaniline 0.47 U 10 0.47 ug/L 10/26/19 09:05 Dimethyl phthalate 0.77 U 10 0.77 ug/L 10/26/19 09:05 Acenaphthylene 0.82 U 10 0.82 ug/L 10/26/19 09:05 2,6-Dinitrotoluene 0.83 U 2.0 0.83 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 3-Nitroaniline 1.1 U 10 1.9 ug/L 10/26/19 09:05 Acenaphthene 1.1 U 10 1.1 ug/L 10/26/19 09:05 Dibenzofuran 1.1 U 10 1.1 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 4-Chlorophenyl phenyl ether 1.3 U 10 0.98 ug/L 10/26/19 09:05 4-Nitroaniline 1.2 U 10 0.91 ug/L 10/26/19 09:05 N-Nitrosodiphenylamine 0.89 U 10 <	10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55	
Dimethyl phthalate 0.77 U 10 0.77 ug/L 10/26/19 09:05 Acenaphthylene 0.82 U 10 0.82 ug/L 10/26/19 09:05 2,6-Dinitrotoluene 0.83 U 2.0 0.83 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 Acenaphthene 1.1 U 10 1.1 ug/L 10/26/19 09:05 Dibenzofuran 1.1 U 10 1.1 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 1.0 0.98 ug/L 10/26/19 09:05 4-Chlorophenyl phthalate 0.98 U 10 0.98 ug/L </td <td>10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55</td> <td></td>	10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55	
Acenaphthylene 0.82 U 10 0.82 ug/L 10/26/19 09:05 2,6-Dinitrotoluene 0.83 U 2.0 0.83 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 Acenaphthene 1.1 U 10 1.1 ug/L 10/26/19 09:05 Dibenzofuran 1.1 U 10 1.1 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 1.0 0.98 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 1.0 0.98 ug/L 10/26/19 09:05 4-Chlorophenyl phthalate 0.98 U 1.0 0.98 ug/L 10/26/19 09:05 4-Nitroaniline 1.2 U 1.0	10/27/19 03:55 10/27/19 03:55 10/27/19 03:55 10/27/19 03:55	
2,6-Dinitrotoluene 0.83 U 2.0 0.83 ug/L 10/26/19 09:05 3-Nitroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 Acenaphthene 1.1 U 10 1.1 ug/L 10/26/19 09:05 Dibenzofuran 1.1 U 10 1.1 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 10 1.1 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 10 ug/L 10/26/19 09:05 4-Chlorophenyl phthalate 0.98 U 10 0.98 ug/L 10/26/19 09:05 Fluorene 0.91 U 10 0.91 ug/L 10/26/19 09:05 4-Nitroaniline 1.2 U 10 0.89 ug/L 10/26/19 09:05	10/27/19 03:55 10/27/19 03:55 10/27/19 03:55	
3-Nitroaniline 1.9 U 10 1.9 ug/L 10/26/19 09:05 Acenaphthene 1.1 U 10 1.1 ug/L 10/26/19 09:05 Dibenzofuran 1.1 U 10 1.1 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 Diethyl phthalate 0.98 U 10 0.98 ug/L 10/26/19 09:05 4-Chlorophenyl phenyl ether 1.3 U 10 1.3 ug/L 10/26/19 09:05 Fluorene 0.91 U 10 0.91 ug/L 10/26/19 09:05 4-Nitroaniline 1.2 U 10 1.2 ug/L 10/26/19 09:05 N-Nitrosodiphenylamine 0.89 U 10 0.89 ug/L 10/26/19 09:05 A-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/26/19 09:05 4-Bromophenyl phenyl ether 0.75 U 10 0.58 ug/L 10/26/19 09:05 Anthracene 0.63 U 10 0.63 ug/L 10/26/19 09:05 Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05	10/27/19 03:55 10/27/19 03:55	
Acenaphthene 1.1 U 10 1.1 ug/L 10/26/19 09:05 Dibenzofuran 1.1 U 10 1.1 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 4-Chlorophenyl phthalate 0.98 U 10 0.98 ug/L 10/26/19 09:05 4-Chlorophenyl phenyl ether 1.3 U 10 0.91 ug/L 10/26/19 09:05 Fluorene 0.91 U 10 0.91 ug/L 10/26/19 09:05 4-Nitroaniline 1.2 U 10 1.2 ug/L 10/26/19 09:05 4-Bromophenylamine 0.89 U 10 0.89 ug/L 10/26/19 09:05 4-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/26/19 09:05 Phenanthrene 0.58 U 10 0.58 ug/L 10/26/19 09:05 Carbazole 0.63 U 10	10/27/19 03:55	
Dibenzofuran 1.1 U 10 1.1 ug/L 10/26/19 09:05 2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 Diethyl phthalate 0.98 U 10 0.98 ug/L 10/26/19 09:05 4-Chlorophenyl phenyl ether 1.3 U 10 1.3 ug/L 10/26/19 09:05 Fluorene 0.91 U 10 0.91 ug/L 10/26/19 09:05 4-Nitroaniline 1.2 U 10 1.2 ug/L 10/26/19 09:05 N-Nitrosodiphenylamine 0.89 U 10 0.89 ug/L 10/26/19 09:05 4-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/26/19 09:05 Phenanthrene 0.58 U 10 0.58 ug/L 10/26/19 09:05 Anthracene 0.63 U 10 0.63 ug/L 10/26/19 09:05 Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05		
2,4-Dinitrotoluene 1.0 U 2.0 1.0 ug/L 10/26/19 09:05 Diethyl phthalate 0.98 U 10 0.98 ug/L 10/26/19 09:05 4-Chlorophenyl phenyl ether 1.3 U 10 1.3 ug/L 10/26/19 09:05 Fluorene 0.91 U 10 0.91 ug/L 10/26/19 09:05 4-Nitroaniline 1.2 U 10 1.2 ug/L 10/26/19 09:05 N-Nitrosodiphenylamine 0.89 U 10 0.89 ug/L 10/26/19 09:05 4-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/26/19 09:05 Phenanthrene 0.58 U 10 0.58 ug/L 10/26/19 09:05 Anthracene 0.63 U 10 0.63 ug/L 10/26/19 09:05 Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05	10/21/19 00:00	
Diethyl phthalate 0.98 U 10 0.98 ug/L 10/26/19 09:05 4-Chlorophenyl phenyl ether 1.3 U 10 1.3 ug/L 10/26/19 09:05 Fluorene 0.91 U 10 0.91 ug/L 10/26/19 09:05 4-Nitroaniline 1.2 U 10 1.2 ug/L 10/26/19 09:05 N-Nitrosodiphenylamine 0.89 U 10 0.89 ug/L 10/26/19 09:05 4-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/26/19 09:05 Phenanthrene 0.58 U 10 0.58 ug/L 10/26/19 09:05 Anthracene 0.63 U 10 0.63 ug/L 10/26/19 09:05 Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05	10/27/19 03:55	
4-Chlorophenyl phenyl ether 1.3 U 10 1.3 ug/L 10/26/19 09:05 Fluorene 0.91 U 10 0.91 ug/L 10/26/19 09:05 4-Nitroaniline 1.2 U 10 10 0.89 ug/L 10/26/19 09:05 N-Nitrosodiphenylamine 0.89 U 10 0.89 ug/L 10/26/19 09:05 4-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/26/19 09:05 Phenanthrene 0.58 U 10 0.58 ug/L 10/26/19 09:05 Anthracene 0.63 U 10 0.63 ug/L 10/26/19 09:05 Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 1.6 U 10 1.6 ug/L 10/26/19 09:05		
Fluorene 0.91 U 10 0.91 ug/L 10/26/19 09:05 4-Nitroaniline 1.2 U 10 1.2 ug/L 10/26/19 09:05 N-Nitrosodiphenylamine 0.89 U 10 0.89 ug/L 10/26/19 09:05 4-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/26/19 09:05 Phenanthrene 0.58 U 10 0.58 ug/L 10/26/19 09:05 Anthracene 0.63 U 10 0.63 ug/L 10/26/19 09:05 Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05	10/27/19 03:55	
4-Nitroaniline 1.2 U 10 1.2 ug/L 10/26/19 09:05 N-Nitrosodiphenylamine 0.89 U 10 0.89 ug/L 10/26/19 09:05 4-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/26/19 09:05 Phenanthrene 0.58 U 10 0.58 ug/L 10/26/19 09:05 Anthracene 0.63 U 10 0.63 ug/L 10/26/19 09:05 Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05	10/27/19 03:55	
N-Nitrosodiphenylamine 0.89 U 10 0.89 ug/L 10/26/19 09:05 4-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/26/19 09:05 Phenanthrene 0.58 U 10 0.58 ug/L 10/26/19 09:05 Anthracene 0.63 U 10 0.63 ug/L 10/26/19 09:05 Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05		
4-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 10/26/19 09:05 Phenanthrene 0.58 U 10 0.58 ug/L 10/26/19 09:05 Anthracene 0.63 U 10 0.63 ug/L 10/26/19 09:05 Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05	10/27/19 03:55	
Phenanthrene 0.58 U 10 0.58 ug/L 10/26/19 09:05 Anthracene 0.63 U 10 0.63 ug/L 10/26/19 09:05 Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05	10/27/19 03:55	
Anthracene 0.63 U 10 0.63 ug/L 10/26/19 09:05 Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05	10/27/19 03:55	
Carbazole 0.68 U 10 0.68 ug/L 10/26/19 09:05 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05		
Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 10/26/19 09:05 Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05	10/27/19 03:55	
Fluoranthene 0.84 U 10 0.84 ug/L 10/26/19 09:05 Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05	10/27/19 03:55	
Pyrene 1.6 U 10 1.6 ug/L 10/26/19 09:05		
Butyl benzyl phthalate 0.85 U 10 0.85 ug/L 10/26/19 09:05		
3,3'-Dichlorobenzidine 1.4 U 10 1.4 ug/L 10/26/19 09:05		
Chrysene 0.91 U 2.0 0.91 ug/L 10/26/19 09:05		
Bis(2-ethylhexyl) phthalate 1.7 U 2.0 1.7 ug/L 10/26/19 09:05		
Di-n-octyl phthalate 4.8 U 10 4.8 ug/L 10/26/19 09:05		
Benzo[k]fluoranthene 0.67 U 1.0 0.67 ug/L 10/26/19 09:05		
Indeno[1,2,3-cd]pyrene 0.94 U 2.0 0.94 ug/L 10/26/19 09:05		
Dibenz(a,h)anthracene 0.72 U 1.0 0.72 ug/L 10/26/19 09:05		
Benzo[g,h,i]perylene 1.4 U 10 1.4 ug/L 10/26/19 09:05		
Diphenyl ether 6.4 J 10 1.2 ug/L 10/26/19 09:05		
n,n'-Dimethylaniline 0.91 U 1.0 0.91 ug/L 10/26/19 09:05		
Caprolactam 0.68 ↓ 10 0.68 ug/L 10/26/19 09:05		
bis (2-chloroisopropyl) ether 0.63 U 10 0.63 ug/L 10/26/19 09:05	10/27/19 03:55	
Bisphenol-A 9.9 U 10 9.9 ug/L 10/26/19 09:05	10/27/19 03:55	
N-Methylaniline 1.3 U 5.0 1.3 ug/L 10/26/19 09:05	10/27/19 03:55	
Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared	Analyzed	Dil Fa
·	10/27/19 03:55	
Benzene, 1,3-dimethyl- 8.6 J N ug/L 3.46 108-38-3 10/26/19 09:05		
Benzene, (1-methylethyl)- 38 J N ug/L 3.73 98-82-8 10/26/19 09:05		

Eurofins TestAmerica, Edison

10/31/2019

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: PZ-5-EXT

Lab Sample ID: 460-194826-3

Matrix: Water

Date Collected: 10/24/19 10:30 Date Received: 10/25/19 10:09

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Benzene, propyl-	49	JN	ug/L	3	.98	103-65-1	10/26/19 09:05	10/27/19 03:55	1
Benzene, 1-ethyl-2-methyl-	71	JN	ug/L	4	.07	611-14-3	10/26/19 09:05	10/27/19 03:55	
Benzene, 1-ethyl-3-methyl-	52	JN	ug/L	4	.19	620-14-4	10/26/19 09:05	10/27/19 03:55	1
Benzene, 1,2,3-trimethyl-	340	JN	ug/L	4	.32	526-73-8	10/26/19 09:05	10/27/19 03:55	1
Benzene, 1,2,4-trimethyl-	95	JN	ug/L	4	.53	95-63-6	10/26/19 09:05	10/27/19 03:55	1
Indane	43	JN	ug/L	4	.65	496-11-7	10/26/19 09:05	10/27/19 03:55	1
Benzene, 1,4-diethyl-	11	JN	ug/L	4	.78	105-05-5	10/26/19 09:05	10/27/19 03:55	1
Benzene, 2-ethyl-1,4-dimethyl-	12	JN	ug/L	4	.91	1758-88-9	10/26/19 09:05	10/27/19 03:55	1
Benzene, 4-ethyl-1,2-dimethyl-	9.4	JN	ug/L	5	.12	934-80-5	10/26/19 09:05	10/27/19 03:55	1
Unknown	22	J	ug/L	6	.11		10/26/19 09:05	10/27/19 03:55	1
Unknown	15	J	ug/L	7	.11		10/26/19 09:05	10/27/19 03:55	1
Unknown	7.5	J	ug/L	7	.57		10/26/19 09:05	10/27/19 03:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	85		51 - 108				10/26/19 09:05	10/27/19 03:55	1
Phenol-d5 (Surr)	30		14 - 39				10/26/19 09:05	10/27/19 03:55	1
Terphenyl-d14 (Surr)	86		40 - 148				10/26/19 09:05	10/27/19 03:55	1
2,4,6-Tribromophenol (Surr)	116		26 - 139				10/26/19 09:05	10/27/19 03:55	1
2-Fluorophenol (Surr)	43		25 - 58				10/26/19 09:05	10/27/19 03:55	1
2-Fluorobiphenyl (Surr)	81		45 - 107				10/26/19 09:05	10/27/19 03:55	1
- Method: 6010D - Metals (ICP)) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	1.7	U	50.0	1.7	ug/L		10/30/19 09:19	10/30/19 23:34	1
Iron, Dissolved	31500		150	34.2	ug/L		10/30/19 09:19	10/30/19 23:34	1
Manganese, Dissolved	688		15.0	0.99	ug/L		10/30/19 09:19	10/30/19 23:34	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.36		0.10	0.068				10/28/19 15:09	1

Client Sample ID: PZ-11-EXT Lab Sample ID: 460-194826-4

Date Collected: 10/24/19 11:00 Matrix: Water Date Received: 10/25/19 10:09

Ī	_						
	Method:	8260C	SIM -	Volatile	Organic	Compounds	(GC/MS)

Analyte	Result	Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	44	J-	2.0	1.7	ug/L			10/27/19 06:45	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	70	Y	72 - 133					10/27/19 06:45	- 5

Method: 8260C - Volatile O	rganic Compo	unds by GC	Method: 8260C - Volatile Organic Compounds by GC/MS												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac						
Chloromethane	8.0	U	20	8.0	ug/L			10/30/19 09:45	20						
Bromomethane	11	U	20	11	ug/L			10/30/19 09:45	20						
Vinyl chloride	3.4	U	20	3.4	ug/L			10/30/19 09:45	20						
Chloroethane	6.4	U	20	6.4	ug/L			10/30/19 09:45	20						
Methylene Chloride	6.3	U	20	6.3	ug/L			10/30/19 09:45	20						
Acetone	88	U	100	88	ug/L			10/30/19 09:45	20						
Carbon disulfide	16	U	20	16	ug/L			10/30/19 09:45	20						

Eurofins TestAmerica, Edison

10/31/2019

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: PZ-11-EXT

Date Received: 10/25/19 10:09

Lab Sample ID: 460-194826-4 Date Collected: 10/24/19 11:00

Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethene	5.3	U	20	5.3	ug/L			10/30/19 09:45	- 2
1,1-Dichloroethane	5.3	U	20	5.3	ug/L			10/30/19 09:45	2
trans-1,2-Dichloroethene	4.7	U	20	4.7	ug/L			10/30/19 09:45	
cis-1,2-Dichloroethene	4.4	U	20	4.4	ug/L			10/30/19 09:45	2
Chloroform	6.5	U	20	6.5	ug/L			10/30/19 09:45	2
1,2-Dichloroethane	8.6	U	20	8.6	ug/L			10/30/19 09:45	
2-Butanone (MEK)	37	U	100	37	ug/L			10/30/19 09:45	:
1,1,1-Trichloroethane	4.8	U	20	4.8	ug/L			10/30/19 09:45	
Carbon tetrachloride	4.2	U	20	4.2	ug/L			10/30/19 09:45	
Bromodichloromethane	6.9	U	20	6.9	ug/L			10/30/19 09:45	
1,2-Dichloropropane	7.1	U	20		ug/L			10/30/19 09:45	
cis-1,3-Dichloropropene	4.4	U	20		ug/L			10/30/19 09:45	
Trichloroethene	6.3	U	20		ug/L			10/30/19 09:45	
Dibromochloromethane	5.6	U	20		ug/L			10/30/19 09:45	
1,1,2-Trichloroethane	8.7	U	20		ug/L			10/30/19 09:45	
Benzene	300		20		ug/L			10/30/19 09:45	
trans-1,3-Dichloropropene	9.7	U	20		ug/L			10/30/19 09:45	
Bromoform	11		20		ug/L			10/30/19 09:45	
4-Methyl-2-pentanone	26		100		ug/L			10/30/19 09:45	
2-Hexanone	23		100		ug/L			10/30/19 09:45	
Tetrachloroethene	5.0		20		ug/L			10/30/19 09:45	
1,1,2,2-Tetrachloroethane		U #	20		ug/L			10/30/19 09:45	
Toluene	7.6		20		ug/L			10/30/19 09:45	
Chlorobenzene	92		20		ug/L			10/30/19 09:45	
Ethylbenzene	8.7	1	20		ug/L			10/30/19 09:45	
Styrene	8.3		20		ug/L			10/30/19 09:45	
Xylenes, Total	5400		40		ug/L			10/30/19 09:45	
Diethyl ether	4.2	11	20		ug/L			10/30/19 09:45	
MTBE	9.3		20		ug/L			10/30/19 09:45	
Tetrahydrofuran	21		40		ug/L			10/30/19 09:45	
Cyclohexane	21	O	20		ug/L			10/30/19 09:45	
•	2100		20		ug/L			10/30/19 09:45	
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	2100 550		20		ug/L ug/L			10/30/19 09:45	
· ·	120		20		ug/L ug/L			10/30/19 09:45	
Isopropylbenzene	330		20		ug/L ug/L			10/30/19 09:45	
N-Propylbenzene			20		ug/L ug/L			10/30/19 09:45	
Methylcyclohexane	39				ug/L ug/L			10/30/19 09:45	
Indane Dieblereflueremethene	320	11	20		-				
Dichlorofluoromethane	6.8	U	20		ug/L			10/30/19 09:45 10/30/19 09:45	
1,2,3-Trimethylbenzene	590		20	1.2	ug/L			10/30/19 09:45	
Tentatively Identified Compound	Est. Result		Unit		RT	CAS No.	Prepared	Analyzed	Dil F
Benzene, 1-ethyl-3-methyl-	550	JN	ug/L	10	.07	620-14-4		10/30/19 09:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil I
1,2-Dichloroethane-d4 (Surr)	99		74 - 132					10/30/19 09:45	
Toluene-d8 (Surr)	98		80 - 120					10/30/19 09:45	
4-Bromofluorobenzene	95		77 - 124					10/30/19 09:45	

Eurofins TestAmerica, Edison 10/31/2019

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: PZ-11-EXT

Date Received: 10/25/19 10:09

Lab Sample ID: 460-194826-4 Date Collected: 10/24/19 11:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.019	J	0.050	0.016	ug/L		10/26/19 09:05	10/27/19 00:53	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/26/19 09:05	10/27/19 00:53	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/26/19 09:05	10/27/19 00:53	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/26/19 09:05	10/27/19 00:53	1
Pentachlorophenol	0.15	₩≭UJ	0.20	0.15	ug/L		10/26/19 09:05	10/27/19 00:53	1
Bis(2-chloroethyl)ether	4.6		0.030	0.026	ug/L		10/26/19 09:05	10/27/19 00:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/26/19 09:05	10/27/19 04:16	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:05	10/27/19 04:16	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/26/19 09:05	10/27/19 04:16	1
4-Methylphenol	0.65	U	10	0.65	ug/L		10/26/19 09:05	10/27/19 04:16	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:05	10/27/19 04:16	1
2,4-Dimethylphenol	10		10	0.62	ug/L		10/26/19 09:05	10/27/19 04:16	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:05	10/27/19 04:16	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:05	10/27/19 04:16	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/26/19 09:05	10/27/19 04:16	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:05	10/27/19 04:16	1
2,4-Dinitrophenol	14	U *	20	14	ug/L		10/26/19 09:05	10/27/19 04:16	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:05	10/27/19 04:16	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/26/19 09:05	10/27/19 04:16	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/26/19 09:05	10/27/19 04:16	1
1,4-Dichlorobenzene	2.6	J	10	1.3	ug/L		10/26/19 09:05	10/27/19 04:16	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:05	10/27/19 04:16	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/26/19 09:05	10/27/19 04:16	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/26/19 09:05	10/27/19 04:16	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/26/19 09:05	10/27/19 04:16	1
Isophorone	0.80	U	10	0.80	ug/L		10/26/19 09:05	10/27/19 04:16	1
Bis(2-chloroethoxy)methane	0.59	U	10	0.59	ug/L		10/26/19 09:05	10/27/19 04:16	1
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		10/26/19 09:05	10/27/19 04:16	1
Naphthalene	56		10	1.1	ug/L		10/26/19 09:05	10/27/19 04:16	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/26/19 09:05	10/27/19 04:16	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/26/19 09:05	10/27/19 04:16	1
2-Methylnaphthalene	3.6	J	10	1.1	ug/L		10/26/19 09:05	10/27/19 04:16	1
Hexachlorocyclopentadiene	3.6	U	10	3.6	ug/L		10/26/19 09:05	10/27/19 04:16	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/26/19 09:05	10/27/19 04:16	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/26/19 09:05	10/27/19 04:16	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/26/19 09:05	10/27/19 04:16	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/26/19 09:05	10/27/19 04:16	1
2,6-Dinitrotoluene	0.83	U	2.0	0.83	ug/L		10/26/19 09:05	10/27/19 04:16	1
3-Nitroaniline	1.9	U	10	1.9	ug/L		10/26/19 09:05	10/27/19 04:16	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/26/19 09:05	10/27/19 04:16	1
Dibenzofuran	1.1	U	10	1.1	ug/L		10/26/19 09:05	10/27/19 04:16	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/26/19 09:05	10/27/19 04:16	1
Diethyl phthalate	6.2		10		ug/L		10/26/19 09:05	10/27/19 04:16	1
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/27/19 04:16	1
Fluorene	0.91	U	10		ug/L		10/26/19 09:05	10/27/19 04:16	1
4-Nitroaniline	1.2		10		ug/L			10/27/19 04:16	1
N-Nitrosodiphenylamine	0.89		10		ug/L			10/27/19 04:16	1

Eurofins TestAmerica, Edison

10/31/2019

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: PZ-11-EXT

Lab Sample ID: 460-194826-4 Date Collected: 10/24/19 11:00

Matrix: Water

Date Received: 10/25/19 10:09

Analyte		Qualifier	RL		Unit		Prepared	Analyzed	Dil Fac
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/26/19 09:05	10/27/19 04:16	1
Phenanthrene	0.58	U	10	0.58	ug/L		10/26/19 09:05	10/27/19 04:16	1
Anthracene	0.63	U	10	0.63	ug/L		10/26/19 09:05	10/27/19 04:16	1
Carbazole	0.68	U	10	0.68	ug/L		10/26/19 09:05	10/27/19 04:16	1
Di-n-butyl phthalate	2.9	J	10	0.84	ug/L		10/26/19 09:05	10/27/19 04:16	1
Fluoranthene	0.84	U	10	0.84	ug/L		10/26/19 09:05	10/27/19 04:16	1
Pyrene	1.6	U	10	1.6	ug/L		10/26/19 09:05	10/27/19 04:16	1
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/26/19 09:05	10/27/19 04:16	1
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/26/19 09:05	10/27/19 04:16	1
Chrysene	0.91		2.0	0.91	ug/L		10/26/19 09:05	10/27/19 04:16	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/26/19 09:05	10/27/19 04:16	1
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/26/19 09:05	10/27/19 04:16	1
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/26/19 09:05	10/27/19 04:16	1
Indeno[1,2,3-cd]pyrene	0.94	U	2.0	0.94	ug/L		10/26/19 09:05	10/27/19 04:16	1
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/26/19 09:05	10/27/19 04:16	1
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/26/19 09:05	10/27/19 04:16	1
Diphenyl ether	40		10	1.2	ug/L		10/26/19 09:05	10/27/19 04:16	1
n,n'-Dimethylaniline	1.4		1.0	0.91	ug/L		10/26/19 09:05	10/27/19 04:16	1
Caprolactam	0.68	₩.* UJ	10	0.68	ug/L		10/26/19 09:05	10/27/19 04:16	1
bis (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/26/19 09:05	10/27/19 04:16	1
Bisphenol-A	120		10	9.9	ug/L		10/26/19 09:05	10/27/19 04:16	1
N-Methylaniline	1.9	J	5.0	1.3	ug/L		10/26/19 09:05	10/27/19 04:16	1
Tentatively Identified Compound	Est. Result		Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Benzene, (1-methylethyl)-	78	JN	ug/L	3	.73	98-82-8	10/26/19 09:05	10/27/19 04:16	1
Benzene, propyl-	170	JN	ug/L	3	.99	103-65-1	10/26/19 09:05	10/27/19 04:16	1
Benzene, 1-ethyl-2-methyl-	250	JN	ug/L	4	.04	611-14-3	10/26/19 09:05	10/27/19 04:16	1
Benzene, 1,2,3-trimethyl-	870	JN	ug/L	4	.33	526-73-8	10/26/19 09:05	10/27/19 04:16	1
Benzene, 1,3,5-trimethyl-	330	JN	ug/L	4	.54	108-67-8	10/26/19 09:05	10/27/19 04:16	1
Indane	190	JN	ug/L	4	.65	496-11-7	10/26/19 09:05	10/27/19 04:16	1
Benzene, 1,3-diethyl-	31	JN	ug/L	4	.71	141-93-5	10/26/19 09:05	10/27/19 04:16	1
Benzene, 1,4-diethyl-	45	JN	ug/L	4	.78	105-05-5	10/26/19 09:05	10/27/19 04:16	1
Benzene, 1-ethyl-2,3-dimethyl-	40	JN	ug/L	4	.92	933-98-2	10/26/19 09:05	10/27/19 04:16	1
Benzene, 1,2,3,4-tetramethyl-	21	JN	ug/L	5	.23	488-23-3	10/26/19 09:05	10/27/19 04:16	1
1-Phenyl-1-butene	16	JN	ug/L	5	.44	824-90-8	10/26/19 09:05	10/27/19 04:16	1
Biphenyl	18	JN	ug/L	6	.80	92-52-4	10/26/19 09:05	10/27/19 04:16	1
Unknown	28	J	ug/L	7	.11		10/26/19 09:05	10/27/19 04:16	1
Unknown	13	J	ug/L	7	.21		10/26/19 09:05	10/27/19 04:16	1
5-Methyl-2,4-diisopropylphenol	16	JN	ug/L	7	.26	40625-96-5	10/26/19 09:05	10/27/19 04:16	1
Unknown	17	J	ug/L	7	.41		10/26/19 09:05	10/27/19 04:16	1
Unknown	26	J	ug/L	8	.31		10/26/19 09:05	10/27/19 04:16	1
Unknown	18	J	ug/L	8	.35		10/26/19 09:05	10/27/19 04:16	1
Unknown	17	J	ug/L	8	.48		10/26/19 09:05	10/27/19 04:16	1
Unknown	84	J	ug/L	12	.54		10/26/19 09:05	10/27/19 04:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	92		51 - 108				10/26/19 09:05	10/27/19 04:16	1
Phenol-d5 (Surr)	32		14 - 39				10/26/19 09:05	10/27/19 04:16	1
Terphenyl-d14 (Surr)	93		40 - 148					10/27/19 04:16	1
2,4,6-Tribromophenol (Surr)	130		26 - 139					10/27/19 04:16	1

Eurofins TestAmerica, Edison 10/31/2019

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: PZ-11-EXT

Lab Sample ID: 460-194826-4 Date Collected: 10/24/19 11:00

Matrix: Water

10/28/19 15:20

10/26/19 17:54

Date Received: 10/25/19 10:09

Method: 8270D - Semivolatile	Organic Com	npounds ((GC/MS) (Continued)			
Surrogate	%Recovery C	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorophenol (Surr)	45		25 - 58	10/26/19 09:05	10/27/19 04:16	
2-Fluorobiphenyl (Surr)	88		45 - 107	10/26/19 09:05	10/27/19 04:16	1
Method: 6010D - Metals (ICP)	- Dissolved					

Method: 6010D - Metals (IC Analyte	P) - DISSOIVEG Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	21.3		50.0	1.7	ug/L		10/30/19 09:19	10/30/19 23:38	1
Iron, Dissolved	39600		150	34.2	ug/L		10/30/19 09:19	10/30/19 23:38	1
Manganese, Dissolved	135		15.0	0.99	ug/L		10/30/19 09:19	10/30/19 23:38	1
General Chemistry Analyte		Qualifier	RL.	MDL		D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 460-194826-5 Client Sample ID: DDA-19-TZ Date Collected: 10/24/19 13:35 Matrix: Water

3.1

93

0.10

0.068 mg/L

Date Received: 10/25/19 10:09

Ammonia (as N)

4-Bromofluorobenzene

Method: 8260C SIM - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,4-Dioxane 0.40 0.33 ug/L 10/26/19 17:54 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac

72 - 133

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/30/19 02:37	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/30/19 02:37	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/30/19 02:37	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/30/19 02:37	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/30/19 02:37	1
Acetone	4.4	U	5.0	4.4	ug/L			10/30/19 02:37	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/30/19 02:37	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/30/19 02:37	1
1,1-Dichloroethane	0.39	J	1.0	0.26	ug/L			10/30/19 02:37	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/30/19 02:37	1
cis-1,2-Dichloroethene	1.1		1.0	0.22	ug/L			10/30/19 02:37	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/30/19 02:37	1
1,2-Dichloroethane	1.2		1.0	0.43	ug/L			10/30/19 02:37	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/30/19 02:37	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/30/19 02:37	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/30/19 02:37	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/30/19 02:37	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/30/19 02:37	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/30/19 02:37	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/30/19 02:37	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/30/19 02:37	1
1,1,2-Trichloroethane	0.43	. U	1.0	0.43	ug/L			10/30/19 02:37	1
Benzene	33		1.0	0.20	ug/L			10/30/19 02:37	1
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/30/19 02:37	

Eurofins TestAmerica, Edison 10/31/2019

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-19-TZ

Lab Sample ID: 460-194826-5 Date Collected: 10/24/19 13:35

Matrix: Water

Date Received: 10/25/19 10:09

4-Methylphenol

2,4-Dimethylphenol

2,4-Dichlorophenol

2-Nitrophenol

Method: 8260C - Volatile Org ^{Analyte}		Qualifier	` RL		Unit	D	Prepared	Analyzed	Dil Fa
Bromoform	0.54	U	1.0	0.54	ug/L			10/30/19 02:37	
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			10/30/19 02:37	
2-Hexanone	1.1	U	5.0		ug/L			10/30/19 02:37	
Tetrachloroethene	0.25	U	1.0		ug/L			10/30/19 02:37	
1,1,2,2-Tetrachloroethane	0.37	U	1.0		ug/L			10/30/19 02:37	
Toluene	0.38	U	1.0		ug/L			10/30/19 02:37	
Chlorobenzene	0.93	J	1.0	0.38	ug/L			10/30/19 02:37	
Ethylbenzene	0.42	J	1.0	0.30	ug/L			10/30/19 02:37	
Styrene	0.42	U	1.0		ug/L			10/30/19 02:37	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/30/19 02:37	
Diethyl ether	1.3		1.0		ug/L			10/30/19 02:37	
MTBE	0.47	U	1.0		ug/L			10/30/19 02:37	
Tetrahydrofuran	1.0	U	2.0		ug/L			10/30/19 02:37	
Cyclohexane	0.47	J	1.0		ug/L			10/30/19 02:37	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/30/19 02:37	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/30/19 02:37	
Isopropylbenzene	1.5		1.0		ug/L			10/30/19 02:37	
N-Propylbenzene	2.1		1.0		ug/L			10/30/19 02:37	
Methylcyclohexane	0.26		1.0		ug/L			10/30/19 02:37	
Indane	1.6		1.0		ug/L			10/30/19 02:37	
Dichlorofluoromethane	5.0		1.0		ug/L			10/30/19 02:37	
1,2,3-Trimethylbenzene	0.36	U	1.0		ug/L			10/30/19 02:37	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					10/30/19 02:37	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	103		74 - 132					10/30/19 02:37	
Toluene-d8 (Surr)	97		80 - 120					10/30/19 02:37	
4-Bromofluorobenzene	96		77 - 124					10/30/19 02:37	
Dibromofluoromethane (Surr)	100		72 - 131					10/30/19 02:37	
Method: 8270D SIM - Semivo			unds (GC/N	IS SIM)					
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]anthracene	0.13		0.10	0.031	_			10/28/19 07:19	
Benzo[a]pyrene	0.070	J	0.10	0.043			10/26/19 09:05	10/28/19 07:19	
Benzo[b]fluoranthene	0.052	J	0.10	0.048	-			10/28/19 07:19	
Hexachlorobenzene	0.026	U	0.040	0.026	ug/L		10/26/19 09:05	10/28/19 07:19	
Pentachlorophenol	0.31	₩ .*UJ	0.40	0.31	ug/L		10/26/19 09:05	10/28/19 07:19	
Bis(2-chloroethyl)ether	13		0.060	0.052	ug/L		10/26/19 09:05	10/28/19 07:19	
Method: 8270D - Semivolatile									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Phenol	0.29		10	0.29	ug/L		10/26/19 09:05	10/27/19 04:37	
				0.20			40/00/40 00:05	40/07/40 04:07	
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:05	10/27/19 04:37	

Eurofins TestAmerica, Edison 10/31/2019

10/26/19 09:05 10/27/19 04:37

10/26/19 09:05 10/27/19 04:37

10/26/19 09:05 10/27/19 04:37

10/26/19 09:05 10/27/19 04:37

10

10

10

0.65 U

0.75 U

0.62 U

1.1 U

0.65 ug/L

0.75 ug/L

0.62 ug/L

1.1 ug/L

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-19-TZ

Date Received: 10/25/19 10:09

Lab Sample ID: 460-194826-5 Date Collected: 10/24/19 13:35

Matrix: Water

Analyte	Result	mpounds (G Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:05	10/27/19 04:37	
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/26/19 09:05	10/27/19 04:37	
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:05	10/27/19 04:37	
2,4-Dinitrophenol	14	U *	20	14	ug/L		10/26/19 09:05	10/27/19 04:37	
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:05	10/27/19 04:37	
4,6-Dinitro-2-methylphenol	13	Ü	20	13	ug/L		10/26/19 09:05	10/27/19 04:37	
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/26/19 09:05	10/27/19 04:37	
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:05	10/27/19 04:37	
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:05	10/27/19 04:37	
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43			10/26/19 09:05	10/27/19 04:37	
Hexachloroethane	0.80	U	2.0	0.80	-		10/26/19 09:05	10/27/19 04:37	
Nitrobenzene	0.57		1.0	0.57	-		10/26/19 09:05	10/27/19 04:37	,
Isophorone	0.80	U	10	0.80	_		10/26/19 09:05	10/27/19 04:37	
Bis(2-chloroethoxy)methane	0.59		10	0.59	_			10/27/19 04:37	
1,2,4-Trichlorobenzene	0.64		2.0	0.64				10/27/19 04:37	
Naphthalene	1.1		10	1.1	ug/L			10/27/19 04:37	,
4-Chloroaniline	1.9		10		ug/L			10/27/19 04:37	,
Hexachlorobutadiene	0.78		1.0	0.78	⁻			10/27/19 04:37	,
2-Methylnaphthalene	1.1		10	1.1	ug/L			10/27/19 04:37	
Hexachlorocyclopentadiene	3.6		10		ug/L			10/27/19 04:37	
2-Chloronaphthalene	1.2		10		ug/L			10/27/19 04:37	
2-Nitroaniline	0.47		10	0.47				10/27/19 04:37	,
Dimethyl phthalate	0.77		10	0.77	-			10/27/19 04:37	
	0.82		10					10/27/19 04:37	
Acenaphthylene	0.83			0.82 0.83	-				
2,6-Dinitrotoluene			2.0		-			10/27/19 04:37	
3-Nitroaniline	1.9		10		ug/L			10/27/19 04:37	
Acenaphthene	1.1		10		ug/L			10/27/19 04:37	
Dibenzofuran	1.1		10		ug/L			10/27/19 04:37	
2,4-Dinitrotoluene	1.0		2.0		ug/L			10/27/19 04:37	
Diethyl phthalate	0.98		10	0.98	_			10/27/19 04:37	
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/27/19 04:37	
Fluorene	0.91		10	0.91	-			10/27/19 04:37	
4-Nitroaniline	1.2		10		ug/L			10/27/19 04:37	
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/ L		10/26/19 09:05	10/27/19 04:37	•
4-Bromophenyl phenyl ether	0.75		10	0.75	-		10/26/19 09:05	10/27/19 04:37	
Phenanthrene	0.58		10	0.58			10/26/19 09:05	10/27/19 04:37	
Anthracene	0.63		10		ug/L			10/27/19 04:37	
Carbazole	0.68	U	10	0.68	ug/L		10/26/19 09:05	10/27/19 04:37	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/26/19 09:05	10/27/19 04:37	
Fluoranthene	0.84	U	10	0.84	ug/L		10/26/19 09:05	10/27/19 04:37	
Pyrene	1.6	U	10	1.6	ug/L		10/26/19 09:05	10/27/19 04:37	
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/26/19 09:05	10/27/19 04:37	
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/26/19 09:05	10/27/19 04:37	
Chrysene	0.91	U	2.0	0.91	ug/L		10/26/19 09:05	10/27/19 04:37	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/26/19 09:05	10/27/19 04:37	
Di-n-octyl phthalate	4.8	U	10		ug/L		10/26/19 09:05	10/27/19 04:37	
Benzo[k]fluoranthene	0.67	U	1.0		ug/L		10/26/19 09:05	10/27/19 04:37	
Indeno[1,2,3-cd]pyrene	0.94		2.0		ug/L		10/26/19 09:05	10/27/19 04:37	
Dibenz(a,h)anthracene	0.72		1.0		ug/L			10/27/19 04:37	

Eurofins TestAmerica, Edison 10/31/2019

Page 54 of 2689

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-19-TZ

Lab Sample ID: 460-194826-5 Date Collected: 10/24/19 13:35

Matrix: Water

Date Received: 10/25/19 10:09

Analyte		Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[g,h,i]perylene	1.4	U	10		1.4	ug/L		10/26/19 09:05	10/27/19 04:37	1
Diphenyl ether	1.2	U	10		1.2	ug/L		10/26/19 09:05	10/27/19 04:37	1
n,n'-Dimethylaniline	0.91	U	1.0		0.91	ug/L		10/26/19 09:05	10/27/19 04:37	1
Caprolactam	0.68	U.* UJ	10		0.68	ug/L		10/26/19 09:05	10/27/19 04:37	1
bis (2-chloroisopropyl) ether	0.63	U	10		0.63	ug/L		10/26/19 09:05	10/27/19 04:37	1
Bisphenol-A	9.9	U	10		9.9	ug/L		10/26/19 09:05	10/27/19 04:37	1
N-Methylaniline	1.3	U	5.0		1.3	ug/L		10/26/19 09:05	10/27/19 04:37	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
2-Isopropoxyphenol	11	JN	ug/L		5.	.53	4812-20-8	10/26/19 09:05	10/27/19 04:37	1
Unknown	25	J	ug/L		7.	.11		10/26/19 09:05	10/27/19 04:37	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	94	-	51 - 108					10/26/19 09:05	10/27/19 04:37	1
Phenol-d5 (Surr)	31		14 - 39					10/26/19 09:05	10/27/19 04:37	1
Terphenyl-d14 (Surr)	91		40 - 148					10/26/19 09:05	10/27/19 04:37	1
2,4,6-Tribromophenol (Surr)	124		26 - 139					10/26/19 09:05	10/27/19 04:37	
2-Fluorophenol (Surr)	49		25 - 58					10/26/19 09:05	10/27/19 04:37	1
2-Fluorobiphenyl (Surr)	89		45 - 107					10/26/19 09:05	10/27/19 04:37	•
Method: 300.0 - Anions, Ion (Analyte	Result	phy Qualifier	RL 2.04			Unit	<u> </u>	Prepared	Analyzed 10/28/19 21:36	Dil Fac
Chloride	44.7 0.056					mg/L				
Nitrate as N	0.036		0.10		0.056	-			10/25/19 21:21	1
Nitrite as N Sulfate	8.63		0.12		0.076	mg/L			10/25/19 21:21 10/25/19 21:21	
88.49 5	80) W		٠.			_				
Method: 200.8 - Metals (ICP/M Analyte	•	ecoverab Qualifier	ie RL		MDI	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	27100	Qualifier	250	-		ug/L		•	10/30/19 12:40	Dirac
Magnesium	8440		250			ug/L			10/30/19 12:40	į
magnesium Potassium	1770		250			ug/L ug/L			10/30/19 12:40	į
	17200		250			ug/L ug/L			10/30/19 12:40	į
Calcium			250		233	ug/L		10/30/19 03.33	10/30/19 12.40	`
Method: 6010D - Metals (ICP) ^{Analyte}		Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	26400		150			ug/L		•	10/30/19 23:42	
Manganese, Dissolved	554		15.0			ug/L			10/30/19 23:42	1
Cobalt, Dissolved	11.2	J	50.0			ug/L			10/30/19 23:42	
•						_				
General Chemistry	D 14	O	D.		BAD!	11:4		D	A II	D:: E
Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.64		0.10		0.068				10/28/19 15:21	•
Bicarbonate Alkalinity as CaCO3	63.6		5.0			mg/L			10/29/19 11:08	•
Carbonate Alkalinity as CaCO3	5.0	U	5.0			mg/L			10/29/19 11:08	
Alkalinity	63.6		5.0			mg/L			10/29/19 11:08	1
Sulfide	0.58	U	1.0		0.58	mg/L			10/28/19 19:00	1

Eurofins TestAmerica, Edison 10/31/2019

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-19-US

Date Received: 10/25/19 10:09

Lab Sample ID: 460-194826-6 Date Collected: 10/24/19 12:50

Matrix: Water

Method: 8260C - Volatile Organiste		unus by v Qualifier	SC/IVIS RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	0.40		1.0		ug/L		riepaieu	10/30/19 02:56	טוורס
Bromomethane	0.40		1.0		ug/L ug/L			10/30/19 02:56	
Vinyl chloride	0.33		1.0		ug/L ug/L			10/30/19 02:56	
-					-				
Chloroethane Mathylana Chlorida	0.32		1.0		ug/L			10/30/19 02:56	
Methylene Chloride	0.32		1.0		ug/L			10/30/19 02:56	
Acetone	4.4		5.0		ug/L			10/30/19 02:56	
Carbon disulfide	0.82		1.0		ug/L			10/30/19 02:56	
1,1-Dichloroethene	0.26	U	1.0		ug/L			10/30/19 02:56	
1,1-Dichloroethane	1.1		1.0		ug/L			10/30/19 02:56	
trans-1,2-Dichloroethene	0.24	U	1.0		ug/L			10/30/19 02:56	
cis-1,2-Dichloroethene	2.8		1.0		ug/L			10/30/19 02:56	
Chloroform	0.33	U	1.0		ug/L			10/30/19 02:56	
1,2-Dichloroethane	3.5		1.0		ug/L			10/30/19 02:56	
2-Butanone (MEK)	1.9		5.0		ug/L			10/30/19 02:56	
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/30/19 02:56	
Carbon tetrachloride	0.21	U	1.0		ug/L			10/30/19 02:56	
Bromodichloromethane	0.34	U	1.0		ug/L			10/30/19 02:56	
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/30/19 02:56	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/30/19 02:56	
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/30/19 02:56	
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/30/19 02:56	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/30/19 02:56	
Benzene	91		1.0	0.20	ug/L			10/30/19 02:56	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/30/19 02:56	
Bromoform	0.54	U	1.0	0.54	ug/L			10/30/19 02:56	
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			10/30/19 02:56	
2-Hexanone	1.1	U	5.0		ug/L			10/30/19 02:56	
Tetrachloroethene	0.25	U	1.0		ug/L			10/30/19 02:56	
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/30/19 02:56	
Toluene	0.38		1.0		ug/L			10/30/19 02:56	
Chlorobenzene	3.2		1.0		ug/L			10/30/19 02:56	
Ethylbenzene	2.6		1.0		ug/L			10/30/19 02:56	
Styrene	0.42	U	1.0		ug/L			10/30/19 02:56	
Xylenes, Total	0.65		2.0		ug/L			10/30/19 02:56	
Diethyl ether	3.9	Ū	1.0		ug/L			10/30/19 02:56	
MTBE	0.47	11	1.0		ug/L			10/30/19 02:56	
Tetrahydrofuran	1.0		2.0		ug/L ug/L			10/30/19 02:56	
•		U	1.0		ug/L ug/L			10/30/19 02:56	
Cyclohexane	3.6		50		_			10/30/19 02:56	
1,4-Dioxane	190				ug/L			10/30/19 02:56	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L				
1,3,5-Trimethylbenzene	0.33	U	1.0		ug/L			10/30/19 02:56	
Isopropylbenzene	3.8		1.0		ug/L			10/30/19 02:56	
N-Propylbenzene	3.6		1.0		ug/L			10/30/19 02:56	
Methylcyclohexane	5.1		1.0		ug/L			10/30/19 02:56	
Indane	3.7		1.0		ug/L			10/30/19 02:56	
Dichlorofluoromethane	13		1.0		ug/L			10/30/19 02:56	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/30/19 02:56	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
1,3-Benzenediol, diacetate		JN	ug/L		.16	108-58-7		10/30/19 02:56	

Eurofins TestAmerica, Edison

10/31/2019

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-19-US

Lab Sample ID: 460-194826-6

Matrix: Water

Date	Collected:	10/24/19	12:50
Date	Received:	10/25/19	10:09

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		74 - 132	_		10/30/19 02:56	
Toluene-d8 (Surr)	98		80 - 120			10/30/19 02:56	1
4-Bromofluorobenzene	97		77 - 124			10/30/19 02:56	1
Dibromofluoromethane (Surr)	100		72 - 131			10/30/19 02:56	1

Method: 8270D SIM - Semi	Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)										
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzo[a]anthracene	0.46	0.25	0.078	ug/L		10/26/19 09:05	10/28/19 07:41	5			
Benzo[a]pyrene	0.34	0.25	0.11	ug/L		10/26/19 09:05	10/28/19 07:41	5			
Benzo[b]fluoranthene	0.31	0.25	0.12	ug/L		10/26/19 09:05	10/28/19 07:41	5			
Hexachlorobenzene	0.066 U	0.10	0.066	ug/L		10/26/19 09:05	10/28/19 07:41	5			
Pentachlorophenol	0.77 U≛ UJ	1.0	0.77	ug/L		10/26/19 09:05	10/28/19 07:41	5			
Bis(2-chloroethyl)ether	21	0.15	0.13	ug/L		10/26/19 09:05	10/28/19 07:41	5			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.64	J	10	0.29	ug/L		10/26/19 09:05	10/27/19 04:58	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:05	10/27/19 04:58	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/26/19 09:05	10/27/19 04:58	1
4-Methylphenol	0.65	U	10	0.65	ug/L		10/26/19 09:05	10/27/19 04:58	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:05	10/27/19 04:58	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/26/19 09:05	10/27/19 04:58	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:05	10/27/19 04:58	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:05	10/27/19 04:58	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/26/19 09:05	10/27/19 04:58	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:05	10/27/19 04:58	1
2,4-Dinitrophenol	14	U *	20	14	ug/L		10/26/19 09:05	10/27/19 04:58	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:05	10/27/19 04:58	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/26/19 09:05	10/27/19 04:58	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/26/19 09:05	10/27/19 04:58	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:05	10/27/19 04:58	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:05	10/27/19 04:58	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/26/19 09:05	10/27/19 04:58	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/26/19 09:05	10/27/19 04:58	1
Nitrobenzene	0.57	. U	1.0		ug/L		10/26/19 09:05	10/27/19 04:58	1
Isophorone	0.80	U	10	0.80	ug/L		10/26/19 09:05	10/27/19 04:58	1
Bis(2-chloroethoxy)methane	0.59	U	10	0.59	ug/L		10/26/19 09:05	10/27/19 04:58	1
1,2,4-Trichlorobenzene	0.64	. U	2.0	0.64	ug/L		10/26/19 09:05	10/27/19 04:58	1
Naphthalene	1.1	U	10	1.1	ug/L		10/26/19 09:05	10/27/19 04:58	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/26/19 09:05	10/27/19 04:58	1
Hexachlorobutadiene	0.78	. U	1.0	0.78	ug/L		10/26/19 09:05	10/27/19 04:58	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/26/19 09:05	10/27/19 04:58	1
Hexachlorocyclopentadiene	3.6	U	10	3.6	ug/L		10/26/19 09:05	10/27/19 04:58	1
2-Chloronaphthalene	1.2	. U	10	1.2	ug/L		10/26/19 09:05	10/27/19 04:58	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/26/19 09:05	10/27/19 04:58	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/26/19 09:05	10/27/19 04:58	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/26/19 09:05	10/27/19 04:58	1
2,6-Dinitrotoluene	0.83	U	2.0		ug/L		10/26/19 09:05	10/27/19 04:58	1
3-Nitroaniline	1.9	U	10	1.9	ug/L		10/26/19 09:05	10/27/19 04:58	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/26/19 09:05	10/27/19 04:58	1

Eurofins TestAmerica, Edison 10/31/2019

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-19-US

Date Received: 10/25/19 10:09

Phenol-d5 (Surr)

Lab Sample ID: 460-194826-6 Date Collected: 10/24/19 12:50

Matrix: Water

Method: 8270D - Semivolatile Analyte		Qualifier	RL			<i>)</i> Unit	D	Prepared	Analyzed	Dil Fac
Dibenzofuran	1.1		10			ug/L		=	10/27/19 04:58	1
2,4-Dinitrotoluene	1.0		2.0			ug/L			10/27/19 04:58	1
Diethyl phthalate	0.98		10			ug/L			10/27/19 04:58	
4-Chlorophenyl phenyl ether	1.3	_	10			ug/L			10/27/19 04:58	1
Fluorene	0.91		10			ug/L			10/27/19 04:58	1
4-Nitroaniline	1.2		10			ug/L			10/27/19 04:58	' 1
N-Nitrosodiphenylamine	0.89		10			ug/L			10/27/19 04:58	1
4-Bromophenyl phenyl ether	0.09		10			ug/L ug/L			10/27/19 04:58	1
Phenanthrene	0.73		10			ug/L			10/27/19 04:58	
Anthracene	0.58		10			-			10/27/19 04:58	1
						ug/L				
Carbazole	0.68		10			ug/L			10/27/19 04:58	
Di-n-butyl phthalate	0.84		10			ug/L			10/27/19 04:58	1
Fluoranthene	0.84		10			ug/L			10/27/19 04:58	1
Pyrene	1.6		10			ug/L			10/27/19 04:58	
Butyl benzyl phthalate	0.85		10			ug/L			10/27/19 04:58	1
3,3'-Dichlorobenzidine	1.4		10			ug/L			10/27/19 04:58	1
Chrysene	0.91		2.0			ug/L			10/27/19 04:58	1
Bis(2-ethylhexyl) phthalate	1.7		2.0			ug/L			10/27/19 04:58	1
Di-n-octyl phthalate	4.8		10			ug/L			10/27/19 04:58	1
Benzo[k]fluoranthene	0.67		1.0			ug/L		10/26/19 09:05	10/27/19 04:58	1
Indeno[1,2,3-cd]pyrene	0.94	U	2.0			ug/L		10/26/19 09:05	10/27/19 04:58	1
Dibenz(a,h)anthracene	0.72		1.0	C).72	ug/L		10/26/19 09:05	10/27/19 04:58	1
Benzo[g,h,i]perylene	1.4	U	10		1.4	ug/L		10/26/19 09:05	10/27/19 04:58	1
Diphenyl ether	1.2	U	10		1.2	ug/L		10/26/19 09:05	10/27/19 04:58	1
n,n'-Dimethylaniline	1.6		1.0	C	0.91	ug/L		10/26/19 09:05	10/27/19 04:58	1
Caprolactam	0.68	U.≛UJ	10	C	0.68	ug/L		10/26/19 09:05	10/27/19 04:58	1
bis (2-chloroisopropyl) ether	0.63	U	10	C	0.63	ug/L		10/26/19 09:05	10/27/19 04:58	1
Bisphenol-A	10		10		9.9	ug/L		10/26/19 09:05	10/27/19 04:58	1
N-Methylaniline	1.3	U	5.0		1.3	ug/L		10/26/19 09:05	10/27/19 04:58	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	i	RT	CAS No.	Prepared	Analyzed	Dil Fac
Urethane	9.9	JN	ug/L		2.	77	51-79-6	10/26/19 09:05	10/27/19 04:58	1
Unknown	11	J	ug/L		3.	03		10/26/19 09:05	10/27/19 04:58	1
2-Isopropoxyphenol	39	JN	ug/L		5.	54	4812-20-8	10/26/19 09:05	10/27/19 04:58	1
2-Propanone, 1-phenoxy-	7.6	JN	ug/L		5.	80	621-87-4	10/26/19 09:05	10/27/19 04:58	1
1-Phenoxypropan-2-ol	15	JN	ug/L		5.	99	770-35-4	10/26/19 09:05	10/27/19 04:58	1
Unknown	9.1	J	ug/L		6.	11		10/26/19 09:05	10/27/19 04:58	1
Unknown	12	J	ug/L		6.	27		10/26/19 09:05	10/27/19 04:58	1
Unknown	8.1	J	ug/L		6.	41		10/26/19 09:05	10/27/19 04:58	1
Unknown	13	J	ug/L		6.	50		10/26/19 09:05	10/27/19 04:58	1
Unknown	54	J	ug/L		7.	11		10/26/19 09:05	10/27/19 04:58	1
Unknown	21	J	ug/L		7.	41		10/26/19 09:05	10/27/19 04:58	1
Unknown	9.1		ug/L			84			10/27/19 04:58	1
Unknown	11		ug/L			91			10/27/19 04:58	1
Unknown	14		ug/L ug/L		11.				10/27/19 04:58	, 1
Unknown	6.6		ug/L		12.				10/27/19 04:58	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	93	- Guainiti	51 - 108					•	10/27/19 04:58	DII Fac
T			44 30					40/00/40 00:05	40/07/40 04:50	

Eurofins TestAmerica, Edison

10/26/19 09:05 10/27/19 04:58

10/31/2019

14 - 39

34

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-19-US

Date Received: 10/25/19 10:09

Lab Sample ID: 460-194826-6 Date Collected: 10/24/19 12:50

Matrix: Water

Mathadi 92700 Caminalatila Organia Campannda (CC/MC) (Ca					
-: Nicinou: 02/UD - Scinivolanic Uruanic Componius ICC/NiSi ICO	ntinued)	emivolatile Organic Compounds (GC/MS) (Continue	Organic Compounds (GC/MS) (8270D - Semivolatile Organi	ganic Compounds (GC/MS)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14 (Surr)	91		40 - 148	10/26/19 09:05	10/27/19 04:58	
2,4,6-Tribromophenol (Surr)	118		26 - 139	10/26/19 09:05	10/27/19 04:58	1
2-Fluorophenol (Surr)	50		25 - 58	10/26/19 09:05	10/27/19 04:58	1
2-Fluorobiphenyl (Surr)	88		45 - 107	10/26/19 09:05	10/27/19 04:58	1

Method: 300.0 - Anions,	Ion Chromatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	45.3	2.04	0.24	mg/L			10/28/19 20:36	17
Nitrate as N	0.056 U	0.10	0.056	mg/L			10/25/19 20:47	1
Nitrite as N	0.076 U	0.12	0.076	mg/L			10/25/19 20:47	1
Sulfate	9.13	0.60	0.35	mg/L			10/25/19 20:47	1

Method: 200.8 - Metals (ICP/MS	- Total Recoverable							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	42100	250	66.8	ug/L		10/30/19 03:53	10/30/19 12:43	5
Magnesium	9300	250	24.8	ug/L		10/30/19 03:53	10/30/19 12:43	5
Potassium	2290	250	73.5	ug/L		10/30/19 03:53	10/30/19 12:43	5
Calcium	22400	250	233	ug/L		10/30/19 03:53	10/30/19 12:43	5

Method: 6010D - Metals (ICP) - Dissolved							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	21100	150	34.2	ug/L		10/30/19 09:19	10/30/19 23:46	1
Manganese, Dissolved	1430	15.0	0.99	ug/L		10/30/19 09:19	10/30/19 23:46	1
Cobalt, Dissolved	6.5 J	50.0	1.7	ug/L		10/30/19 09:19	10/30/19 23:46	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.15		0.10	0.068	mg/L			10/28/19 15:23	1
Bicarbonate Alkalinity as CaCO3	103		5.0	5.0	mg/L			10/29/19 11:15	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/29/19 11:15	1
Alkalinity	103		5.0	5.0	mg/L			10/29/19 11:15	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/28/19 19:00	1

Client Sample ID: TBGW_102419 Lab Sample ID: 460-194826-7

Date Collected: 10/24/19 00:00 Matrix: Water Date Received: 10/25/19 10:09

Method: 8260C SIM - Volatile	Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.33	U	0.40	0.33	ug/L			10/30/19 13:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		72 - 133			-	•	10/30/19 13:40	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/30/19 01:42	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/30/19 01:42	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/30/19 01:42	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/30/19 01:42	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/30/19 01:42	1

Eurofins TestAmerica, Edison

10/31/2019

Client: Golder Associates Inc. Job ID: 460-194514-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_102419

Lab Sample ID: 460-194826-7 Date Collected: 10/24/19 00:00

Matrix: Water

Date Received: 10/25/19 10:09

Analyte		Qualifier	RL_		. Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.6		5.0	4.4	-			10/30/19 01:42	
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/30/19 01:42	•
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/30/19 01:42	•
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/30/19 01:42	
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/30/19 01:42	
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/30/19 01:42	
Chloroform	0.33	U	1.0	0.33	ug/L			10/30/19 01:42	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/30/19 01:42	
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/30/19 01:42	
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/30/19 01:42	
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/30/19 01:42	
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/30/19 01:42	
1,2-Dichloropropane	0.35	U	1.0		ug/L			10/30/19 01:42	
cis-1,3-Dichloropropene	0.22	U	1.0		ug/L			10/30/19 01:42	
Trichloroethene	0.31	U	1.0		ug/L			10/30/19 01:42	
Dibromochloromethane	0.28	U	1.0		ug/L			10/30/19 01:42	
1,1,2-Trichloroethane	0.43	U	1.0		ug/L			10/30/19 01:42	
Benzene	0.20	U	1.0		ug/L			10/30/19 01:42	1
trans-1,3-Dichloropropene	0.49	U	1.0		ug/L			10/30/19 01:42	1
Bromoform	0.54		1.0		ug/L			10/30/19 01:42	
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/30/19 01:42	
2-Hexanone	1.1		5.0		ug/L			10/30/19 01:42	
Tetrachloroethene	0.25		1.0		ug/L			10/30/19 01:42	
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/30/19 01:42	1
Toluene	0.38		1.0		ug/L			10/30/19 01:42	
Chlorobenzene	0.38		1.0		ug/L			10/30/19 01:42	
Ethylbenzene	0.30		1.0		ug/L			10/30/19 01:42	
Styrene	0.42		1.0		ug/L			10/30/19 01:42	
Xylenes, Total	0.65		2.0		ug/L			10/30/19 01:42	
Diethyl ether	0.03		1.0		ug/L			10/30/19 01:42	
MTBE	0.21		1.0		ug/L ug/L			10/30/19 01:42	
	1.0		2.0					10/30/19 01:42	
Tetrahydrofuran	0.32		1.0		ug/L			10/30/19 01:42	
Cyclohexane	0.32		1.0		ug/L			10/30/19 01:42	
1,2,4-Trimethylbenzene					ug/L				
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/30/19 01:42	
Isopropylbenzene	0.34		1.0		ug/L			10/30/19 01:42	•
N-Propylbenzene	0.32		1.0		ug/L			10/30/19 01:42	
Methylcyclohexane	0.26		1.0		ug/L			10/30/19 01:42	
Indane	0.35		1.0		ug/L			10/30/19 01:42	
Dichlorofluoromethane	0.34		1.0		ug/L			10/30/19 01:42	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/30/19 01:42	•
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Isopropyl Alcohol	7.2	JN	ug/L		2.61	67-63-0		10/30/19 01:42	-
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	100		74 - 132			-		10/30/19 01:42	
Toluene-d8 (Surr)	98		80 - 120					10/30/19 01:42	
4-Bromofluorobenzene	96		77 - 124					10/30/19 01:42	
Dibromofluoromethane (Surr)	99		72 - 131					10/30/19 01:42	1

Eurofins TestAmerica, Edison

10/31/2019

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: DGC-5 (40)

Lab Sample ID: 460-194826-1 Date Collected: 10/24/19 10:30

Matrix: Water

Date Received: 10/25/19 10:09

Method: 8260C SIM - Vola Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	11		0.40	0.33	ug/L		<u> </u>	10/30/19 10:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		72 - 133			-	, repared	10/30/19 10:43	277.44
Method: 8260C - Volatile (_			D.: E
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane		-	1.0		ug/L			10/30/19 02:01	1
Bromomethane	0.55		1.0		ug/L			10/30/19 02:01	1
Vinyl chloride	0.17		1.0		ug/L			10/30/19 02:01	
Chloroethane	0.32		1.0		ug/L			10/30/19 02:01	1
Methylene Chloride	0.32		1.0		ug/L			10/30/19 02:01	1
Acetone	4.4		5.0		ug/L			10/30/19 02:01	
Carbon disulfide	0.82		1.0		ug/L			10/30/19 02:01	1
1,1-Dichloroethene	0.26		1.0		ug/L			10/30/19 02:01	1
1,1-Dichloroethane	0.26	U	1.0		ug/L			10/30/19 02:01	
trans-1,2-Dichloroethene	0.24	U	1.0		ug/L			10/30/19 02:01	
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/30/19 02:01	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/30/19 02:01	•
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/30/19 02:01	
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/30/19 02:01	
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/30/19 02:01	
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/30/19 02:01	
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/30/19 02:01	
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/30/19 02:01	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/30/19 02:01	
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/30/19 02:01	
Dibromochloromethane	0.28	U	1.0		ug/L			10/30/19 02:01	
1,1,2-Trichloroethane	0.43	. U	1.0		ug/L			10/30/19 02:01	
Benzene	0.20		1.0		ug/L			10/30/19 02:01	
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/30/19 02:01	
Bromoform	0.54		1.0		ug/L			10/30/19 02:01	
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/30/19 02:01	1
2-Hexanone	1.1		5.0		ug/L			10/30/19 02:01	
Tetrachloroethene	0.25		1.0		ug/L			10/30/19 02:01	
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/30/19 02:01	
Toluene	0.38		1.0		ug/L			10/30/19 02:01	
Chlorobenzene	0.38		1.0		ug/L ug/L			10/30/19 02:01	
					_				
Ethylbenzene	0.30		1.0		ug/L			10/30/19 02:01	
Styrene	0.42		1.0		ug/L			10/30/19 02:01	
Xylenes, Total	0.65		2.0		ug/L			10/30/19 02:01	
Diethyl ether	0.21		1.0		ug/L			10/30/19 02:01	
MTBE	0.47		1.0		ug/L			10/30/19 02:01	
Tetrahydrofuran	1.0		2.0		ug/L			10/30/19 02:01	•
Cyclohexane	0.32		1.0		ug/L			10/30/19 02:01	
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/30/19 02:01	
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/30/19 02:01	•
Isopropylbenzene	0.34		1.0		ug/L			10/30/19 02:01	•
N-Propylbenzene	0.32	U	1.0		ug/L			10/30/19 02:01	1
Methylcyclohexane	0.26		1.0		ug/L			10/30/19 02:01	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: DGC-5 (40) Lab Sample ID: 460-194826-1

Date Collected: 10/24/19 10:30 Matrix: Water Date Received: 10/25/19 10:09

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indane	0.35	U	1.0		0.35	ug/L			10/30/19 02:01	1
Dichlorofluoromethane	0.34	U	1.0		0.34	ug/L			10/30/19 02:01	1
1,2,3-Trimethylbenzene	0.36	U	1.0		0.36	ug/L			10/30/19 02:01	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						10/30/19 02:01	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		74 - 132						10/30/19 02:01	1
Toluene-d8 (Surr)	99		80 - 120						10/30/19 02:01	1
4-Bromofluorobenzene	96		77 - 124						10/30/19 02:01	1
Dibromofluoromethane (Surr)	99		72 - 131						10/30/19 02:01	

Method: 8270D SIM - Se	mivolatile Organi	c Compour	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/29/19 09:30	10/30/19 04:05	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/29/19 09:30	10/30/19 04:05	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/29/19 09:30	10/30/19 04:05	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/29/19 09:30	10/30/19 04:05	1
Pentachlorophenol	0.15	⊎ ≛UJ	0.20	0.15	ug/L		10/29/19 09:30	10/30/19 04:05	1
Bis(2-chloroethyl)ether	0.96		0.030	0.026	ug/L		10/29/19 09:30	10/30/19 04:05	1

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/29/19 09:30	10/29/19 23:21	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/29/19 09:30	10/29/19 23:21	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/29/19 09:30	10/29/19 23:21	1
4-Methylphenol	0.65	U	10	0.65	ug/L		10/29/19 09:30	10/29/19 23:21	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/29/19 09:30	10/29/19 23:21	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/29/19 09:30	10/29/19 23:21	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/29/19 09:30	10/29/19 23:21	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/29/19 09:30	10/29/19 23:21	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/29/19 09:30	10/29/19 23:21	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/29/19 09:30	10/29/19 23:21	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/29/19 09:30	10/29/19 23:21	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/29/19 09:30	10/29/19 23:21	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/29/19 09:30	10/29/19 23:21	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/29/19 09:30	10/29/19 23:21	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/29/19 09:30	10/29/19 23:21	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/29/19 09:30	10/29/19 23:21	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/29/19 09:30	10/29/19 23:21	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/29/19 09:30	10/29/19 23:21	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/29/19 09:30	10/29/19 23:21	1
Isophorone	0.80	U *	10	0.80	ug/L		10/29/19 09:30	10/29/19 23:21	1
Bis(2-chloroethoxy)methane	0.59	U *	10	0.59	ug/L		10/29/19 09:30	10/29/19 23:21	1
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		10/29/19 09:30	10/29/19 23:21	1
Naphthalene	1.1	U	10	1.1	ug/L		10/29/19 09:30	10/29/19 23:21	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/29/19 09:30	10/29/19 23:21	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/29/19 09:30	10/29/19 23:21	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/29/19 09:30	10/29/19 23:21	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Date Received: 10/25/19 10:09

2-Fluorobiphenyl (Surr)

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: DGC-5 (40)

Lab Sample ID: 460-194826-1 Date Collected: 10/24/19 10:30

Matrix: Water

Method: 8270D - Semivolatile Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	3.6	U	10	3.6	ug/L		10/29/19 09:30	10/29/19 23:21	
2-Chloronaphthalene	1.2	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	
2-Nitroaniline	0.47		10		ug/L		10/29/19 09:30	10/29/19 23:21	1
Dimethyl phthalate	0.77	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	1
Acenaphthylene	0.82	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	
2,6-Dinitrotoluene	0.83	U	2.0		ug/L		10/29/19 09:30	10/29/19 23:21	1
3-Nitroaniline	1.9	U	10	1.9	-		10/29/19 09:30	10/29/19 23:21	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/29/19 09:30	10/29/19 23:21	1
Dibenzofuran	1.1	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	1
2,4-Dinitrotoluene	1.0	U	2.0		ug/L		10/29/19 09:30	10/29/19 23:21	1
Diethyl phthalate	0.98	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	1
4-Chlorophenyl phenyl ether	1.3	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	1
Fluorene	0.91	U	10	0.91	ug/L		10/29/19 09:30	10/29/19 23:21	1
4-Nitroaniline	1.2	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	1
N-Nitrosodiphenylamine	0.89	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	1
4-Bromophenyl phenyl ether	0.75	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	1
Phenanthrene	0.58	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	1
Anthracene	0.63	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	1
Carbazole	0.68	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	1
Di-n-butyl phthalate	0.84	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	1
Fluoranthene	0.84	U	10	0.84	-		10/29/19 09:30	10/29/19 23:21	1
Pyrene	1.6	U	10	1.6	ug/L		10/29/19 09:30	10/29/19 23:21	1
Butyl benzyl phthalate	0.85	U	10		ug/L		10/29/19 09:30	10/29/19 23:21	1
3,3'-Dichlorobenzidine	1.4	U	10	1.4	-		10/29/19 09:30	10/29/19 23:21	1
Chrysene	0.91	U	2.0	0.91	ug/L		10/29/19 09:30	10/29/19 23:21	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	-		10/29/19 09:30	10/29/19 23:21	1
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/29/19 09:30	10/29/19 23:21	1
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/29/19 09:30	10/29/19 23:21	1
Indeno[1,2,3-cd]pyrene	0.94	U	2.0	0.94	ug/L		10/29/19 09:30	10/29/19 23:21	1
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/29/19 09:30	10/29/19 23:21	1
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/29/19 09:30	10/29/19 23:21	1
Diphenyl ether	1.2	U	10	1.2	ug/L		10/29/19 09:30	10/29/19 23:21	1
n,n'-Dimethylaniline	0.91	U	1.0		ug/L		10/29/19 09:30	10/29/19 23:21	1
Caprolactam	0.68	U	10	0.68	ug/L		10/29/19 09:30	10/29/19 23:21	1
bis (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/29/19 09:30	10/29/19 23:21	1
Bisphenol-A	9.9	U *	10	9.9	ug/L		10/29/19 09:30	10/29/19 23:21	1
N-Methylaniline	1.3	U	5.0	1.3	ug/L		10/29/19 09:30	10/29/19 23:21	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				10/29/19 09:30	10/29/19 23:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	96		51 - 108				10/29/19 09:30	10/29/19 23:21	- 1
Phenol-d5 (Surr)	32		14 - 39				10/29/19 09:30	10/29/19 23:21	1
Terphenyl-d14 (Surr)	71		40 - 148				10/29/19 09:30	10/29/19 23:21	1
2,4,6-Tribromophenol (Surr)	84		26 - 139				10/29/19 09:30	10/29/19 23:21	1
2-Fluorophenol (Surr)	47		25 - 58				10/29/19 09:30	10/29/19 23:21	1

Eurofins TestAmerica, Edison 11/11/2019

10/29/19 09:30 10/29/19 23:21

45 - 107

79

Client: Golder Associates Inc.

Date Received: 10/25/19 10:09

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Lab Sample ID: 460-194826-1 Client Sample ID: DGC-5 (40)

Date Collected: 10/24/19 10:30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61.2		2.76	0.32	mg/L			10/28/19 18:23	23
Nitrate as N	0.056	UHR	0.10	0.056	mg/L			10/28/19 17:38	1
Nitrite as N	0.076	UH R	0.12	0.076	mg/L			10/28/19 17:38	1
Sulfate	9.79		0.60	0.35	mg/L			10/28/19 17:38	1

Method: 200.8 - Met	als (ICP/MS) - Total Recoverable							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	28600	250	66.8	ug/L		10/31/19 05:12	10/31/19 10:33	5
Magnesium	11600	250	24.8	ug/L		10/31/19 05:12	10/31/19 10:33	5
Potassium	3780	250	73.5	ug/L		10/31/19 05:12	10/31/19 10:33	5
Calcium	20000	250	233	ug/L		10/31/19 05:12	10/31/19 10:33	5

Method: 6010D - Metals (ICP) -	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	24600		150	34.2	ug/L		10/30/19 12:27	10/30/19 19:43	1
Manganese, Dissolved	1990		15.0	0.99	ug/L		10/30/19 12:27	10/30/19 19:43	1
Cobalt, Dissolved	31.6	J	50.0	1.7	ug/L		10/30/19 12:27	10/30/19 19:43	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.54		0.10	0.068	mg/L			10/29/19 10:31	1
Bicarbonate Alkalinity as CaCO3	70.7		5.0	5.0	mg/L			10/29/19 11:01	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/29/19 11:01	1
Alkalinity	70.7		5.0	5.0	mg/L			10/29/19 11:01	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/28/19 19:00	1

Lab Sample ID: 460-194826-2 Client Sample ID: DGC-5 (50) Matrix: Water

Date Collected: 10/24/19 11:30

9	Date Received: 10/25/19 10:09									
ſ	 Method: 8260C SIM - Volatile C	Organic Co	mpounds (GC/MS)						
1	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,4-Dioxane	9.0		0.40	0.33	ug/L			10/30/19 11:08	1

-	1,4-DiOxane	9.0		0.40	0.55 dg/L		10/30/19 11.00	1	
	Surrogate	%Recovery (Qualifier	Limits		Prepared	Analyzed	Dil Fac	
	4-Bromofluorobenzene	94		72 - 133			10/30/19 11:08	1	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/30/19 02:19	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/30/19 02:19	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/30/19 02:19	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/30/19 02:19	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/30/19 02:19	1
Acetone	4.4	U	5.0	4.4	ug/L			10/30/19 02:19	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/30/19 02:19	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/30/19 02:19	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/30/19 02:19	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/30/19 02:19	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/30/19 02:19	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/30/19 02:19	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194826-2

Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: DGC-5 (50)

Lab Sample ID: 460-194826-2

Date Collected: 10/24/19 11:30 Date Received: 10/25/19 10:09

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/30/19 02:19	-
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/30/19 02:19	
1,1,1-Trichloroethane	0.24	U	1.0		ug/L			10/30/19 02:19	
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/30/19 02:19	
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/30/19 02:19	
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/30/19 02:19	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/30/19 02:19	
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/30/19 02:19	
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/30/19 02:19	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/30/19 02:19	
Benzene	0.23	J	1.0	0.20	ug/L			10/30/19 02:19	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/30/19 02:19	
Bromoform	0.54	U	1.0	0.54	ug/L			10/30/19 02:19	•
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/30/19 02:19	
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/30/19 02:19	•
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/30/19 02:19	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/30/19 02:19	
Toluene	0.38	U	1.0	0.38	ug/L			10/30/19 02:19	
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/30/19 02:19	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/30/19 02:19	
Styrene	0.42	U	1.0	0.42	ug/L			10/30/19 02:19	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/30/19 02:19	
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/30/19 02:19	
MTBE	0.47	U	1.0	0.47	ug/L			10/30/19 02:19	
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/30/19 02:19	
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/30/19 02:19	
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/30/19 02:19	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/30/19 02:19	
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/30/19 02:19	
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/30/19 02:19	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/30/19 02:19	
Indane	0.35	U	1.0	0.35	ug/L			10/30/19 02:19	
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/30/19 02:19	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/30/19 02:19	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None	_	ug/L					10/30/19 02:19	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	101		74 - 132			•		10/30/19 02:19	
Toluene-d8 (Surr)	98		80 - 120					10/30/19 02:19	
4-Bromofluorobenzene	97		77 - 124					10/30/19 02:19	

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/29/19 09:30	10/30/19 04:26	1	
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/29/19 09:30	10/30/19 04:26	1	
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/29/19 09:30	10/30/19 04:26	1	
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/29/19 09:30	10/30/19 04:26	1	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: DGC-5 (50)

Lab Sample ID: 460-194826-2

Date Collected: 10/24/19 11:30 Date Received: 10/25/19 10:09

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.15 ⊌≛ ∪၂	0.20	0.15	ug/L		10/29/19 09:30	10/30/19 04:26	1
Bis(2-chloroethyl)ether	0.81	0.030	0.026	ug/L		10/29/19 09:30	10/30/19 04:26	1

::::::::::::::::::::::::::::::::::::::	v.oi	.mna.inda	(CC/MRC)	0.020	ug/L		10/29/19 09:30	10/30/19 04.20	'
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/29/19 09:30	10/29/19 23:42	1
2-Chlorophenol	0.38	U	10		ug/L		10/29/19 09:30	10/29/19 23:42	1
2-Methylphenol	0.67	U	10		ug/L		10/29/19 09:30	10/29/19 23:42	1
4-Methylphenol	0.65	U	10	0.65	ug/L		10/29/19 09:30	10/29/19 23:42	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/29/19 09:30	10/29/19 23:42	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/29/19 09:30	10/29/19 23:42	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/29/19 09:30	10/29/19 23:42	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/29/19 09:30	10/29/19 23:42	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/29/19 09:30	10/29/19 23:42	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/29/19 09:30	10/29/19 23:42	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/29/19 09:30	10/29/19 23:42	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/29/19 09:30	10/29/19 23:42	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/29/19 09:30	10/29/19 23:42	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/29/19 09:30	10/29/19 23:42	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/29/19 09:30	10/29/19 23:42	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/29/19 09:30	10/29/19 23:42	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/29/19 09:30	10/29/19 23:42	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/29/19 09:30	10/29/19 23:42	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/29/19 09:30	10/29/19 23:42	1
Isophorone	0.80	U *	10	0.80	ug/L		10/29/19 09:30	10/29/19 23:42	1
Bis(2-chloroethoxy)methane	0.59	U *	10	0.59	ug/L		10/29/19 09:30	10/29/19 23:42	1
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		10/29/19 09:30	10/29/19 23:42	1
Naphthalene	1.1	U	10	1.1	ug/L		10/29/19 09:30	10/29/19 23:42	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/29/19 09:30	10/29/19 23:42	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/29/19 09:30	10/29/19 23:42	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/29/19 09:30	10/29/19 23:42	1
Hexachlorocyclopentadiene	3.6	U	10	3.6	ug/L		10/29/19 09:30	10/29/19 23:42	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/29/19 09:30	10/29/19 23:42	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/29/19 09:30	10/29/19 23:42	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/29/19 09:30	10/29/19 23:42	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/29/19 09:30	10/29/19 23:42	1
2,6-Dinitrotoluene	0.83	U	2.0	0.83	ug/L		10/29/19 09:30	10/29/19 23:42	1
3-Nitroaniline	1.9	U	10	1.9	ug/L		10/29/19 09:30	10/29/19 23:42	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/29/19 09:30	10/29/19 23:42	1
Dibenzofuran	1.1	U	10	1.1	ug/L		10/29/19 09:30	10/29/19 23:42	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/29/19 09:30	10/29/19 23:42	1
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/29/19 09:30	10/29/19 23:42	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/29/19 09:30	10/29/19 23:42	1
Fluorene	0.91	U	10		ug/L		10/29/19 09:30	10/29/19 23:42	1
4-Nitroaniline	1.2	U	10	1.2	ug/L		10/29/19 09:30	10/29/19 23:42	1
N-Nitrosodiphenylamine	0.89		10		ug/L		10/29/19 09:30	10/29/19 23:42	1
4-Bromophenyl phenyl ether	0.75	U	10		ug/L			10/29/19 23:42	1
Phenanthrene	0.58		10	0.58	ug/L			10/29/19 23:42	1
Anthracene	0.63	U	10		ug/L		10/29/19 09:30	10/29/19 23:42	1
Carbazole	0.68	U	10	0.68	ug/L		10/29/19 09:30	10/29/19 23:42	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: DGC-5 (50)

Lab Sample ID: 460-194826-2

Matrix: Water

Date Collected: 10/24/19 11:30 Date Received: 10/25/19 10:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/29/19 09:30	10/29/19 23:42	1
Fluoranthene	0.84	U	10	0.84	ug/L		10/29/19 09:30	10/29/19 23:42	1
Pyrene	1.6	U	10	1.6	ug/L		10/29/19 09:30	10/29/19 23:42	1
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/29/19 09:30	10/29/19 23:42	1
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/29/19 09:30	10/29/19 23:42	1
Chrysene	0.91	U	2.0	0.91	ug/L		10/29/19 09:30	10/29/19 23:42	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/29/19 09:30	10/29/19 23:42	1
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/29/19 09:30	10/29/19 23:42	1
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/29/19 09:30	10/29/19 23:42	1
Indeno[1,2,3-cd]pyrene	0.94	U	2.0	0.94	ug/L		10/29/19 09:30	10/29/19 23:42	1
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/29/19 09:30	10/29/19 23:42	1
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/29/19 09:30	10/29/19 23:42	1
Diphenyl ether	1.2	U	10	1.2	ug/L		10/29/19 09:30	10/29/19 23:42	1
n,n'-Dimethylaniline	0.91	U	1.0	0.91	ug/L		10/29/19 09:30	10/29/19 23:42	1
Caprolactam	0.68	U	10	0.68	ug/L		10/29/19 09:30	10/29/19 23:42	1
bis (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/29/19 09:30	10/29/19 23:42	1
Bisphenol-A	9.9	U *	10	9.9	ug/L		10/29/19 09:30	10/29/19 23:42	1
N-Methylaniline	1.3	U	5.0	1.3	ug/L		10/29/19 09:30	10/29/19 23:42	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				10/29/19 09:30	10/29/19 23:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	103	-	51 - 108				10/29/19 09:30	10/29/19 23:42	1
Phenol-d5 (Surr)	34		14 - 39				10/29/19 09:30	10/29/19 23:42	1
Terphenyl-d14 (Surr)	75		40 - 148				10/29/19 09:30	10/29/19 23:42	1
2,4,6-Tribromophenol (Surr)	93		26 - 139				10/29/19 09:30	10/29/19 23:42	1
2-Fluorophenol (Surr)	50		25 - 58				10/29/19 09:30	10/29/19 23:42	1
2-Fluorobiphenyl (Surr)	83		45 - 107				10/29/19 09:30	10/29/19 23:42	1
Method: 6010D - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	34.3	J	50.0	1.7	ug/L		10/30/19 12:27	10/30/19 19:47	1
Iron, Dissolved	26900		150	34.2	ug/L		10/30/19 12:27	10/30/19 19:47	1
Manganese, Dissolved	2040		15.0	0.99	ug/L		10/30/19 12:27	10/30/19 19:47	1
General Chemistry									
	m	Our alifian	D.	BAD.	11	D	Prepared	Analyzed	Dil Fac
Analyte	0.55	Qualifier	RL	0.068	Unit	ט	riepaieu	Allalyzeu	DIIFac

Client Sample ID: DGC-2S

Lab Sample ID: 460-194921-1

Matrix: Water

Date Collected: 10/24/19 15:00

Date Received: 10/25/19 20:00

Method: 300.0 - Anions, Ion	Chromatography							
Analyte	Result Qual	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	22.5	0.96	0.11	mg/L			10/26/19 17:31	8
Nitrate as N	0.29	0.10	0.056	mg/L			10/26/19 12:47	1
Nitrite as N	0.076 U	0.12	0.076	mg/L			10/26/19 12:47	1
Sulfate	17.3	0.60	0.35	mg/L			10/26/19 12:47	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: B-4DR Lab Sample ID: 460-194921-2

Date Collected: 10/24/19 10:00 Date Received: 10/25/19 20:00

Matrix: Water

Method: 8260C SIM - Volati	ile Organic Cor	npounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	77		2.0	1.7	ug/L			10/27/19 07:08	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	86		72 - 133			-		10/27/19 07:08	5

4-Bromofluorobenzene	86		72 - 133					10/27/19 07:08	5
Method: 8260C - Volatile Or	rganic Compou	nds by G	C/MS						
Analyte	Result C		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	2.0	J	5.0	2.0	ug/L			10/30/19 15:52	5
Bromomethane	2.8 L	J	5.0	2.8	ug/L			10/30/19 15:52	5
Vinyl chloride	0.86 L	J	5.0	0.86	ug/L			10/30/19 15:52	5
Chloroethane	1.6 L	j	5.0	1.6	ug/L			10/30/19 15:52	5
Methylene Chloride	1.6 L	J	5.0	1.6	ug/L			10/30/19 15:52	5
Acetone	37		25	22	ug/L			10/30/19 15:52	5
Carbon disulfide	4.1 L	j	5.0	4.1	ug/L			10/30/19 15:52	5
1,1-Dichloroethene	1.3 L	J	5.0		ug/L			10/30/19 15:52	5
1,1-Dichloroethane	1.3 L	J	5.0	1.3	ug/L			10/30/19 15:52	5
trans-1,2-Dichloroethene	1.2 L	j	5.0	1.2	ug/L			10/30/19 15:52	5
cis-1,2-Dichloroethene	1.1 U	J	5.0		ug/L			10/30/19 15:52	5
Chloroform	1.6 L	J	5.0		ug/L			10/30/19 15:52	5
1,2-Dichloroethane	2.4 J		5.0		ug/L			10/30/19 15:52	5
2-Butanone (MEK)	9.3 ل	J	25		ug/L			10/30/19 15:52	5
1,1,1-Trichloroethane	1.2 L	J	5.0		ug/L			10/30/19 15:52	5
Carbon tetrachloride	1.0 L	j	5.0		ug/L			10/30/19 15:52	5
Bromodichloromethane	1.7 L	J	5.0		ug/L			10/30/19 15:52	5
1,2-Dichloropropane	1.8 L	J	5.0		ug/L			10/30/19 15:52	5
cis-1,3-Dichloropropene	1.1	j	5.0		ug/L			10/30/19 15:52	5
Trichloroethene	1.6 L		5.0		ug/L			10/30/19 15:52	5
Dibromochloromethane	1.4 L	J	5.0		ug/L			10/30/19 15:52	5
1,1,2-Trichloroethane	2.2 \		5.0		ug/L			10/30/19 15:52	5
Benzene	1.0 L		5.0		ug/L			10/30/19 15:52	5
trans-1,3-Dichloropropene	2.4 L	J	5.0		ug/L			10/30/19 15:52	5
Bromoform	2.7 L		5.0		ug/L			10/30/19 15:52	5
4-Methyl-2-pentanone	6.5 L		25		ug/L			10/30/19 15:52	5
2-Hexanone	5.7 L		25		ug/L			10/30/19 15:52	5
Tetrachloroethene	1.2 L		5.0		ug/L			10/30/19 15:52	5
1,1,2,2-Tetrachloroethane	1.8 L		5.0		ug/L			10/30/19 15:52	5
Toluene	3.6 J		5.0		ug/L			10/30/19 15:52	5
Chlorobenzene	1400		5.0		ug/L			10/30/19 15:52	5
Ethylbenzene	12		5.0		ug/L			10/30/19 15:52	5
Styrene	2.1 L	J	5.0		ug/L			10/30/19 15:52	5
Xylenes, Total	120	-	10		ug/L			10/30/19 15:52	5
Diethyl ether	1.1 \	I	5.0		ug/L			10/30/19 15:52	5
MTBE	2.3 L		5.0		ug/L			10/30/19 15:52	5
Tetrahydrofuran	5.2 L		10		ug/L			10/30/19 15:52	5
Cyclohexane	1.6 L		5.0		ug/L			10/30/19 15:52	5
1,2,4-Trimethylbenzene	29	-	5.0		ug/L			10/30/19 15:52	5
1,3,5-Trimethylbenzene	120		5.0		ug/L			10/30/19 15:52	5
Isopropylbenzene	4.8 J	ı	5.0 5.0		ug/L			10/30/19 15:52	5
• • •	4.6 J 2.2 J		5.0 5.0		ug/L ug/L			10/30/19 15:52	5
N-Propylbenzene Methylcyclohexane	1.3 L		3.0	1.0	ug/L			10/00/19 10:02	J

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: B-4DR Lab Sample ID: 460-194921-2

Date Collected: 10/24/19 10:00 Matrix: Water Date Received: 10/25/19 20:00

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Indane 5.0 10/30/19 15:52 69 1.7 ug/L 5.0 Dichlorofluoromethane 10/30/19 15:52 5 3.6 1.7 ug/L 5.0 10/30/19 15:52 5 1,2,3-Trimethylbenzene 120 1.8 ug/L Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Prepared Analyzed Dil Fac 5 Benzene, 1-ethyl-4-methyl-38 JN 10.37 622-96-8 10/30/19 15:52 ug/L 5 Benzene, 1-ethyl-2-methyl-140 JN ug/L 10.58 611-14-3 10/30/19 15:52 5 Acenaphthene 43 JN 10.83 83-32-9 10/30/19 15:52 ug/L 5 Benzene, 1,2-dichloro-46 JN ug/L 11.23 95-50-1 10/30/19 15:52 1,4-Benzenediol, diacetate 2000 JN 12.68 1205-91-0 10/30/19 15:52 5 ug/L Limits Prepared Dil Fac Surrogate %Recovery Qualifier Analyzed

5
5
5
5
,

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) Analyte Result Qualifier MDL Unit D Dil Fac RL Prepared Analyzed 20 2.1 [±] J+ 1.0 0.31 ug/L 10/26/19 09:25 10/28/19 08:02 Benzo[a]anthracene 1.0 10/26/19 09:25 10/28/19 08:02 20 Benzo[a]pyrene 1.6 0.43 ug/L Benzo[b]fluoranthene 1.4 * J+ 1.0 0.48 ug/L 10/26/19 09:25 10/28/19 08:02 20 Hexachlorobenzene 0.26 U 0.40 0.26 ug/L 10/26/19 09:25 10/28/19 08:02 20 3.1 U * 4.0 20 Pentachlorophenol 3.1 ug/L 10/26/19 09:25 10/28/19 08:02 85 Bis(2-chloroethyl)ether 0.60 0.52 ug/L 10/26/19 09:25 10/28/19 08:02

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/26/19 09:25	10/27/19 03:20	1
2-Chlorophenol	0.97	J	10	0.38	ug/L		10/26/19 09:25	10/27/19 03:20	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/26/19 09:25	10/27/19 03:20	1
4-Methylphenol	1.3	J	10	0.65	ug/L		10/26/19 09:25	10/27/19 03:20	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 03:20	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/26/19 09:25	10/27/19 03:20	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 03:20	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 03:20	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/26/19 09:25	10/27/19 03:20	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:25	10/27/19 03:20	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/26/19 09:25	10/27/19 03:20	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:25	10/27/19 03:20	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/26/19 09:25	10/27/19 03:20	1
1,3-Dichlorobenzene	8.7	J	10	2.0	ug/L		10/26/19 09:25	10/27/19 03:20	1
1,4-Dichlorobenzene	35		10	1.3	ug/L		10/26/19 09:25	10/27/19 03:20	1
1,2-Dichlorobenzene	29		10	1.3	ug/L		10/26/19 09:25	10/27/19 03:20	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/26/19 09:25	10/27/19 03:20	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/26/19 09:25	10/27/19 03:20	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/26/19 09:25	10/27/19 03:20	1
Isophorone	0.80	U	10	0.80	ug/L		10/26/19 09:25	10/27/19 03:20	1
Bis(2-chloroethoxy)methane	0.59	U	10	0.59	ug/L		10/26/19 09:25	10/27/19 03:20	1
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		10/26/19 09:25	10/27/19 03:20	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: B-4DR

Lab Sample ID: 460-194921-2

Matrix: Water

Date Collected: 10/24/19 10:00 Date Received: 10/25/19 20:00

Method: 8270D - Semivolatile Analyte		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	15		10	·	1.1	ug/L		•	10/27/19 03:20	1
4-Chloroaniline	1.9	U	10)		ug/L		10/26/19 09:25	10/27/19 03:20	1
Hexachlorobutadiene	0.78	U	1.0			ug/L		10/26/19 09:25	10/27/19 03:20	1
2-Methylnaphthalene	1.5	J	10)	1.1	ug/L		10/26/19 09:25	10/27/19 03:20	1
Hexachlorocyclopentadiene	3.6	U	10)	3.6	ug/L		10/26/19 09:25	10/27/19 03:20	1
2-Chloronaphthalene	1.2	U	10		1.2	ug/L		10/26/19 09:25	10/27/19 03:20	1
2-Nitroaniline	0.47	U	10)		ug/L		10/26/19 09:25	10/27/19 03:20	1
Dimethyl phthalate	0.77	U	10)	0.77	ug/L		10/26/19 09:25	10/27/19 03:20	1
Acenaphthylene	0.82	U	10)	0.82	ug/L		10/26/19 09:25	10/27/19 03:20	1
2,6-Dinitrotoluene	0.83	U	2.0)	0.83	ug/L		10/26/19 09:25	10/27/19 03:20	1
3-Nitroaniline	1.9	U	10)	1.9	ug/L		10/26/19 09:25	10/27/19 03:20	1
Acenaphthene	1.1	U	10)	1.1	ug/L		10/26/19 09:25	10/27/19 03:20	1
Dibenzofuran	1.1	U	10)	1.1	ug/L		10/26/19 09:25	10/27/19 03:20	1
2,4-Dinitrotoluene	1.0	U	2.0)	1.0	ug/L		10/26/19 09:25	10/27/19 03:20	1
Diethyl phthalate	0.98	U	10)	0.98	ug/L		10/26/19 09:25	10/27/19 03:20	1
4-Chlorophenyl phenyl ether	1.3	U	10)	1.3	ug/L		10/26/19 09:25	10/27/19 03:20	1
Fluorene	0.91	U	10	ı	0.91	ug/L		10/26/19 09:25	10/27/19 03:20	1
4-Nitroaniline	1.2	U	10)	1.2	ug/L		10/26/19 09:25	10/27/19 03:20	1
N-Nitrosodiphenylamine	0.89	U	10)	0.89	ug/L		10/26/19 09:25	10/27/19 03:20	1
4-Bromophenyl phenyl ether	0.75	U	10)	0.75	ug/L		10/26/19 09:25	10/27/19 03:20	1
Phenanthrene	0.58	U	10)	0.58	ug/L		10/26/19 09:25	10/27/19 03:20	1
Anthracene	0.63	U	10)	0.63	ug/L		10/26/19 09:25	10/27/19 03:20	1
Carbazole	0.68	U	10)	0.68	ug/L		10/26/19 09:25	10/27/19 03:20	1
Di-n-butyl phthalate	0.84	U	10)	0.84	ug/L		10/26/19 09:25	10/27/19 03:20	1
Fluoranthene	0.84	U	10)	0.84	ug/L		10/26/19 09:25	10/27/19 03:20	1
Pyrene	1.6	U	10)	1.6	ug/L		10/26/19 09:25	10/27/19 03:20	1
Butyl benzyl phthalate	0.85	U	10)	0.85	ug/L		10/26/19 09:25	10/27/19 03:20	1
3,3'-Dichlorobenzidine	1.4	U	10)	1.4	ug/L		10/26/19 09:25	10/27/19 03:20	1
Chrysene	0.91	U	2.0)	0.91	ug/L		10/26/19 09:25	10/27/19 03:20	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0)	1.7	ug/L		10/26/19 09:25	10/27/19 03:20	1
Di-n-octyl phthalate	4.8	U	10)	4.8	ug/L		10/26/19 09:25	10/27/19 03:20	1
Benzo[k]fluoranthene	0.67	U	1.0)	0.67	ug/L		10/26/19 09:25	10/27/19 03:20	1
Indeno[1,2,3-cd]pyrene	0.94	U	2.0)	0.94	ug/L		10/26/19 09:25	10/27/19 03:20	1
Dibenz(a,h)anthracene	0.72	U	1.0)	0.72	ug/L		10/26/19 09:25	10/27/19 03:20	1
Benzo[g,h,i]perylene	1.4	U	10)	1.4	ug/L		10/26/19 09:25	10/27/19 03:20	1
Diphenyl ether	34		10)	1.2	ug/L		10/26/19 09:25	10/27/19 03:20	1
n,n'-Dimethylaniline	3.9		1.0	ì	0.91	ug/L		10/26/19 09:25	10/27/19 03:20	1
Caprolactam	0.68	U	10)	0.68	ug/L		10/26/19 09:25	10/27/19 03:20	1
bis (2-chloroisopropyl) ether	0.63	U	10)	0.63	ug/L		10/26/19 09:25	10/27/19 03:20	1
Bisphenol-A	100		10)	9.9	ug/L		10/26/19 09:25	10/27/19 03:20	1
N-Methylaniline	1.3	U	5.0)	1.3	ug/L		10/26/19 09:25	10/27/19 03:20	1
Tentatively Identified Compound	Est. Result		Unit	D	i	RT	CAS No.	Prepared	Analyzed	Dil Fac
Benzene, 1,3-dimethyl-	47	JN	ug/L		3.	13	108-38-3	10/26/19 09:25	10/27/19 03:20	1

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Benzene, 1,3-dimethyl-	47	JN	ug/L		3.13	108-38-3	10/26/19 09:25	10/27/19 03:20	1
Benzene, 1,2,3-trimethyl-	75	J N	ug/L		3.79	526-73-8	10/26/19 09:25	10/27/19 03:20	1
Benzene, 1-ethyl-2-methyl-	72	JN	ug/L		3.87	611-14-3	10/26/19 09:25	10/27/19 03:20	1
Benzene, 1,2,4-trimethyl-	64	JN	ug/L		4.21	95-63-6	10/26/19 09:25	10/27/19 03:20	1
Unknown	30	J	ug/L		4.38		10/26/19 09:25	10/27/19 03:20	1
2-Isopropoxyphenol	33	JN	ug/L		5.24	4812-20-8	10/26/19 09:25	10/27/19 03:20	1
Benzene, 1,3-dipropoxy-	630	JN	ug/L		5.82	56106-37-7	10/26/19 09:25	10/27/19 03:20	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194826-2

Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Lab Sample ID: 460-194921-2 Client Sample ID: B-4DR

Matrix: Water

Date Collected: 10/24/19 10:00 Date Received: 10/25/19 20:00

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	29	J	ug/L		.98		10/26/19 09:25	10/27/19 03:20	
1,3,5-Triazine-2,4,6(1H,3H,5H) -trione, 1,3,5-trimethyl-	150	JN	ug/L	6.	.40	827-16-7	10/26/19 09:25	10/27/19 03:20	1
-uione, 1,3,5-uimeuryi- Unknown	74	J	ug/L	6.	.47		10/26/19 09:25	10/27/19 03:20	1
Unknown	400	J	ug/L	6.	.83		10/26/19 09:25	10/27/19 03:20	1
Altretamine	100	JN	ug/L	7.	.91	645-05-6	10/26/19 09:25	10/27/19 03:20	1
Urea, N,N'-dimethyl-N,N'-diphenyl-	54	JN	ug/L	8.	.59	611-92-7	10/26/19 09:25	10/27/19 03:20	1
Unknown	26	J	ug/L	8.	.88		10/26/19 09:25	10/27/19 03:20	1
Unknown	35	J	ug/L	10.	.79		10/26/19 09:25	10/27/19 03:20	1
Norcannabinol-9-carboxylic acid,	190	JN	ug/L	11.	.79	53989-32-5	10/26/19 09:25	10/27/19 03:20	1
11- Unknown	180	ı	uad	11	.96		10/26/10 00:25	10/27/19 03:20	1
Unknown	120	_	ug/L		.90 .14			10/27/19 03:20	1
Unknown	37	-	ug/L		. 14			10/27/19 03:20	
Unknown	37 28	-	ug/L ug/L		.58			10/27/19 03:20	1
OTKHOWH	20	0	ag/L	70.	.00		10/20/13 03.20	10/21/19 03:20	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	82		51 - 108				10/26/19 09:25	10/27/19 03:20	1
Phenol-d5 (Surr)	31		14 _ 39				10/26/19 09:25	10/27/19 03:20	1
Terphenyl-d14 (Surr)	72		40 - 148				10/26/19 09:25	10/27/19 03:20	1
2,4,6-Tribromophenol (Surr)	95		26 - 139				10/26/19 09:25	10/27/19 03:20	1
2-Fluorophenol (Surr)	46		25 - 58				10/26/19 09:25	10/27/19 03:20	1
2-Fluorobiphenyl (Surr)	88		45 - 107				10/26/19 09:25	10/27/19 03:20	1
Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	44.8	J	50.0	1.7	ug/L		10/30/19 09:19	10/30/19 23:50	1
Iron, Dissolved	81900		150	34.2	ug/L		10/30/19 09:19	10/30/19 23:50	1
Manganese, Dissolved	5460		15.0	0.99	ug/L		10/30/19 09:19	10/30/19 23:50	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
				0.068					

Client Sample ID: BG-1 Lab Sample ID: 460-194921-3

Date Collected: 10/25/19 11:35 Date Received: 10/25/19 20:00

Method: 8260C SIM - Volatile	Organic Compounds	(GC/MS)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	35	0.40	0.33 ug/L			10/26/19 19:04	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	83	72 - 133		-	•	10/26/19 19:04	

Method: 8260C - Volatile	Organic Compo	rganic Compounds by GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/30/19 02:15	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/30/19 02:15	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/30/19 02:15	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/30/19 02:15	1

Eurofins TestAmerica, Edison

11/11/2019

Matrix: Water

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: BG-1 Lab Sample ID: 460-194921-3

Date Collected: 10/25/19 11:35 Date Received: 10/25/19 20:00

Matrix: Water

Method: 8260C - Volatile Org Analyte		Qualifier	RL		_ Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	0.32	U	1.0	0.3	2 ug/L			10/30/19 02:15	1
Acetone	4.4	U	5.0		4 ug/L			10/30/19 02:15	1
Carbon disulfide	0.82	U	1.0	0.8	2 ug/L			10/30/19 02:15	1
1,1-Dichloroethene	0.26	U	1.0		3 ug/L			10/30/19 02:15	1
1,1-Dichloroethane	0.26	U	1.0		6 ug/L			10/30/19 02:15	1
trans-1,2-Dichloroethene	0.24	U	1.0		4 ug/L			10/30/19 02:15	1
cis-1,2-Dichloroethene	0.47		1.0		2 ug/L			10/30/19 02:15	1
Chloroform	0.33	U	1.0		3 ug/L			10/30/19 02:15	1
1,2-Dichloroethane	0.43	U	1.0		3 ug/L			10/30/19 02:15	1
2-Butanone (MEK)	1.9	U	5.0		9 ug/L			10/30/19 02:15	1
1,1,1-Trichloroethane	0.24	U	1.0		4 ug/L			10/30/19 02:15	1
Carbon tetrachloride	0.21		1.0		1 ug/L			10/30/19 02:15	1
Bromodichloromethane	0.34		1.0		4 ug/L			10/30/19 02:15	1
1,2-Dichloropropane	0.35		1.0		5 ug/L			10/30/19 02:15	1
cis-1,3-Dichloropropene	0.22		1.0		2 ug/L			10/30/19 02:15	· · · · · · · · · · · · · · · · · · ·
Trichloroethene	1.1	-	1.0		1 ug/L			10/30/19 02:15	1
Dibromochloromethane	0.28	11	1.0		B ug/L			10/30/19 02:15	1
1,1,2-Trichloroethane	0.43		1.0		3 ug/L			10/30/19 02:15	· · · · · · · · · · · · · · · · · · ·
Benzene	4.2	Ü	1.0		o ug/L			10/30/19 02:15	. 1
trans-1,3-Dichloropropene	0.49	П	1.0		9 ug/L			10/30/19 02:15	1
Bromoform	0.54		1.0		ug/L			10/30/19 02:15	1
4-Methyl-2-pentanone	1.3		5.0		3 ug/L			10/30/19 02:15	1
2-Hexanone	1.1		5.0	1.	-			10/30/19 02:15	1
Tetrachloroethene	0.25		1.0		ug/L ug/L			10/30/19 02:15	1
1,1,2,2-Tetrachloroethane	0.23		1.0		7 ug/L			10/30/19 02:15	1
Toluene	0.38		1.0		B ug/L			10/30/19 02:15	1
Chlorobenzene	0.99		1.0		B ug/L			10/30/19 02:15	1
Ethylbenzene	0.30		1.0		o ug/L			10/30/19 02:15	1
Styrene	0.42		1.0		2 ug/L			10/30/19 02:15	1
	6.8		2.0		5 ug/L			10/30/19 02:15	· · · · · · · · · · · · · · · · · · ·
Xylenes, Total Diethyl ether	0.21	11	1.0		ug/L ug/L			10/30/19 02:15	1
MTBE	0.21		1.0		7 ug/L			10/30/19 02:15	1
Tetrahydrofuran	1.0		2.0		oug/L oug/L			10/30/19 02:15	1
		U	1.0		ug/L ug/L			10/30/19 02:15	1
Cyclohexane	2.7				z ug/L 7 ug/L				1
1,2,4-Trimethylbenzene	8.0		1.0		_			10/30/19 02:15	
1,3,5-Trimethylbenzene	4.7		1.0		3 ug/L			10/30/19 02:15	1
Isopropylbenzene	4.1		1.0		4 ug/L			10/30/19 02:15	1
N-Propylbenzene	3.4		1.0		2 ug/L			10/30/19 02:15	1
Methylcyclohexane	4.3		1.0		6 ug/L			10/30/19 02:15	1
Indane	2.6		1.0		5 ug/L			10/30/19 02:15	1
Dichlorofluoromethane	0.75	J	1.0		4 ug/L			10/30/19 02:15	1
1,2,3-Trimethylbenzene	6.5		1.0	0.3	6 ug/L			10/30/19 02:15	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/30/19 02:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		74 - 132					10/30/19 02:15	1
Toluene-d8 (Surr)	97		80 - 120					10/30/19 02:15	1
4-Bromofluorobenzene	102		77 - 124					10/30/19 02:15	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Surrogate

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Lab Sample ID: 460-194921-3 Client Sample ID: BG-1

Date Collected: 10/25/19 11:35 Matrix: Water Date Received: 10/25/19 20:00

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)	
---	--

%Recovery Qualifier

			•	
Dibromofluoromethane (Surr)	113	72 - 131	10/30/19 02:15	1
L				
f				

Limits

Method: 8270D SIM - Semi	volatile Organi	c Compour	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U *	0.050	0.016	ug/L		10/26/19 09:25	10/27/19 00:32	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/26/19 09:25	10/27/19 00:32	1
Benzo[b]fluoranthene	0.024	U *	0.050	0.024	ug/L		10/26/19 09:25	10/27/19 00:32	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/26/19 09:25	10/27/19 00:32	1
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/26/19 09:25	10/27/19 00:32	1
Bis(2-chloroethyl)ether	4.3		0.030	0.026	ug/L		10/26/19 09:25	10/27/19 00:32	1

					9				
Method: 8270D - Semivolatil Analyte		mpounds (Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U		0.29	ug/L		10/26/19 09:25	10/27/19 03:40	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:25	10/27/19 03:40	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/26/19 09:25	10/27/19 03:40	1
4-Methylphenol	0.65	U	10	0.65	ug/L		10/26/19 09:25	10/27/19 03:40	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 03:40	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/26/19 09:25	10/27/19 03:40	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 03:40	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 03:40	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/26/19 09:25	10/27/19 03:40	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:25	10/27/19 03:40	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/26/19 09:25	10/27/19 03:40	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:25	10/27/19 03:40	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/26/19 09:25	10/27/19 03:40	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/26/19 09:25	10/27/19 03:40	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:25	10/27/19 03:40	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:25	10/27/19 03:40	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/26/19 09:25	10/27/19 03:40	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/26/19 09:25	10/27/19 03:40	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/26/19 09:25	10/27/19 03:40	1
Isophorone	0.80	U	10	0.80	ug/L		10/26/19 09:25	10/27/19 03:40	1
Bis(2-chloroethoxy)methane	0.59	U	10	0.59	ug/L		10/26/19 09:25	10/27/19 03:40	1
1,2,4-Trichlorobenzene	0.64	Ū	2.0	0.64	ug/L		10/26/19 09:25	10/27/19 03:40	1
Naphthalene	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 03:40	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/26/19 09:25	10/27/19 03:40	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/26/19 09:25	10/27/19 03:40	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 03:40	1
Hexachlorocyclopentadiene	3.6	U	10	3.6	ug/L		10/26/19 09:25	10/27/19 03:40	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/26/19 09:25	10/27/19 03:40	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/26/19 09:25	10/27/19 03:40	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/26/19 09:25	10/27/19 03:40	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/26/19 09:25	10/27/19 03:40	1
2,6-Dinitrotoluene	0.83	U	2.0	0.83			10/26/19 09:25	10/27/19 03:40	1
3-Nitroaniline	1.9	U	10	1.9	ug/L		10/26/19 09:25	10/27/19 03:40	1
Acenaphthene	1.1		10	1.1	ug/L		10/26/19 09:25	10/27/19 03:40	1
Dibenzofuran	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 03:40	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/26/19 09:25	10/27/19 03:40	1

Eurofins TestAmerica, Edison 11/11/2019

Dil Fac

Analyzed

Prepared

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: BG-1 Lab Sample ID: 460-194921-3

Date Collected: 10/25/19 11:35 Matrix: Water Date Received: 10/25/19 20:00

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/26/19 09:25	10/27/19 03:40	
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/26/19 09:25	10/27/19 03:40	
Fluorene	0.91	U	10	0.91	ug/L		10/26/19 09:25	10/27/19 03:40	
4-Nitroaniline	1.2	U	10	1.2	ug/L		10/26/19 09:25	10/27/19 03:40	
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/26/19 09:25	10/27/19 03:40	
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 03:40	
Phenanthrene	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 03:40	
Anthracene	0.63	U	10	0.63	ug/L		10/26/19 09:25	10/27/19 03:40	
Carbazole	0.68	U	10		ug/L		10/26/19 09:25	10/27/19 03:40	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/26/19 09:25	10/27/19 03:40	
Fluoranthene	0.84	U	10		ug/L		10/26/19 09:25	10/27/19 03:40	
Pyrene	1.6		10		ug/L		10/26/19 09:25	10/27/19 03:40	
Butyl benzyl phthalate	0.85		10		ug/L		10/26/19 09:25	10/27/19 03:40	
3.3'-Dichlorobenzidine	1.4		10		ug/L		10/26/19 09:25	10/27/19 03:40	
Chrysene	0.91		2.0		ug/L		10/26/19 09:25	10/27/19 03:40	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L ug/L			10/27/19 03:40	
Di-n-octyl phthalate	4.8	U	10		ug/L ug/L		10/26/19 09:25	10/27/19 03:40	
Benzo[k]fluoranthene	0.67		1.0		ug/L ug/L		10/26/19 09:25	10/27/19 03:40	
	0.07				-		10/26/19 09:25	10/27/19 03:40	
Indeno[1,2,3-cd]pyrene			2.0		ug/L				
Dibenz(a,h)anthracene	0.72		1.0		ug/L		10/26/19 09:25	10/27/19 03:40	
Benzo[g,h,i]perylene	1.4		10		ug/L		10/26/19 09:25	10/27/19 03:40	
Diphenyl ether	1.3		10		ug/L			10/27/19 03:40	•
n,n'-Dimethylaniline	0.91		1.0		ug/L		10/26/19 09:25	10/27/19 03:40	•
Caprolactam	0.68		10		ug/L		10/26/19 09:25	10/27/19 03:40	
bis (2-chloroisopropyl) ether	0.63		10		ug/L		10/26/19 09:25		•
Bisphenol-A	9.9		10		ug/L			10/27/19 03:40	•
N-Methylaniline	1.3	U	5.0	1.3	ug/L		10/26/19 09:25	10/27/19 03:40	•
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Benzene, 1,2,3-trimethyl-	6.9	JN	ug/L	4.	.00	526-73-8	10/26/19 09:25	10/27/19 03:40	
Unknown	9.8	J	ug/L	6.	.82		10/26/19 09:25	10/27/19 03:40	•
	0.479								~
Surrogate	%Recovery	Qualitier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	72		51 - 108				10/26/19 09:25	10/27/19 03:40	•
Phenol-d5 (Surr)	26		14 - 39					10/27/19 03:40	•
Terphenyl-d14 (Surr)	66		40 - 148					10/27/19 03:40	•
2,4,6-Tribromophenol (Surr)	76		26 - 139					10/27/19 03:40	•
2-Fluorophenol (Surr)	39		25 - 58					10/27/19 03:40	•
2-Fluorobiphenyl (Surr)	65		45 - 107				10/26/19 09:25	10/27/19 03:40	•
Method: 6010D - Metals (ICP)	Discolved								
Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	37.6		50.0		ug/L		•	10/30/19 23:54	Diria
Iron, Dissolved	47100	v	150		ug/L ug/L			10/30/19 23:54	
=					-				
Manganese, Dissolved	5020		15.0	0.99	ug/L		10/30/19 09:19	10/30/19 23:54	•
General Chemistry									
world withint a									
Analyte	Result	Qualifier	RL	MDL 0.068	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-4D Lab Sample ID: 460-194921-4

Date Collected: 10/25/19 11:05 Date Received: 10/25/19 20:00

Matrix: Water

Method: 8260C SIM - Vola	tile Organic Cor	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	31		2.0	1.7	ug/L			10/27/19 07:55	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	86		72 - 133			-		10/27/19 07:55	5

4-Bromonuorobenzene 	86		72-133					10/27/19 07:55	5
Method: 8260C - Volatile Organists Analyte	ganic Compou Result (iC/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	J	1.0	0.40	ug/L			10/30/19 02:40	1
Bromomethane	0.55 l	J	1.0	0.55	ug/L			10/30/19 02:40	1
Vinyl chloride	0.17 U	J	1.0	0.17	ug/L			10/30/19 02:40	1
Chloroethane	0.32 \	J	1.0	0.32	ug/L			10/30/19 02:40	1
Methylene Chloride	0.32 (J	1.0	0.32	ug/L			10/30/19 02:40	1
Acetone	4.4 (J	5.0	4.4	ug/L			10/30/19 02:40	1
Carbon disulfide	0.82 \	J	1.0	0.82	ug/L			10/30/19 02:40	1
1,1-Dichloroethene	0.26 l	J	1.0	0.26	ug/L			10/30/19 02:40	1
1,1-Dichloroethane	0.26 (J	1.0	0.26	ug/L			10/30/19 02:40	1
trans-1,2-Dichloroethene	0.24 \	J	1.0	0.24	ug/L			10/30/19 02:40	1
cis-1,2-Dichloroethene	0.22 (1.0	0.22	-			10/30/19 02:40	1
Chloroform	0.33 (J	1.0	0.33	-			10/30/19 02:40	1
1,2-Dichloroethane	0.43 (1.0	0.43	-			10/30/19 02:40	1
2-Butanone (MEK)	1.9 (5.0		ug/L			10/30/19 02:40	1
1,1,1-Trichloroethane	0.24 (1.0	0.24	-			10/30/19 02:40	1
Carbon tetrachloride	0.21 U		1.0	0.21	-			10/30/19 02:40	
Bromodichloromethane	0.34 (1.0	0.34				10/30/19 02:40	1
1,2-Dichloropropane	0.35 (1.0	0.35	-			10/30/19 02:40	1
cis-1,3-Dichloropropene	0.22 (1.0	0.22	-			10/30/19 02:40	
Trichloroethene	0.22 t		1.0	0.31				10/30/19 02:40	1
Dibromochloromethane	0.28 (1.0		-			10/30/19 02:40	1
	0.43 l			0.28 0.43	-				
1,1,2-Trichloroethane		J	1.0		_			10/30/19 02:40	1
Benzene	7.1		1.0	0.20	-			10/30/19 02:40	1
trans-1,3-Dichloropropene	0.49 (1.0	0.49	-			10/30/19 02:40	1
Bromoform	0.54 \		1.0	0.54	-			10/30/19 02:40	1
4-Methyl-2-pentanone	1.3 \		5.0		ug/L			10/30/19 02:40	1
2-Hexanone	1.1 \		5.0		ug/L			10/30/19 02:40	1
Tetrachloroethene	0.25 (1.0	0.25	_			10/30/19 02:40	1
1,1,2,2-Tetrachloroethane	0.37 (J	1.0	0.37	-			10/30/19 02:40	1
Toluene	1.7		1.0	0.38	_			10/30/19 02:40	1
Chlorobenzene	11		1.0	0.38	ug/L			10/30/19 02:40	1
Ethylbenzene	0.30 (1.0	0.30	ug/L			10/30/19 02:40	1
Styrene	0.42 (J	1.0	0.42	ug/L			10/30/19 02:40	1
Xylenes, Total	0.65 (J	2.0	0.65	ug/L			10/30/19 02:40	1
Diethyl ether	0.21 ا	J	1.0	0.21	ug/L			10/30/19 02:40	1
MTBE	0.47 ا	J	1.0	0.47	ug/L			10/30/19 02:40	1
Tetrahydrofuran	1.0 (J	2.0	1.0	ug/L			10/30/19 02:40	1
Cyclohexane	0.32 (J	1.0	0.32	ug/L			10/30/19 02:40	1
1,2,4-Trimethylbenzene	0.37 、	J	1.0	0.37				10/30/19 02:40	1
1,3,5-Trimethylbenzene	0.33 (1.0	0.33	-			10/30/19 02:40	1
Isopropylbenzene	18		1.0	0.34	-			10/30/19 02:40	1
N-Propylbenzene	1.4		1.0	0.32				10/30/19 02:40	1
Methylcyclohexane	0.26 (i	1.0		ug/L			10/30/19 02:40	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-4D Lab Sample ID: 460-194921-4

Date Collected: 10/25/19 11:05 Matrix: Water

Date Received: 10/25/19 20:00

Analyte	Result	Qualifier	RL		MDL	Unit		D	Prepared	Analyzed	Dil Fac
Indane	0.87	J	1.0	-	0.35	ug/L				10/30/19 02:40	1
Dichlorofluoromethane	1.0		1.0		0.34	ug/L				10/30/19 02:40	1
1,2,3-Trimethylbenzene	2.1		1.0		0.36	ug/L				10/30/19 02:40	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS N	о.	Prepared	Analyzed	Dil Fac
Decane, 3,3,6-trimethyl-	7.6	JN	ug/L		4.	53	62338-14	-1		10/30/19 02:40	1
Cyclopentane, 1,1-dimethyl-	12	JN	ug/L		4.	.93	1638-26	-2		10/30/19 02:40	1
Hexane, 2,3-dimethyl-	13	JN	ug/L		5.	.06	584-94	-1		10/30/19 02:40	1
Cyclopentane, 1,1,3-trimethyl-	10	JN	ug/L		5.	.82	4516-69	-2		10/30/19 02:40	1
Unknown	6.6	J	ug/L		6.	.13				10/30/19 02:40	1
Benzene, 1,2-dichloro-	5.5	JN	ug/L		11.	.23	95-50	-1		10/30/19 02:40	1
Phenol, 4-(hexyloxy)-	74	JN	ug/L		12.	.68	18979-55	-0		10/30/19 02:40	1
Surrogate	%Recovery	Qualifier	Limits						Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		74 - 132					-		10/30/19 02:40	1
Toluene-d8 (Surr)	100		80 - 120							10/30/19 02:40	1
4-Bromofluorobenzene	105		77 - 124							10/30/19 02:40	1
Dibromofluoromethane (Surr)	108		72 - 131							10/30/19 02:40	1

Method: 8270D SIM - Semiv	olatile Organi	c Compoun	ds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	1.1	* J+	0.50	0.16	ug/L		10/26/19 09:25	10/28/19 08:23	10
Benzo[a]pyrene	0.78		0.50	0.22	ug/L		10/26/19 09:25	10/28/19 08:23	10
Benzo[b]fluoranthene	0.60	± J+	0.50	0.24	ug/L		10/26/19 09:25	10/28/19 08:23	10
Hexachlorobenzene	0.13	U	0.20	0.13	ug/L		10/26/19 09:25	10/28/19 08:23	10
Pentachlorophenol	1.5	U *	2.0	1.5	ug/L		10/26/19 09:25	10/28/19 08:23	10
Bis(2-chloroethyl)ether	59		0.30	0.26	ug/L		10/26/19 09:25	10/28/19 08:23	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/26/19 09:25	10/27/19 04:01	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:25	10/27/19 04:01	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/26/19 09:25	10/27/19 04:01	1
4-Methylphenol	0.65	U	10	0.65	ug/L		10/26/19 09:25	10/27/19 04:01	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 04:01	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/26/19 09:25	10/27/19 04:01	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 04:01	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 04:01	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/26/19 09:25	10/27/19 04:01	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:25	10/27/19 04:01	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/26/19 09:25	10/27/19 04:01	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:25	10/27/19 04:01	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/26/19 09:25	10/27/19 04:01	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/26/19 09:25	10/27/19 04:01	1
1,4-Dichlorobenzene	4.5	J	10	1.3	ug/L		10/26/19 09:25	10/27/19 04:01	1
1,2-Dichlorobenzene	2.9	J	10	1.3	ug/L		10/26/19 09:25	10/27/19 04:01	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/26/19 09:25	10/27/19 04:01	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/26/19 09:25	10/27/19 04:01	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/26/19 09:25	10/27/19 04:01	1
Isophorone	0.80	U	10	0.80	ug/L		10/26/19 09:25	10/27/19 04:01	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-4D Lab Sample ID: 460-194921-4

Date Collected: 10/25/19 11:05 Matrix: Water Date Received: 10/25/19 20:00

Method: 8270D - Semivolatile Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethoxy)methane	0.59	U	10		0.59	ug/L		10/26/19 09:25	10/27/19 04:01	•
1,2,4-Trichlorobenzene	0.64	U	2.0		0.64	ug/L		10/26/19 09:25	10/27/19 04:01	1
Naphthalene	1.1	U	10		1.1	ug/L		10/26/19 09:25	10/27/19 04:01	1
4-Chloroaniline	1.9	U	10		1.9	ug/L		10/26/19 09:25	10/27/19 04:01	1
Hexachlorobutadiene	0.78	U	1.0		0.78	ug/L		10/26/19 09:25	10/27/19 04:01	1
2-Methylnaphthalene	1.1	U	10		1.1	ug/L		10/26/19 09:25	10/27/19 04:01	1
Hexachlorocyclopentadiene	3.6	U	10		3.6	ug/L		10/26/19 09:25	10/27/19 04:01	1
2-Chloronaphthalene	1.2	U	10			ug/L		10/26/19 09:25	10/27/19 04:01	
2-Nitroaniline	0.47		10		0.47			10/26/19 09:25	10/27/19 04:01	1
Dimethyl phthalate	0.77	U	10		0.77	-		10/26/19 09:25	10/27/19 04:01	1
Acenaphthylene	0.82		10		0.82	-		10/26/19 09:25	10/27/19 04:01	1
2,6-Dinitrotoluene	0.83		2.0		0.83			10/26/19 09:25	10/27/19 04:01	1
3-Nitroaniline	1.9		10			ug/L		10/26/19 09:25	10/27/19 04:01	. 1
Acenaphthene	1.1	U	10		1.1	ug/L		10/26/19 09:25	10/27/19 04:01	·········· 1
Dibenzofuran	1.1	U	10		1.1	ug/L		10/26/19 09:25	10/27/19 04:01	1
2,4-Dinitrotoluene	1.0	U	2.0			ug/L ug/L		10/26/19 09:25	10/27/19 04:01	1
·	0.98		10		0.98	_		10/26/19 09:25	10/27/19 04:01	1
Diethyl phthalate						-				
4-Chlorophenyl phenyl ether	1.3	U	10			ug/L		10/26/19 09:25	10/27/19 04:01	1
Fluorene	0.91		10			ug/L		10/26/19 09:25	10/27/19 04:01	1
4-Nitroaniline	1.2		10			ug/L		10/26/19 09:25	10/27/19 04:01	1
N-Nitrosodiphenylamine		U	10		0.89			10/26/19 09:25	10/27/19 04:01	1
4-Bromophenyl phenyl ether	0.75		10		0.75	-		10/26/19 09:25	10/27/19 04:01	1
Phenanthrene	0.58		10		0.58	-		10/26/19 09:25	10/27/19 04:01	1
Anthracene	0.63	U	10		0.63	-		10/26/19 09:25	10/27/19 04:01	1
Carbazole	0.68	U	10		0.68	-		10/26/19 09:25	10/27/19 04:01	1
Di-n-butyl phthalate	0.84	U	10		0.84	-		10/26/19 09:25	10/27/19 04:01	1
Fluoranthene	0.84	U	10		0.84	ug/L		10/26/19 09:25	10/27/19 04:01	1
Pyrene	1.6	U	10		1.6	ug/L		10/26/19 09:25	10/27/19 04:01	1
Butyl benzyl phthalate	0.85	U	10		0.85	ug/L		10/26/19 09:25	10/27/19 04:01	1
3,3'-Dichlorobenzidine	1.4	U	10		1.4	ug/L		10/26/19 09:25	10/27/19 04:01	1
Chrysene	0.91	U	2.0		0.91	ug/L		10/26/19 09:25	10/27/19 04:01	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0		1.7	ug/L		10/26/19 09:25	10/27/19 04:01	1
Di-n-octyl phthalate	4.8	U	10			ug/L		10/26/19 09:25	10/27/19 04:01	1
Benzo[k]fluoranthene	0.67	U	1.0		0.67	ug/L		10/26/19 09:25	10/27/19 04:01	1
Indeno[1,2,3-cd]pyrene	0.94	U	2.0		0.94	-		10/26/19 09:25	10/27/19 04:01	1
Dibenz(a,h)anthracene	0.72	U	1.0		0.72			10/26/19 09:25	10/27/19 04:01	1
Benzo[g,h,i]perylene	1.4		10			ug/L		10/26/19 09:25		1
Diphenyl ether	9.5		10			ug/L		10/26/19 09:25		1
n,n'-Dimethylaniline	1.2		1.0		0.91			10/26/19 09:25		1
Caprolactam	0.68	11	10		0.68	_		10/26/19 09:25		. 1
bis (2-chloroisopropyl) ether	0.63		10		0.63			10/26/19 09:25		
Bisphenol-A	46	5	10			ug/L		10/26/19 09:25		1
N-Methylaniline	2.0	J	5.0			ug/L		10/26/19 09:25		1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	i	RT	CAS No.	Prepared	Analyzed	Dil Fac
Benzene, (1-methylethyl)-		JN	ug/L			40		10/26/19 09:25	-	1
1,4-Benzenediol, diacetate		JN	ug/L ug/L			81		10/26/19 09:25		, 1
Unknown	12					98	,200-31-0	10/26/19 09:25		1
	78		ug/L					10/26/19 09:25		
Unknown Acetamide, N-methyl-N-phenyl-		J N	ug/L ug/L			82 11			10/27/19 04:01	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Lab Sample ID: 460-194921-4 Client Sample ID: C-4D

Date Collected: 10/25/19 11:05 Matrix: Water Date Received: 10/25/19 20:00

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	15	J	ug/L	- - 7	7.91		10/26/19 09:25	10/27/19 04:01	1
Unknown	7.3	J	ug/L	10	78		10/26/19 09:25	10/27/19 04:01	1
Unknown	9.3	J	ug/L	10).93		10/26/19 09:25	10/27/19 04:01	1
Unknown	6.6	J	ug/L	11	.30		10/26/19 09:25	10/27/19 04:01	1
Norcannabinol-9-carboxylic acid, 11-	18	JN	ug/L	11	.78	53989-32-5	10/26/19 09:25	10/27/19 04:01	1
Unknown	26	J	ug/L	11	.95		10/26/19 09:25	10/27/19 04:01	1
Unknown	21	J	ug/L	12	2.13		10/26/19 09:25	10/27/19 04:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	95		51 - 108				10/26/19 09:25	10/27/19 04:01	1
Phenol-d5 (Surr)	35		14 - 39				10/26/19 09:25	10/27/19 04:01	1
Terphenyl-d14 (Surr)	91		40 - 148				10/26/19 09:25	10/27/19 04:01	1
2,4,6-Tribromophenol (Surr)	110		26 - 139				10/26/19 09:25	10/27/19 04:01	1
2-Fluorophenol (Surr)	53		25 - 58				10/26/19 09:25	10/27/19 04:01	1
2-Fluorobiphenyl (Surr)	89		45 - 107				10/26/19 09:25	10/27/19 04:01	1
- Method: 6010D - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	14.8	J	50.0	1.7	ug/L		10/30/19 09:19	10/30/19 23:58	1
Iron, Dissolved	29700		150	34.2	ug/L		10/30/19 09:19	10/30/19 23:58	1
Manganese, Dissolved	1560		15.0	0.99	ug/L		10/30/19 09:19	10/30/19 23:58	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	2.2		0.10	0.068	mg/L			10/28/19 15:34	1

Client Sample ID: C-18D Lab Sample ID: 460-194921-5

Date Collected: 10/25/19 10:20

Date Received: 10/25/19 20:00

Matrix: Water

Method: 8260C SIM - Volatile	Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	130		2.0	1.7	ug/L			10/31/19 08:35	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	91		72 - 133			-		10/31/19 08:35	5

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	2.0 L	J	5.0	2.0	ug/L			10/31/19 00:16	5
Bromomethane	2.8 ل	J	5.0	2.8	ug/L			10/31/19 00:16	5
Vinyl chloride	0.86 L	J	5.0	0.86	ug/L			10/31/19 00:16	5
Chloroethane	1.6 L	J	5.0	1.6	ug/L			10/31/19 00:16	5
Methylene Chloride	1.6 L	J	5.0	1.6	ug/L			10/31/19 00:16	5
Acetone	22 L	J	25	22	ug/L			10/31/19 00:16	5
Carbon disulfide	4.1 L	J	5.0	4.1	ug/L			10/31/19 00:16	5
1,1-Dichloroethene	1.3 L	J	5.0	1.3	ug/L			10/31/19 00:16	5
1,1-Dichloroethane	1.3 L	J	5.0	1.3	ug/L			10/31/19 00:16	5
trans-1,2-Dichloroethene	1.2 L	J	5.0	1.2	ug/L			10/31/19 00:16	5
cis-1,2-Dichloroethene	14		5.0	1.1	ug/L			10/31/19 00:16	5

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-18D Lab Sample ID: 460-194921-5

Date Collected: 10/25/19 10:20 Matrix: Water Date Received: 10/25/19 20:00

Analyte		Qualifier	RL		_ Unit	D	Prepared	Analyzed	Dil Fa
Chloroform	1.6	U	5.0	1.	ug/L			10/31/19 00:16	
1,2-Dichloroethane	2.2	U	5.0	2.	2 ug/L			10/31/19 00:16	
2-Butanone (MEK)	9.3	U	25	9.	3 ug/L			10/31/19 00:16	
1,1,1-Trichloroethane	1.2	U	5.0	1.	2 ug/L			10/31/19 00:16	
Carbon tetrachloride	1.0	U	5.0	1.	ug/L			10/31/19 00:16	
Bromodichloromethane	1.7	U	5.0	1.	7 ug/L			10/31/19 00:16	
1,2-Dichloropropane	1.8	U	5.0	1.	3 ug/L			10/31/19 00:16	
cis-1,3-Dichloropropene	1.1	U	5.0	1.	1 ug/L			10/31/19 00:16	
Trichloroethene	1.6	U	5.0	1.	3 ug/L			10/31/19 00:16	;
Dibromochloromethane	1.4	U	5.0	1.	4 ug/L			10/31/19 00:16	
1,1,2-Trichloroethane	2.2	U	5.0	2.	2 ug/L			10/31/19 00:16	
Benzene	150		5.0	1.	ug/L			10/31/19 00:16	į
trans-1,3-Dichloropropene	2.4	U	5.0	2.	4 ug/L			10/31/19 00:16	į
Bromoform	2.7	U	5.0	2.	7 ug/L			10/31/19 00:16	
4-Methyl-2-pentanone	6.5	U	25		5 ug/L			10/31/19 00:16	į
2-Hexanone	5.7	U	25	5.	7 ug/L			10/31/19 00:16	
Tetrachloroethene	1.2	U	5.0	1.	2 ug/L			10/31/19 00:16	
1,1,2,2-Tetrachloroethane	1.8	U	5.0	1.	3 ug/L			10/31/19 00:16	į
Toluene	1100		5.0	1.	g ug/L			10/31/19 00:16	
Chlorobenzene	21		5.0	1.	9 ug/L			10/31/19 00:16	
Ethylbenzene	67		5.0	1.	5 ug/L			10/31/19 00:16	ŧ
Styrene	2.1	U	5.0	2.	1 ug/L			10/31/19 00:16	Ę
Xylenes, Total	230		10	3.	3 ug/L			10/31/19 00:16	5
Diethyl ether	1.1	U	5.0	1.	1 ug/L			10/31/19 00:16	
MTBE	2.3	U	5.0	2.	3 ug/L			10/31/19 00:16	
Tetrahydrofuran	7.8	J	10	5.	2 ug/L			10/31/19 00:16	
Cyclohexane	1.6	U	5.0	1.	3 ug/L			10/31/19 00:16	
1,2,4-Trimethylbenzene	32		5.0	1.	g ug/L			10/31/19 00:16	
1,3,5-Trimethylbenzene	9.1		5.0	1.	3 ug/L			10/31/19 00:16	
Isopropylbenzene	3.2	J	5.0		7 ug/L			10/31/19 00:16	Ę
N-Propylbenzene	5.8		5.0		3 ug/L			10/31/19 00:16	Ę
Methylcyclohexane	2.9		5.0		3 ug/L			10/31/19 00:16	
Indane	18		5.0		7 ug/L			10/31/19 00:16	į
Dichlorofluoromethane	1.7	U	5.0		7 ug/L			10/31/19 00:16	į
1,2,3-Trimethylbenzene	10		5.0		3 ug/L			10/31/19 00:16	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Benzene, 1-ethyl-3-methyl-	40	JN	ug/L		0.35	620-14-4		10/31/19 00:16	
Acenaphthene	25	JN	ug/L	1	0.82	83-32-9		10/31/19 00:16	;
Naphthalene	160	JN	ug/L	1	2.37	91-20-3		10/31/19 00:16	;
Naphthalene, 1-methyl-	170	JN	ug/L	1	3.32	90-12-0		10/31/19 00:16	\$
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		74 - 132					10/31/19 00:16	
Toluene-d8 (Surr)	101		80 - 120					10/31/19 00:16	
4-Bromofluorobenzene	103		77 - 124					10/31/19 00:16	
Dibromofluoromethane (Surr)	104		72 - 131					10/31/19 00:16	

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-18D Lab Sample ID: 460-194921-5

Date Collected: 10/25/19 10:20 Matrix: Water Date Received: 10/25/19 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.48	* 1+	0.25	0.078	ug/L		10/26/19 09:25	10/28/19 08:44	5
Benzo[a]pyrene	0.35		0.25	0.11	ug/L		10/26/19 09:25	10/28/19 08:44	5
Benzo[b]fluoranthene	0.27	* J+	0.25	0.12	ug/L		10/26/19 09:25	10/28/19 08:44	5
Hexachlorobenzene	0.066	U	0.10	0.066	ug/L		10/26/19 09:25	10/28/19 08:44	5
Pentachlorophenol	0.77	₩.	1.0	0.77	ug/L		10/26/19 09:25	10/28/19 08:44	5
Bis(2-chloroethyl)ether	19		0.15	0.13	ug/L		10/26/19 09:25	10/28/19 08:44	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	1.7		10	0.29	ug/L		10/26/19 09:25	10/27/19 04:22	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:25	10/27/19 04:22	1
2-Methylphenol	3.3	J	10	0.67	ug/L		10/26/19 09:25	10/27/19 04:22	1
4-Methylphenol	5.9	J	10	0.65	ug/L		10/26/19 09:25	10/27/19 04:22	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 04:22	1
2,4-Dimethylphenol	1.4	J	10	0.62	ug/L		10/26/19 09:25	10/27/19 04:22	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 04:22	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 04:22	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/26/19 09:25	10/27/19 04:22	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:25	10/27/19 04:22	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/26/19 09:25	10/27/19 04:22	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:25	10/27/19 04:22	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/26/19 09:25	10/27/19 04:22	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/26/19 09:25	10/27/19 04:22	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:25	10/27/19 04:22	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:25	10/27/19 04:22	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/26/19 09:25	10/27/19 04:22	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/26/19 09:25	10/27/19 04:22	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/26/19 09:25	10/27/19 04:22	1
Isophorone	0.80	U	10	0.80	ug/L		10/26/19 09:25	10/27/19 04:22	1
Bis(2-chloroethoxy)methane	0.59	U	10	0.59	ug/L		10/26/19 09:25	10/27/19 04:22	1
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		10/26/19 09:25	10/27/19 04:22	1
Naphthalene	1.8	J	10	1.1	ug/L		10/26/19 09:25	10/27/19 04:22	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/26/19 09:25	10/27/19 04:22	1
Hexachlorobutadiene	0.78		1.0	0.78			10/26/19 09:25	10/27/19 04:22	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 04:22	1
Hexachlorocyclopentadiene	3.6	U	10	3.6	ug/L		10/26/19 09:25	10/27/19 04:22	1
2-Chloronaphthalene	1.2	U	10		ug/L		10/26/19 09:25	10/27/19 04:22	1
2-Nitroaniline	0.47	U	10	0.47			10/26/19 09:25	10/27/19 04:22	1
Dimethyl phthalate	0.77	U	10	0.77	-		10/26/19 09:25	10/27/19 04:22	1
Acenaphthylene	0.82		10	0.82			10/26/19 09:25	10/27/19 04:22	1
2,6-Dinitrotoluene	0.83	U	2.0	0.83			10/26/19 09:25	10/27/19 04:22	1
3-Nitroaniline	1.9	U	10		ug/L		10/26/19 09:25	10/27/19 04:22	1
Acenaphthene	1.1	U	10		ug/L		10/26/19 09:25	10/27/19 04:22	
Dibenzofuran	1.1	U	10		ug/L		10/26/19 09:25	10/27/19 04:22	1
2,4-Dinitrotoluene	1.0		2.0		ug/L			10/27/19 04:22	1
Diethyl phthalate	4.3		10		ug/L			10/27/19 04:22	1
4-Chlorophenyl phenyl ether	1.3		10		ug/L			10/27/19 04:22	1
Fluorene	0.91		10		ug/L			10/27/19 04:22	1
4-Nitroaniline	1.2		10		ug/L			10/27/19 04:22	1
N-Nitrosodiphenylamine	0.89		10		ug/L			10/27/19 04:22	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-18D Lab Sample ID: 460-194921-5

Date Collected: 10/25/19 10:20 Matrix: Water Date Received: 10/25/19 20:00

Method: 8270D - Semivolatil Analyte	Result	Qualifier	RL	MDL	Unit		Prepared	Analyzed	Dil Fa
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 04:22	
Phenanthrene	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 04:22	
Anthracene	0.63	U	10	0.63	ug/L		10/26/19 09:25	10/27/19 04:22	
Carbazole	0.68	U	10	0.68	ug/L		10/26/19 09:25	10/27/19 04:22	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/26/19 09:25	10/27/19 04:22	
Fluoranthene	0.84	U	10	0.84	ug/L		10/26/19 09:25	10/27/19 04:22	
Pyrene	1.6	U	10	1.6	ug/L		10/26/19 09:25	10/27/19 04:22	
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/26/19 09:25	10/27/19 04:22	
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/26/19 09:25	10/27/19 04:22	
Chrysene	0.91	U	2.0	0.91	ug/L		10/26/19 09:25	10/27/19 04:22	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/26/19 09:25	10/27/19 04:22	
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/26/19 09:25	10/27/19 04:22	
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/26/19 09:25	10/27/19 04:22	
Indeno[1,2,3-cd]pyrene	0.94	U	2.0		ug/L		10/26/19 09:25	10/27/19 04:22	
Dibenz(a,h)anthracene	0.72		1.0		ug/L			10/27/19 04:22	
Benzo[g,h,i]perylene	1.4		10		ug/L			10/27/19 04:22	
Diphenyl ether	9.1		10	1.2	_			10/27/19 04:22	
n,n'-Dimethylaniline	0.91		1.0		ug/L			10/27/19 04:22	
Caprolactam	0.68		10	0.68	-			10/27/19 04:22	
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/27/19 04:22	
Bisphenol-A	100	•	10	9.9	_			10/27/19 04:22	
N-Methylaniline	1.3	П	5.0		ug/L			10/27/19 04:22	
Tentatively Identified Compound Benzene, propyl-	Est. Result		Unit ug/L	<u>D</u>	RT 3.66	CAS No. 103-65-1	Prepared 10/26/19 09:25	Analyzed 10/27/19 04:22	Dil Fa
Benzene, 1-ethyl-3-methyl-	24		ug/L ug/L		3.72	620-14-4	10/26/19 09:25	10/27/19 04:22	
Benzene, 1-ethyl-2-methyl-	16		ug/L ug/L		3.75	611-14-3	10/26/19 09:25	10/27/19 04:22	
Benzene, 1,2,4-trimethyl-	12		ug/L ug/L		3.79	95-63-6	10/26/19 09:25	10/27/19 04:22	
Benzene, 1-ethyl-4-methyl-	10		ug/L ug/L		3.87	622-96-8	10/26/19 09:25	10/27/19 04:22	
	38		-		1.00	108-67-8	10/26/19 09:25	10/27/19 04:22	
Benzene, 1,3,5-trimethyl- Benzene, 1,2,3-trimethyl-	36 15		ug/L		1.22	526-73-8	10/26/19 09:25	10/27/19 04:22	
			ug/L						
Indane	20		ug/L		1.33	490-11-7	10/26/19 09:25	10/27/19 04:22	
Unknown	7.0	J JN	ug/L		1.58			10/27/19 04:22	
Hexanoic acid, 2-ethyl-			ug/L		1.83	149-57-5			
Unknown	12		ug/L		1.87			10/27/19 04:22	
Unknown	7.5		ug/L		1.93	4005.04.0		10/27/19 04:22	
1,4-Benzenediol, diacetate		JN	ug/L		5.81	1205-91-0	10/26/19 09:25		
Unknown	7.1		ug/L		5.98			10/27/19 04:22	
Unknown	64		ug/L		5.82			10/27/19 04:22	
Unknown	9.6		ug/L		0.93			10/27/19 04:22	
Unknown	7.1		ug/L		1.32	50000 00 5		10/27/19 04:22	
Norcannabinol-9-carboxylic acid, 11-		J N	ug/L		7.78	03989-32-0	10/26/19 09:25		
Unknown	18		ug/L		.95			10/27/19 04:22	
Unknown	29	J	ug/L	12	2.12		10/26/19 09:25	10/27/19 04:22	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	102		51 - 108					10/27/19 04:22	1
Phenol-d5 (Surr)	34		14 _ 39					10/27/19 04:22	1
Terphenyl-d14 (Surr)	93		40 - 148				10/26/19 09:25	10/27/19 04:22	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Lab Sample ID: 460-194921-5 Client Sample ID: C-18D

Date Collected: 10/25/19 10:20 Matrix: Water

Date Received: 10/25/19 20:00

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	111		26 - 139	10/26/19 09:25	10/27/19 04:22	1
2-Fluorophenol (Surr)	52		25 - 58	10/26/19 09:25	10/27/19 04:22	1
2-Fluorobiphenyl (Surr)	91		45 - 107	10/26/19 09:25	10/27/19 04:22	1

Method: 6010D - Metals (IC Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	44.3	J	50.0	1.7	ug/L		10/30/19 09:21	10/31/19 00:02	1
Iron, Dissolved	37300		150	34.2	ug/L		10/30/19 09:21	10/31/19 00:02	1
Manganese, Dissolved	3680		15.0	0.99	ug/L		10/30/19 09:21	10/31/19 00:02	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	2.0		0.10	0.068	mg/L			10/28/19 15:45	1

Client Sample ID: C-19D Lab Sample ID: 460-194921-6

Date Collected: 10/25/19 10:35 Date Received: 10/25/19 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	J	1.0	0.40	ug/L			10/30/19 03:04	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/30/19 03:04	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/30/19 03:04	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/30/19 03:04	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/30/19 03:04	1
Acetone	4.4	U	5.0	4.4	ug/L			10/30/19 03:04	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/30/19 03:04	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/30/19 03:04	1
1,1-Dichloroethane	0.92	J	1.0	0.26	ug/L			10/30/19 03:04	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/30/19 03:04	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/30/19 03:04	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/30/19 03:04	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/30/19 03:04	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/30/19 03:04	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/30/19 03:04	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/30/19 03:04	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/30/19 03:04	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/30/19 03:04	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/30/19 03:04	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/30/19 03:04	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/30/19 03:04	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/30/19 03:04	1
Benzene	11		1.0	0.20	ug/L			10/30/19 03:04	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/30/19 03:04	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/30/19 03:04	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/30/19 03:04	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/30/19 03:04	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/30/19 03:04	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/30/19 03:04	1
Toluene	0.64	J	1.0		ug/L			10/30/19 03:04	1

Eurofins TestAmerica, Edison

11/11/2019

Matrix: Water

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-19D Lab Sample ID: 460-194921-6

Date Collected: 10/25/19 10:35 Matrix: Water Date Received: 10/25/19 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	5.9		1.0	0.38	ug/L			10/30/19 03:04	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/30/19 03:04	1
Styrene	0.42	U	1.0	0.42	ug/L			10/30/19 03:04	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/30/19 03:04	1
Diethyl ether	2.9		1.0	0.21	ug/L			10/30/19 03:04	1
MTBE	0.47	U	1.0	0.47	ug/L			10/30/19 03:04	1
Tetrahydrofuran	3.7		2.0	1.0	ug/L			10/30/19 03:04	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/30/19 03:04	1
1,4-Dioxane	190		50	28	ug/L			10/30/19 03:04	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/30/19 03:04	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/30/19 03:04	1
Isopropylbenzene	0.45	J	1.0	0.34	ug/L			10/30/19 03:04	1
N-Propylbenzene	0.32	J	1.0	0.32	ug/L			10/30/19 03:04	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/30/19 03:04	1
Indane	1.1		1.0	0.35	ug/L			10/30/19 03:04	1
Dichlorofluoromethane	1.1		1.0	0.34	ug/L			10/30/19 03:04	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/30/19 03:04	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
1,4-Benzenediol, diacetate	55	JN	ug/L	12.	.68	1205-91-0		10/30/19 03:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		74 - 132			-		10/30/19 03:04	1
Toluene-d8 (Surr)	99		80 - 120					10/30/19 03:04	1
4-Bromofluorobenzene	100		77 - 124					10/30/19 03:04	1
Dibromofluoromethane (Surr)	109		72 - 131					10/30/19 03:04	1

Method: 8270D SIM - Semive	olatile Organi	c Compoun	ds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.50	* J+	0.25	0.078	ug/L		10/26/19 09:25	10/28/19 09:06	5
Benzo[a]pyrene	0.37		0.25	0.11	ug/L		10/26/19 09:25	10/28/19 09:06	5
Benzo[b]fluoranthene	0.28	* J+	0.25	0.12	ug/L		10/26/19 09:25	10/28/19 09:06	5
Hexachlorobenzene	0.066	U	0.10	0.066	ug/L		10/26/19 09:25	10/28/19 09:06	5
Pentachlorophenol	0.77	U *	1.0	0.77	ug/L		10/26/19 09:25	10/28/19 09:06	5
Bis(2-chloroethyl)ether	17		0.15	0.13	ug/L		10/26/19 09:25	10/28/19 09:06	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/26/19 09:25	10/27/19 04:43	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:25	10/27/19 04:43	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/26/19 09:25	10/27/19 04:43	1
4-Methylphenol	0.65	U	10	0.65	ug/L		10/26/19 09:25	10/27/19 04:43	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 04:43	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/26/19 09:25	10/27/19 04:43	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 04:43	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 04:43	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/26/19 09:25	10/27/19 04:43	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:25	10/27/19 04:43	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/26/19 09:25	10/27/19 04:43	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:25	10/27/19 04:43	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-19D Lab Sample ID: 460-194921-6

Date Collected: 10/25/19 10:35 Matrix: Water Date Received: 10/25/19 20:00

Method: 8270D - Semivolatile	e Organic Compounds (GC/MS) (Coi	ntinued))				
Analyte	Result Qualifier	ŔĹ	MDL		D	Prepared	Analyzed	Dil Fac
4,6-Dinitro-2-methylphenol	13 U	20	13	ug/L	_	10/26/19 09:25	10/27/19 04:43	
1,3-Dichlorobenzene	2.0 U	10	2.0	ug/L		10/26/19 09:25	10/27/19 04:43	
1,4-Dichlorobenzene	1.3 U	10	1.3	ug/L		10/26/19 09:25	10/27/19 04:43	
1,2-Dichlorobenzene	1.3 U	10	1.3	ug/L		10/26/19 09:25	10/27/19 04:43	
N-Nitrosodi-n-propylamine	0.43 U	1.0	0.43	ug/L		10/26/19 09:25	10/27/19 04:43	
Hexachloroethane	0.80 U	2.0	0.80	ug/L		10/26/19 09:25	10/27/19 04:43	
Nitrobenzene	0.57 U	1.0	0.57	ug/L		10/26/19 09:25	10/27/19 04:43	
Isophorone	0.80 U	10	0.80	ug/L		10/26/19 09:25	10/27/19 04:43	
Bis(2-chloroethoxy)methane	0.59 U	10	0.59	ug/L		10/26/19 09:25	10/27/19 04:43	
1,2,4-Trichlorobenzene	0.64 U	2.0	0.64	ug/L		10/26/19 09:25	10/27/19 04:43	
Naphthalene	1.1 U	10	1.1	-		10/26/19 09:25	10/27/19 04:43	
4-Chloroaniline	1.9 U	10	1.9	_		10/26/19 09:25	10/27/19 04:43	
Hexachlorobutadiene	0.78 U	1.0	0.78	-		10/26/19 09:25	10/27/19 04:43	
2-Methylnaphthalene	1.1 U	10		ug/L			10/27/19 04:43	
Hexachlorocyclopentadiene	3.6 U	10	3.6	-			10/27/19 04:43	
2-Chloronaphthalene	1.2 U	10		ug/L			10/27/19 04:43	
2-Nitroaniline	0.47 U	10	0.47				10/27/19 04:43	
Dimethyl phthalate	0.77 U	10	0.77	-			10/27/19 04:43	
Acenaphthylene	0.82 U	10	0.82	-			10/27/19 04:43	
2.6-Dinitrotoluene	0.83 U	2.0	0.83	-			10/27/19 04:43	
3-Nitroaniline	1.9 U	10		ug/L			10/27/19 04:43	
Acenaphthene	1.1 U	10		ug/L			10/27/19 04:43	· · · · · · · · ·
Dibenzofuran	1.1 U	10		ug/L			10/27/19 04:43	
2.4-Dinitrotoluene	1.0 U	2.0		ug/L			10/27/19 04:43	
	0.98 U	10	0.98	-			10/27/19 04:43	
Diethyl phthalate 4-Chlorophenyl phenyl ether	1.3 U	10		ug/L			10/27/19 04:43	
Fluorene		10						
	0.91 U		0.91	-			10/27/19 04:43	
4-Nitroaniline	1.2 U	10		ug/L			10/27/19 04:43	
N-Nitrosodiphenylamine	0.89 U	10	0.89	-			10/27/19 04:43	
4-Bromophenyl phenyl ether	0.75 U		0.75	-			10/27/19 04:43	
Phenanthrene	0.58 U	10	0.58	-			10/27/19 04:43	
Anthracene	0.63 U	10	0.63	-			10/27/19 04:43	
Carbazole	0.68 U	10	0.68	-			10/27/19 04:43	
Di-n-butyl phthalate	0.84 U	10	0.84	-			10/27/19 04:43	•
Fluoranthene	0.84 U	10	0.84	J			10/27/19 04:43	•
Pyrene	1.6 U	10		ug/L			10/27/19 04:43	
Butyl benzyl phthalate	0.85 U	10	0.85				10/27/19 04:43	
3,3'-Dichlorobenzidine	1.4 U	10		ug/L			10/27/19 04:43	•
Chrysene	0.91 U	2.0	0.91				10/27/19 04:43	
Bis(2-ethylhexyl) phthalate	1.7 U	2.0		ug/L			10/27/19 04:43	
Di-n-octyl phthalate	4.8 U	10	4.8	ug/L		10/26/19 09:25	10/27/19 04:43	
Benzo[k]fluoranthene	0.67 U	1.0	0.67	-		10/26/19 09:25	10/27/19 04:43	
Indeno[1,2,3-cd]pyrene	0.94 U	2.0	0.94	ug/L		10/26/19 09:25	10/27/19 04:43	· · · · · · · · · · ·
Dibenz(a,h)anthracene	0.72 U	1.0	0.72	ug/L		10/26/19 09:25	10/27/19 04:43	
Benzo[g,h,i]perylene	1.4 U	10	1.4	ug/L		10/26/19 09:25	10/27/19 04:43	
Diphenyl ether	2.3 J	10	1.2	ug/L		10/26/19 09:25	10/27/19 04:43	
n,n'-Dimethylaniline	0.91 U	1.0	0.91			10/26/19 09:25	10/27/19 04:43	
Caprolactam	0.68 U	10	0.68			10/26/19 09:25	10/27/19 04:43	
bis (2-chloroisopropyl) ether	0.63 U	10	0.63			10/26/19 09:25	10/27/19 04:43	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Lab Sample ID: 460-194921-6 Client Sample ID: C-19D

Date Collected: 10/25/19 10:35 Matrix: Water

Date Received: 10/25/19 20:00

Analyte	Result	Qualifier	RL	M	L Unit	D	Prepared	Analyzed	Dil Fac
Bisphenol-A	42	·-	10	9	.9 ug/L		10/26/19 09:25	10/27/19 04:43	1
N-Methylaniline	1.3	U	5.0	1	.3 ug/L		10/26/19 09:25	10/27/19 04:43	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	59	J	ug/L	_	6.82		10/26/19 09:25	10/27/19 04:43	1
Oxirane, 2,2'-	7.9	JN	ug/L		11.78	1675-54-3	10/26/19 09:25	10/27/19 04:43	1
[(1-methylethylidene)bis(4,1-phenyle neoxymeth									
Unknown	6.7	J	ug/L		11.95		10/26/19 09:25	10/27/19 04:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	87		51 - 108				10/26/19 09:25	10/27/19 04:43	1
Phenol-d5 (Surr)	30		14 - 39				10/26/19 09:25	10/27/19 04:43	1
Terphenyl-d14 (Surr)	79		40 - 148				10/26/19 09:25	10/27/19 04:43	1
2,4,6-Tribromophenol (Surr)	94		26 - 139				10/26/19 09:25	10/27/19 04:43	1
2-Fluorophenol (Surr)	46		25 - 58				10/26/19 09:25	10/27/19 04:43	1
2-Fluorobiphenyl (Surr)	80		45 - 107				10/26/19 09:25	10/27/19 04:43	1
- Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	ME	L Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	83.3		50.0	1	7 ug/L		10/30/19 09:21	10/31/19 00:06	1
Iron, Dissolved	33100		150	34	.2 ug/L		10/30/19 09:21	10/31/19 00:06	1
Manganese, Dissolved	6610		15.0	0.9	9 ug/L		10/30/19 09:21	10/31/19 00:06	1
General Chemistry									
Analyte	Result	Qualifier	RL	M	L Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	1.1		0.10	0.0	8 mg/L			10/28/19 15:46	1

Client Sample ID: C-20D Lab Sample ID: 460-194921-7

Date Collected: 10/25/19 11:50

Date Received: 10/25/19 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/30/19 09:52	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/30/19 09:52	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/30/19 09:52	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/30/19 09:52	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/30/19 09:52	1
Acetone	4.4	U	5.0	4.4	ug/L			10/30/19 09:52	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/30/19 09:52	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/30/19 09:52	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/30/19 09:52	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/30/19 09:52	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/30/19 09:52	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/30/19 09:52	1
1,2-Dichloroethane	0.87	J	1.0	0.43	ug/L			10/30/19 09:52	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/30/19 09:52	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/30/19 09:52	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/30/19 09:52	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/30/19 09:52	1

Eurofins TestAmerica, Edison

11/11/2019

Matrix: Water

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-20D Lab Sample ID: 460-194921-7

Date Collected: 10/25/19 11:50 Matrix: Water Date Received: 10/25/19 20:00

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/30/19 09:52	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/30/19 09:52	
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/30/19 09:52	
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/30/19 09:52	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/30/19 09:52	
Benzene	2.2		1.0	0.20	ug/L			10/30/19 09:52	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/30/19 09:52	
Bromoform	0.54	U	1.0	0.54	ug/L			10/30/19 09:52	
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/30/19 09:52	
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/30/19 09:52	
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/30/19 09:52	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/30/19 09:52	
Toluene	0.38	U	1.0	0.38	ug/L			10/30/19 09:52	
Chlorobenzene	2.1		1.0	0.38	ug/L			10/30/19 09:52	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/30/19 09:52	
Styrene	0.42	U	1.0	0.42	ug/L			10/30/19 09:52	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/30/19 09:52	
Diethyl ether	1.6		1.0	0.21	ug/L			10/30/19 09:52	
MTBE	0.47	U	1.0	0.47	ug/L			10/30/19 09:52	•
Tetrahydrofuran	1.7	J	2.0	1.0	ug/L			10/30/19 09:52	
Cyclohexane	0.72	J	1.0	0.32	ug/L			10/30/19 09:52	
1,4-Dioxane	140		50	28	ug/L			10/30/19 09:52	•
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/30/19 09:52	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/30/19 09:52	•
Isopropylbenzene	1.7		1.0	0.34	ug/L			10/30/19 09:52	•
N-Propylbenzene	1.7		1.0	0.32	ug/L			10/30/19 09:52	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/30/19 09:52	
Indane	4.1		1.0	0.35	ug/L			10/30/19 09:52	
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/30/19 09:52	
1,2,3-Trimethylbenzene	2.2		1.0	0.36	ug/L			10/30/19 09:52	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/30/19 09:52	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	102		74 - 132					10/30/19 09:52	•
Toluene-d8 (Surr)	97		80 - 120					10/30/19 09:52	•
4-Bromofluorobenzene	101		77 - 124					10/30/19 09:52	7
Dibromofluoromethane (Surr)	110		72 - 131					10/30/19 09:52	

Method: 8270D SIM - Semiv	olatile Organi	c Compour	ids (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U *	0.050	0.016	ug/L		10/26/19 09:25	10/27/19 05:29	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/26/19 09:25	10/27/19 05:29	1
Benzo[b]fluoranthene	0.024	U *	0.050	0.024	ug/L		10/26/19 09:25	10/27/19 05:29	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/26/19 09:25	10/27/19 05:29	1
Pentachlorophenol	0.15	₩* UJ	0.20	0.15	ug/L		10/26/19 09:25	10/27/19 05:29	1
Bis(2-chloroethyl)ether	5.1		0.030	0.026	ug/L		10/26/19 09:25	10/27/19 05:29	1

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-20D Lab Sample ID: 460-194921-7

Date Collected: 10/25/19 11:50 Matrix: Water Date Received: 10/25/19 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Phenol	0.29	U –	10	0.29	ug/L		10/26/19 09:25	10/27/19 05:04	
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:25	10/27/19 05:04	
2-Methylphenol	0.67	U	10		ug/L		10/26/19 09:25	10/27/19 05:04	
4-Methylphenol	0.65	U	10	0.65	-		10/26/19 09:25	10/27/19 05:04	
2-Nitrophenol	0.75	U	10		ug/L		10/26/19 09:25	10/27/19 05:04	
2,4-Dimethylphenol	0.62	U	10		ug/L		10/26/19 09:25	10/27/19 05:04	
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 05:04	
4-Chloro-3-methylphenol	0.58	U	10		ug/L		10/26/19 09:25	10/27/19 05:04	
2,4,6-Trichlorophenol	0.86	U	10		_		10/26/19 09:25	10/27/19 05:04	
2,4,5-Trichlorophenol	0.88	U	10		ug/L		10/26/19 09:25	10/27/19 05:04	
2,4-Dinitrophenol	14		20		ug/L			10/27/19 05:04	
4-Nitrophenol	4.0		20	4.0	ug/L			10/27/19 05:04	
1,6-Dinitro-2-methylphenol	13		20	13	ug/L			10/27/19 05:04	
1,3-Dichlorobenzene	2.0		10	2.0	ug/L			10/27/19 05:04	
I,4-Dichlorobenzene	1.3		10	1.3	ug/L			10/27/19 05:04	
,2-Dichlorobenzene	1.3		10		ug/L			10/27/19 05:04	
N-Nitrosodi-n-propylamine	0.43		1.0					10/27/19 05:04	
Hexachloroethane	0.80		2.0	0.80	ug/L			10/27/19 05:04	
Vitrobenzene	0.57		1.0		ug/L			10/27/19 05:04	
sophorone	0.80		1.0	0.80	ug/L			10/27/19 05:04	
Bis(2-chloroethoxy)methane	0.59		10	0.59	ug/L			10/27/19 05:04	
,2,4-Trichlorobenzene	0.64		2.0		ug/L ug/L			10/27/19 05:04	
• •			10		=				
laphthalene l-Chloroaniline	1.1 1.9		10	1.1	ug/L			10/27/19 05:04	
	0.78			1.9	ug/L			10/27/19 05:04	
Hexachlorobutadiene			1.0 10	0.78	•			10/27/19 05:04	
-Methylnaphthalene	1.1			1.1	ug/L			10/27/19 05:04	
lexachlorocyclopentadiene	3.6		10		ug/L			10/27/19 05:04	
2-Chloronaphthalene	1.2		10		ug/L			10/27/19 05:04	
2-Nitroaniline	0.47		10		ug/L		10/26/19 09:25	10/27/19 05:04	
Dimethyl phthalate	0.77		10		ug/L			10/27/19 05:04	
Acenaphthylene	0.82		10		ug/L			10/27/19 05:04	
2,6-Dinitrotoluene	0.83		2.0		ug/L			10/27/19 05:04	
-Nitroaniline	1.9		10		ug/L			10/27/19 05:04	
Acenaphthene	1.1		10		•			10/27/19 05:04	
Dibenzofuran	1.1		10	1.1	ug/L		10/26/19 09:25		
2,4-Dinitrotoluene	1.0		2.0		ug/L			10/27/19 05:04	
Diethyl phthalate	0.98		10		ug/L			10/27/19 05:04	
-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/26/19 09:25	10/27/19 05:04	
luorene	0.91	U	10	0.91	ug/L		10/26/19 09:25	10/27/19 05:04	
-Nitroaniline	1.2	U	10		ug/L		10/26/19 09:25	10/27/19 05:04	
I-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/26/19 09:25	10/27/19 05:04	
l-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 05:04	
Phenanthrene	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 05:04	
nthracene	0.63	U	10	0.63	ug/L		10/26/19 09:25	10/27/19 05:04	
Carbazole	0.68	U	10	0.68	ug/L		10/26/19 09:25	10/27/19 05:04	
i-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/26/19 09:25	10/27/19 05:04	
luoranthene	0.84		10		ug/L		10/26/19 09:25	10/27/19 05:04	
Pyrene	1.6	U	10		ug/L			10/27/19 05:04	
Butyl benzyl phthalate	0.85		10		ug/L			10/27/19 05:04	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Lab Sample ID: 460-194921-7 Client Sample ID: C-20D

Date Collected: 10/25/19 11:50 Matrix: Water Date Received: 10/25/19 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/26/19 09:25	10/27/19 05:04	1
Chrysene	0.91	U	2.0	0.91	ug/L		10/26/19 09:25	10/27/19 05:04	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/26/19 09:25	10/27/19 05:04	1
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/26/19 09:25	10/27/19 05:04	1
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/26/19 09:25	10/27/19 05:04	1
Indeno[1,2,3-cd]pyrene	0.94	U	2.0	0.94	ug/L		10/26/19 09:25	10/27/19 05:04	1
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/26/19 09:25	10/27/19 05:04	1
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/26/19 09:25	10/27/19 05:04	1
Diphenyl ether	1.5	J	10	1.2	ug/L		10/26/19 09:25	10/27/19 05:04	1
n,n'-Dimethylaniline	0.91	U	1.0	0.91	ug/L		10/26/19 09:25	10/27/19 05:04	1
Caprolactam	0.68	U	10	0.68	ug/L		10/26/19 09:25	10/27/19 05:04	1
bis (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/26/19 09:25	10/27/19 05:04	1
Bisphenol-A	17		10	9.9			10/26/19 09:25	10/27/19 05:04	1
N-Methylaniline	1.3	U	5.0	1.3	ug/L		10/26/19 09:25	10/27/19 05:04	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	31	J	ug/L	(6.82		10/26/19 09:25	10/27/19 05:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	89		51 - 108				10/26/19 09:25	10/27/19 05:04	1
Phenol-d5 (Surr)	31		14 - 39				10/26/19 09:25	10/27/19 05:04	1
Terphenyl-d14 (Surr)	85		40 - 148				10/26/19 09:25	10/27/19 05:04	1
2,4,6-Tribromophenol (Surr)	93		26 - 139				10/26/19 09:25	10/27/19 05:04	1
2-Fluorophenol (Surr)	48		25 - 58				10/26/19 09:25	10/27/19 05:04	1
2-Fluorobiphenyl (Surr)	81		45 - 107				10/26/19 09:25	10/27/19 05:04	1
Method: 6010D - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	45.8	J	50.0	1.7	ug/L		10/30/19 09:21	10/31/19 00:17	1
Iron, Dissolved	25900		150	34.2	ug/L		10/30/19 09:21	10/31/19 00:17	1
Manganese, Dissolved	8000		15.0	0.99	ug/L		10/30/19 09:21	10/31/19 00:17	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.54		0.10	0.000	mg/L			10/28/19 15:48	1

Client Sample ID: C-30 Lab Sample ID: 460-194921-8

Date Collected: 10/25/19 10:55 Matrix: Water Date Received: 10/25/19 20:00

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	68		0.80	0.67	ug/L			10/27/19 08:41	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	87		72 - 133					10/27/19 08:41	2
 Method: 8260C - Volatile	Organic Compo	unds by G	C/MS						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.80	U	2.0	0.80	ug/L			10/30/19 23:04	2
Bromomethane	1.1	U	2.0	1.1	ug/L			10/30/19 23:04	2

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-30 Lab Sample ID: 460-194921-8

Date Collected: 10/25/19 10:55 Matrix: Water

Date Received: 10/25/19 20:00

Method: 8260C - Volatile Orga						l lanié		Dronarad	Angharad	Dil Cs-
Analyte		Qualifier		۲L		Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.34			2.0		ug/L			10/30/19 23:04	2
Chloroethane	0.64			2.0		ug/L			10/30/19 23:04	2
Methylene Chloride	0.63			2.0		ug/L			10/30/19 23:04	2
Acetone	8.8			10		ug/L			10/30/19 23:04	2
Carbon disulfide	1.6			2.0		ug/L			10/30/19 23:04	2
1,1-Dichloroethene	0.53	U		2.0		ug/L			10/30/19 23:04	2
1,1-Dichloroethane	0.92		2	2.0		ug/L			10/30/19 23:04	2
trans-1,2-Dichloroethene	0.47	U	2	2.0		ug/L			10/30/19 23:04	2
cis-1,2-Dichloroethene	22		2	2.0		ug/L			10/30/19 23:04	2
Chloroform	0.65	U	2	2.0	0.65	ug/L			10/30/19 23:04	2
1,2-Dichloroethane	2.7		2	2.0	0.86	ug/L			10/30/19 23:04	2
2-Butanone (MEK)	3.7	U		10	3.7	ug/L			10/30/19 23:04	2
1,1,1-Trichloroethane	0.48	U	2	2.0	0.48	ug/L			10/30/19 23:04	2
Carbon tetrachloride	0.42	U	2	2.0	0.42	ug/L			10/30/19 23:04	2
Bromodichloromethane	0.69	U	2	2.0	0.69	ug/L			10/30/19 23:04	2
1,2-Dichloropropane	0.71	U	2	2.0	0.71	ug/L			10/30/19 23:04	2
cis-1,3-Dichloropropene	0.44	U	2	2.0	0.44	ug/L			10/30/19 23:04	2
Trichloroethene	0.63	U	2	2.0		ug/L			10/30/19 23:04	2
Dibromochloromethane	0.56	U	2	2.0		ug/L			10/30/19 23:04	2
1,1,2-Trichloroethane	0.87	U	2	2.0		ug/L			10/30/19 23:04	2
Benzene	83			2.0		ug/L			10/30/19 23:04	2
trans-1,3-Dichloropropene	0.97	U		2.0		ug/L			10/30/19 23:04	2
Bromoform	1.1			2.0		ug/L			10/30/19 23:04	2
4-Methyl-2-pentanone	2.6			10		ug/L			10/30/19 23:04	2
2-Hexanone	2.3			10		ug/L			10/30/19 23:04	2
Tetrachloroethene	0.50			2.0		ug/L			10/30/19 23:04	2
1,1,2,2-Tetrachloroethane	0.73			2.0		ug/L			10/30/19 23:04	2
Toluene	440	O		2.0		ug/L			10/30/19 23:04	2
				2.0		ug/L			10/30/19 23:04	2
Chlorobenzene	14			2.0		ug/L ug/L			10/30/19 23:04	2
Ethylbenzene	27	1.1				_				
Styrene	0.83			2.0		ug/L			10/30/19 23:04	
Xylenes, Total	130			1.0		ug/L			10/30/19 23:04	2
Diethyl ether	0.88			2.0		ug/L			10/30/19 23:04	2
MTBE	0.93			2.0		ug/L			10/30/19 23:04	
Tetrahydrofuran	2.1			.0		ug/L			10/30/19 23:04	2
Cyclohexane	1.4	J		2.0		ug/L			10/30/19 23:04	2
1,2,4-Trimethylbenzene	23			2.0		ug/L			10/30/19 23:04	2
1,3,5-Trimethylbenzene	7.1			2.0		ug/L			10/30/19 23:04	2
Isopropylbenzene	1.7	J		2.0		ug/L			10/30/19 23:04	2
N-Propylbenzene	2.9			2.0		ug/L			10/30/19 23:04	2
Methylcyclohexane	2.1			2.0		ug/L			10/30/19 23:04	2
Indane	6.6			2.0	0.69	ug/L			10/30/19 23:04	2
Dichlorofluoromethane	0.68	U		2.0	0.68	ug/L			10/30/19 23:04	2
1,2,3-Trimethylbenzene	9.0		2	2.0	0.72	ug/L			10/30/19 23:04	2
Tentatively Identified Compound	Est. Result		Unit	D		RT _	CAS No.	Prepared	Analyzed	Dil Fac
Benzene, 1-ethyl-3-methyl-		JN	ug/L			35	620-14-4		10/30/19 23:04	2
Benzene, 1-ethyl-2-methyl-	11		ug/L			.58	611-14-3		10/30/19 23:04	2
Acenaphthene	16	JN	ug/L		10.	.82	83-32-9		10/30/19 23:04	2

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-30 Lab Sample ID: 460-194921-8

Date Collected: 10/25/19 10:55 Date Received: 10/25/19 20:00

Matrix: Water

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	74 - 132		10/30/19 23:04	2
Toluene-d8 (Surr)	98	80 - 120		10/30/19 23:04	2
4-Bromofluorobenzene	102	77 - 124		10/30/19 23:04	2
Dibromofluoromethane (Surr)	106	72 - 131		10/30/19 23:04	2

Method: 8270D SIM - Sem	nivolatile Organi	c Compoui	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U ±	0.050	0.016	ug/L		10/26/19 09:25	10/27/19 05:50	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/26/19 09:25	10/27/19 05:50	1
Benzo[b]fluoranthene	0.024	U *	0.050	0.024	ug/L		10/26/19 09:25	10/27/19 05:50	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/26/19 09:25	10/27/19 05:50	1
Pentachlorophenol	0.15	U* UJ	0.20	0.15	ug/L		10/26/19 09:25	10/27/19 05:50	1
Bis(2-chloroethyl)ether	2.2		0.030	0.026	ug/L		10/26/19 09:25	10/27/19 05:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.68	J	10	0.29	ug/L		10/26/19 09:25	10/27/19 05:25	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:25	10/27/19 05:25	1
2-Methylphenol	4.1	J	10	0.67	ug/L		10/26/19 09:25	10/27/19 05:25	1
4-Methylphenol	2.5	J	10	0.65	ug/L		10/26/19 09:25	10/27/19 05:25	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 05:25	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/26/19 09:25	10/27/19 05:25	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 05:25	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 05:25	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/26/19 09:25	10/27/19 05:25	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:25	10/27/19 05:25	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/26/19 09:25	10/27/19 05:25	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:25	10/27/19 05:25	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/26/19 09:25	10/27/19 05:25	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/26/19 09:25	10/27/19 05:25	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:25	10/27/19 05:25	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:25	10/27/19 05:25	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/26/19 09:25	10/27/19 05:25	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/26/19 09:25	10/27/19 05:25	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/26/19 09:25	10/27/19 05:25	1
Isophorone	0.80	U	10	0.80	ug/L		10/26/19 09:25	10/27/19 05:25	1
Bis(2-chloroethoxy)methane	0.59	U	10	0.59	ug/L		10/26/19 09:25	10/27/19 05:25	1
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		10/26/19 09:25	10/27/19 05:25	1
Naphthalene	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 05:25	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/26/19 09:25	10/27/19 05:25	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/26/19 09:25	10/27/19 05:25	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 05:25	1
Hexachlorocyclopentadiene	3.6	U	10	3.6	ug/L		10/26/19 09:25	10/27/19 05:25	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/26/19 09:25	10/27/19 05:25	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/26/19 09:25	10/27/19 05:25	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/26/19 09:25	10/27/19 05:25	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/26/19 09:25	10/27/19 05:25	1
2,6-Dinitrotoluene	0.83	U	2.0		ug/L		10/26/19 09:25	10/27/19 05:25	1
3-Nitroaniline	1.9	U	10	1.9	ug/L		10/26/19 09:25	10/27/19 05:25	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 05:25	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-30 Lab Sample ID: 460-194921-8

Date Collected: 10/25/19 10:55 Matrix: Water Date Received: 10/25/19 20:00

Method: 8270D - Semivolatile ^{Analyte}		Qualifier	RL			Unit	D	Prepared	Analyzed	Dil Fa
Dibenzofuran	1.1	U	10	-	1.1	ug/L		10/26/19 09:25	10/27/19 05:25	
2,4-Dinitrotoluene	1.0	U	2.0			ug/L		10/26/19 09:25	10/27/19 05:25	
Diethyl phthalate	1.6		10		.98	ug/L		10/26/19 09:25	10/27/19 05:25	
4-Chlorophenyl phenyl ether	1.3		10			ug/L		10/26/19 09:25	10/27/19 05:25	
Fluorene	0.91	U	10			ug/L			10/27/19 05:25	
4-Nitroaniline	1.2	U	10		1.2	ug/L		10/26/19 09:25	10/27/19 05:25	
N-Nitrosodiphenylamine	0.89		10			ug/L			10/27/19 05:25	
4-Bromophenyl phenyl ether	0.75	U	10			ug/L		10/26/19 09:25	10/27/19 05:25	
Phenanthrene	0.58		10			ug/L		10/26/19 09:25	10/27/19 05:25	
Anthracene	0.63		10			ug/L		10/26/19 09:25	10/27/19 05:25	
Carbazole	0.68		10			ug/L			10/27/19 05:25	
Di-n-butyl phthalate	0.84		10			ug/L			10/27/19 05:25	
Fluoranthene	0.84		10			ug/L			10/27/19 05:25	
Pyrene	1.6		10			ug/L			10/27/19 05:25	
Butyl benzyl phthalate	0.85		10			ug/L			10/27/19 05:25	
3,3'-Dichlorobenzidine	1.4		10			ug/L			10/27/19 05:25	
Chrysene	0.91		2.0			ug/L			10/27/19 05:25	
Bis(2-ethylhexyl) phthalate	1.7		2.0			ug/L			10/27/19 05:25	
Di-n-octyl phthalate	4.8		10			ug/L			10/27/19 05:25	
Benzo[k]fluoranthene	0.67		1.0			ug/L			10/27/19 05:25	
Indeno[1,2,3-cd]pyrene	0.94		2.0			ug/L			10/27/19 05:25	
Dibenz(a,h)anthracene	0.72		1.0			ug/L			10/27/19 05:25	
Benzo[g,h,i]perylene	1.4		10			ug/L			10/27/19 05:25	
Diphenyl ether	1.2		10			ug/L			10/27/19 05:25	
n,n'-Dimethylaniline	0.91		1.0			ug/L ug/L			10/27/19 05:25	
Caprolactam	0.68		1.0			ug/L ug/L			10/27/19 05:25	
bis (2-chloroisopropyl) ether	0.63		10			ug/L ug/L			10/27/19 05:25	
		U	10			ug/L ug/L			10/27/19 05:25	
Bisphenol-A	18 1.3	H	5.0			ug/L ug/L			10/27/19 05:25	
N-Methylaniline	1.3	U	5.0		1.3	ug/L		10/20/19 09.23	10/27/19 05.25	
Tentatively Identified Compound	Est. Result		Unit	D		RT.	CAS No.	Prepared	Analyzed	Dil Fa
Benzene, 1-ethyl-3-methyl-	12	JN	ug/L		3.7	72	620-14-4	10/26/19 09:25	10/27/19 05:25	
Benzene, 1,2,4-trimethyl-	7.2	JN	ug/L		3.7	79	95-63-6	10/26/19 09:25	10/27/19 05:25	
Benzene, 1-ethyl-2-methyl-	6.8	JN	ug/L		3.8	37		10/26/19 09:25		
Benzene, 1,3,5-trimethyl-	17	JN	ug/L		4.(00	108-67-8	10/26/19 09:25	10/27/19 05:25	
Benzene, 1,2,3-trimethyl-	8.9	JN	ug/L		4.2	21	526-73-8	10/26/19 09:25	10/27/19 05:25	
Unknown	6.9	J	ug/L		6.8	32		10/26/19 09:25	10/27/19 05:25	
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	90		51 - 108					•	10/27/19 05:25	
Phenol-d5 (Surr)	33		14 _ 39					10/26/19 09:25	10/27/19 05:25	
Terphenyl-d14 (Surr)	87		40 - 148						10/27/19 05:25	
2,4,6-Tribromophenol (Surr)	94		26 - 139						10/27/19 05:25	
2-Fluorophenol (Surr)	49		25 - 58						10/27/19 05:25	
2-Fluorobiphenyl (Surr)	84		45 - 107						10/27/19 05:25	
	Photo 1 1									
Method: 6010D - Metals (ICP) ^{Analyte}		Qualifier	RL	М	DL	Unit	D	Prepared	Analyzed	Dil Fa
Cobalt, Dissolved	97.0	-,	50.0			ug/L		10/30/19 12:27		D 111 G
normality for the server of 1.9 he set	J1.0		55.0						10/30/19 19:50	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Lab Sample ID: 460-194921-8 Client Sample ID: C-30

Date Collected: 10/25/19 10:55

Matrix: Water

Date Received: 10/25/19 20:00

Method: 6010D - Metals (IC Analyte	,	(Continued) Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese, Dissolved	3880		15.0	0.99	ug/L		10/30/19 12:27	10/30/19 19:50	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.94		0.10	0.068	mg/L			10/28/19 15:50	1

Client Sample ID: DDA-18-TZ Lab Sample ID: 460-194921-9

Date Collected: 10/25/19 13:50 Date Received: 10/25/19 20:00

Matrix: Water

Method: 8260C SIM - Volatile C	ار) rganic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	1.9		0.40	0.33	ug/L			10/27/19 05:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		72 - 133					10/27/19 05:34	1

Method: 8260C - Volatile On Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/30/19 13:03	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/30/19 13:03	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/30/19 13:03	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/30/19 13:03	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/30/19 13:03	1
Acetone	4.4	U	5.0	4.4	ug/L			10/30/19 13:03	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/30/19 13:03	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/30/19 13:03	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/30/19 13:03	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/30/19 13:03	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/30/19 13:03	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/30/19 13:03	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/30/19 13:03	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/30/19 13:03	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/30/19 13:03	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/30/19 13:03	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/30/19 13:03	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/30/19 13:03	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/30/19 13:03	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/30/19 13:03	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/30/19 13:03	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/30/19 13:03	1
Benzene	0.20	U	1.0	0.20	ug/L			10/30/19 13:03	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/30/19 13:03	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/30/19 13:03	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/30/19 13:03	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/30/19 13:03	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/30/19 13:03	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/30/19 13:03	1
Toluene	0.38	U	1.0	0.38	ug/L			10/30/19 13:03	1
Chlorobenzene	1.1		1.0	0.38	ug/L			10/30/19 13:03	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/30/19 13:03	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Date Received: 10/25/19 20:00

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: DDA-18-TZ

Lab Sample ID: 460-194921-9 Date Collected: 10/25/19 13:50

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	0.42	U	1.0	0.42	ug/L			10/30/19 13:03	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/30/19 13:03	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/30/19 13:03	1
MTBE	0.47	U	1.0	0.47	ug/L			10/30/19 13:03	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/30/19 13:03	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/30/19 13:03	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/30/19 13:03	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/30/19 13:03	
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/30/19 13:03	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/30/19 13:03	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/30/19 13:03	1
Indane	0.35	U	1.0	0.35	ug/L			10/30/19 13:03	1
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			10/30/19 13:03	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/30/19 13:03	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/30/19 13:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		74 - 132				-	10/30/19 13:03	1
Toluene-d8 (Surr)	101		80 - 120					10/30/19 13:03	1
4-Bromofluorobenzene	102		77 - 124					10/30/19 13:03	1
Dibromofluoromethane (Surr)	109		72 - 131					10/30/19 13:03	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U *	0.050	0.016	ug/L		10/26/19 09:25	10/27/19 06:11	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/26/19 09:25	10/27/19 06:11	1
Benzo[b]fluoranthene	0.024	U *	0.050	0.024	ug/L		10/26/19 09:25	10/27/19 06:11	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/26/19 09:25	10/27/19 06:11	1
Pentachlorophenol	0.15	₩ . *],]	0.20	0.15	ug/L		10/26/19 09:25	10/27/19 06:11	1
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026	ug/L		10/26/19 09:25	10/27/19 06:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/26/19 09:25	10/27/19 05:46	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:25	10/27/19 05:46	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/26/19 09:25	10/27/19 05:46	1
4-Methylphenol	0.65	U	10	0.65	ug/L		10/26/19 09:25	10/27/19 05:46	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 05:46	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/26/19 09:25	10/27/19 05:46	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 05:46	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 05:46	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/26/19 09:25	10/27/19 05:46	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:25	10/27/19 05:46	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/26/19 09:25	10/27/19 05:46	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:25	10/27/19 05:46	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/26/19 09:25	10/27/19 05:46	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/26/19 09:25	10/27/19 05:46	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:25	10/27/19 05:46	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Date Received: 10/25/19 20:00

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: DDA-18-TZ

Lab Sample ID: 460-194921-9 Date Collected: 10/25/19 13:50

Matrix: Water

Method: 8270D - Semivolatil ^{Analyte}		Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	1.3	U –	10	1.3	ug/L		10/26/19 09:25	10/27/19 05:46	·
N-Nitrosodi-n-propylamine	0.43	\mathbf{U}	1.0	0.43	ug/L		10/26/19 09:25	10/27/19 05:46	
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/26/19 09:25	10/27/19 05:46	
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/26/19 09:25	10/27/19 05:46	
sophorone	0.80	U	10		_		10/26/19 09:25	10/27/19 05:46	
Bis(2-chloroethoxy)methane	0.59	U	10	0.59	ug/L		10/26/19 09:25	10/27/19 05:46	
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		10/26/19 09:25	10/27/19 05:46	
Naphthalene	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 05:46	
- 4-Chloroaniline	1.9	U	10	1.9	ug/L		10/26/19 09:25	10/27/19 05:46	
Hexachlorobutadiene	0.78	U	1.0		ug/L		10/26/19 09:25	10/27/19 05:46	
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 05:46	
Hexachlorocyclopentadiene	3.6	U	10	3.6	ug/L		10/26/19 09:25	10/27/19 05:46	
2-Chloronaphthalene	1.2	U	10		ug/L		10/26/19 09:25	10/27/19 05:46	
2-Nitroaniline	0.47		10		ug/L		10/26/19 09:25	10/27/19 05:46	
Dimethyl phthalate	0.77		10		ug/L			10/27/19 05:46	
Acenaphthylene	0.82		10		ug/L			10/27/19 05:46	
2,6-Dinitrotoluene	0.83		2.0		ug/L		10/26/19 09:25	10/27/19 05:46	
3-Nitroaniline	1.9		10	1.9	ug/L			10/27/19 05:46	
Acenaphthene	1.1		10		ug/L			10/27/19 05:46	
Dibenzofuran		U	10	1.1	ug/L			10/27/19 05:46	
2,4-Dinitrotoluene	1.0		2.0	1.0	ug/L			10/27/19 05:46	
Diethyl phthalate	0.98		10		ug/L			10/27/19 05:46	
-Chlorophenyl phenyl ether	1.3		10		ug/L			10/27/19 05:46	
luorene	0.91		10	0.91	ug/L			10/27/19 05:46	
-Nitroaniline	1.2		10		ug/L			10/27/19 05:46	
I-Nitrosodiphenylamine	0.89		10		ug/L		10/26/19 09:25	10/27/19 05:46	
-Bromophenyl phenyl ether	0.75		10		ug/L			10/27/19 05:46	
Phenanthrene	0.58		10		ug/L			10/27/19 05:46	
Anthracene	0.63		10		ug/L			10/27/19 05:46	
Carbazole	0.68		10		ug/L			10/27/19 05:46	
Di-n-butyl phthalate	0.84		10		ug/L			10/27/19 05:46	
Fluoranthene	0.84		10		ug/L ug/L			10/27/19 05:46	
	1.6		10		_			10/27/19 05:46	
Pyrene Butyl benzyl phthalate	0.85		10		ug/L ug/L			10/27/19 05:46	
3,3'-Dichlorobenzidine	1.4		10		ug/L		10/26/19 09:25	10/27/19 05:46	
Chrysene	0.91		2.0		ug/L			10/27/19 05:46	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			10/27/19 05:46	
Di-n-octyl phthalate	4.8		10		ug/L			10/27/19 05:46	
Benzo[k]fluoranthene	0.67		1.0		ug/L			10/27/19 05:46	
ndeno[1,2,3-cd]pyrene	0.94		2.0		ug/L			10/27/19 05:46	
Dibenz(a,h)anthracene	0.72		1.0		ug/L			10/27/19 05:46	
Benzo[g,h,i]perylene	1.4		10		ug/L			10/27/19 05:46	
Diphenyl ether	1.2		10		ug/L			10/27/19 05:46	
ı,n'-Dimethylaniline	0.91		1.0		ug/L			10/27/19 05:46	
Caprolactam	0.68		10	0.68				10/27/19 05:46	
ois (2-chloroisopropyl) ether	0.63		10		ug/L			10/27/19 05:46	
Bisphenol-A	9.9		10		ug/L			10/27/19 05:46	
N-Methylaniline	1.3	U	5.0	1.3	ug/L		10/26/19 09:25	10/27/19 05:46	

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

Lab Sample ID: 460-194921-9 Client Sample ID: DDA-18-TZ

Matrix: Water

Job ID: 460-194826-2

SDG: 194826-2

Date Collected: 10/25/19 13:50 Date Received: 10/25/19 20:00

	Est. Result	Qualifier	Unit	D I	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	_			10/26/19 09:25	10/27/19 05:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	92		51 - 108				10/26/19 09:25	10/27/19 05:46	
Phenol-d5 (Surr)	34		14 - 39				10/26/19 09:25	10/27/19 05:46	1
Terphenyl-d14 (Surr)	92		40 - 148				10/26/19 09:25	10/27/19 05:46	1
2,4,6-Tribromophenol (Surr)	97		26 - 139				10/26/19 09:25	10/27/19 05:46	
2-Fluorophenol (Surr)	51		25 - 58				10/26/19 09:25	10/27/19 05:46	1
2-Fluorobiphenyl (Surr)	86		45 - 107				10/26/19 09:25	10/27/19 05:46	ī
Method: 300.0 - Anions, Ion C	Chromatogra	uphv							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	66.8		3.12	0.36	mg/L			10/26/19 18:01	26
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/26/19 13:17	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/26/19 13:17	1
Sulfate	17.5		0.60	0.35	mg/L			10/26/19 13:17	1
Method: 200.8 - Metals (ICP/N	/IS) - Total R	ecoverab!	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	53800		250	66.8	ug/L		10/30/19 03:58	10/30/19 14:08	- 5
Magnesium	30000		250	24.8	ug/L		10/30/19 03:58	10/30/19 14:08	5
Potassium	4350		250	73.5	ug/L		10/30/19 03:58	10/30/19 14:08	ŧ
Calcium	17900		250	233	ug/L		10/30/19 03:58	10/30/19 14:08	į
Method: 6010D - Metals (ICP)	- Dissolved								
` *		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte			RL 50.0		Unit ug/L	D	Prepared 10/30/19 09:21	Analyzed 10/31/19 00:21	Dil Fac
Analyte Cobalt, Dissolved	Result			1.7		D		•	
Analyte Cobalt, Dissolved Iron, Dissolved	Result 429		50.0	1.7 34.2	ug/L	D	10/30/19 09:21	10/31/19 00:21	
Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry	Result 429 8460		50.0 150	1.7 34.2	ug/L ug/L	D	10/30/19 09:21 10/30/19 09:21	10/31/19 00:21 10/31/19 00:21	1
Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry	Result 429 8460 37500		50.0 150	1.7 34.2	ug/L ug/L ug/L	D	10/30/19 09:21 10/30/19 09:21	10/31/19 00:21 10/31/19 00:21	1
Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	Result 429 8460 37500	Qualifier	50.0 150 45.0	1.7 34.2 3.0	ug/L ug/L ug/L Unit		10/30/19 09:21 10/30/19 09:21 10/30/19 09:21	10/31/19 00:21 10/31/19 00:21 10/31/19 11:19	1
Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved	Result 429 8460 37500 Result	Qualifier	50.0 150 45.0 RL	1.7 34.2 3.0 MDL 0.068	ug/L ug/L ug/L Unit		10/30/19 09:21 10/30/19 09:21 10/30/19 09:21	10/31/19 00:21 10/31/19 00:21 10/31/19 11:19 Analyzed	Dil Fac
Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	Result 429 8460 37500 Result 0.54	Qualifier Qualifier	50.0 150 45.0 RL 0.10	1.7 34.2 3.0 MDL 0.068 5.0	ug/L ug/L ug/L Unit mg/L		10/30/19 09:21 10/30/19 09:21 10/30/19 09:21	10/31/19 00:21 10/31/19 00:21 10/31/19 11:19 Analyzed 10/28/19 15:51	Dil Fac

Da

ate Collected: 10/25/19 14:00	Matrix: Water
ate Received: 10/25/19 20:00	
Method: 8260C SIM - Volatile Organic Compounds (GC/MS)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.4		0.40	0.33	ug/L			10/26/19 16:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		72 - 133			•		10/26/19 16:21	1
 Method: 8260C - Volatile	Organic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
3		11	1.0	0.40	ug/L			10/29/19 23:27	1
Chloromethane	0.40	U							

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: DDA-18-US

Lab Sample ID: 460-194921-10

Date Collected: 10/25/19 14:00 Date Received: 10/25/19 20:00

Matrix: Water

Method: 8260C - Volatile Organismos		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	0.17		1.0	0.17	ug/L		•	10/29/19 23:27	
Chloroethane	0.32		1.0		ug/L			10/29/19 23:27	
Methylene Chloride	0.32		1.0		ug/L			10/29/19 23:27	1
Acetone	4.4		5.0		ug/L			10/29/19 23:27	1
Carbon disulfide	0.82		1.0		ug/L			10/29/19 23:27	· · · · · · · · · · · · · · · · · · ·
1,1-Dichloroethene		U F1	1.0		ug/L			10/29/19 23:27	1
1,1-Dichloroethane	0.26		1.0		ug/L			10/29/19 23:27	1
trans-1.2-Dichloroethene		U F1	1.0		ug/L			10/29/19 23:27	
cis-1,2-Dichloroethene	0.22		1.0		ug/L			10/29/19 23:27	1
Chloroform	0.33		1.0		ug/L			10/29/19 23:27	1
1,2-Dichloroethane	0.43		1.0		ug/L			10/29/19 23:27	
2-Butanone (MEK)	1.9		5.0		ug/L ug/L			10/29/19 23:27	
1,1,1-Trichloroethane	0.24		1.0		ug/L ug/L			10/29/19 23:27	1
Carbon tetrachloride	0.24				ug/L ug/L			10/29/19 23:27	
			1.0		_				
Bromodichloromethane	0.34		1.0		ug/L			10/29/19 23:27	1
1,2-Dichloropropane	0.35		1.0		ug/L			10/29/19 23:27	1
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/29/19 23:27	1
Trichloroethene	0.31		1.0		ug/L			10/29/19 23:27	1
Dibromochloromethane	0.28		1.0		ug/L			10/29/19 23:27	1
1,1,2-Trichloroethane	0.43	U	1.0		ug/L			10/29/19 23:27	1
Benzene	1.8		1.0		ug/L			10/29/19 23:27	1
trans-1,3-Dichloropropene	0.49		1.0		ug/L			10/29/19 23:27	1
Bromoform	0.54		1.0		ug/L			10/29/19 23:27	1
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/29/19 23:27	1
2-Hexanone	1.1		5.0		ug/L			10/29/19 23:27	1
Tetrachloroethene	0.25		1.0		ug/L			10/29/19 23:27	1
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/29/19 23:27	1
Toluene	0.38		1.0		ug/L			10/29/19 23:27	1
Chlorobenzene	0.38		1.0		ug/L			10/29/19 23:27	1
Ethylbenzene	0.30	U	1.0		ug/L			10/29/19 23:27	1
Styrene	0.42	U	1.0		ug/L			10/29/19 23:27	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/29/19 23:27	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/29/19 23:27	1
MTBE	0.47	U	1.0	0.47	ug/L			10/29/19 23:27	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/29/19 23:27	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/29/19 23:27	1
1,2,4-Trimethylbenzene	0.37	U-F1 UJ	1.0	0.37	ug/L			10/29/19 23:27	1
1,3,5-Trimethylbenzene	0.33	U-F1 UJ	1.0	0.33	ug/L			10/29/19 23:27	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/29/19 23:27	1
N-Propylbenzene	0.32	U-F1UJ	1.0	0.32	ug/L			10/29/19 23:27	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/29/19 23:27	1
Indane	0.35	WE1UJ	1.0		ug/L			10/29/19 23:27	1
Dichlorofluoromethane		U F2 F1	1.0		ug/L			10/29/19 23:27	1
1,2,3-Trimethylbenzene	0.36	U	1.0		ug/L			10/29/19 23:27	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/29/19 23:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: DDA-18-US

Lab Sample ID: 460-194921-10

Date Collected: 10/25/19 14:00 Date Received: 10/25/19 20:00

Matrix: Water

Method: 826	0C - Volatile Or	ganic Compo	unds by G	C/MS (Cont	tinued)			
Surrogate		%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Sur	r)	99		80 - 120	_		10/29/19 23:27	1
4-Bromofluorobe	enzene	100		77 - 124			10/29/19 23:27	1
Dibromofluorom	ethane (Surr)	109		72 - 131			10/29/19 23:27	1

Method: 8270D SIM - Sem	ivolatile Organi	tile Organic Compounds (GC/MS SIM)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U *	0.050	0.016	ug/L		10/26/19 09:25	10/26/19 23:51	1
Benzo[a]pyrene	0.022	n M	0.050	0.022	ug/L		10/26/19 09:25	10/26/19 23:51	1
Benzo[b]fluoranthene	0.024	U *	0.050	0.024	ug/L		10/26/19 09:25	10/26/19 23:51	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/26/19 09:25	10/26/19 23:51	1
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/26/19 09:25	10/26/19 23:51	1
Bis(2-chloroethyl)ether	0.40		0.030	0.026	ug/L		10/26/19 09:25	10/26/19 23:51	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/26/19 09:25	10/27/19 02:59	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:25	10/27/19 02:59	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/26/19 09:25	10/27/19 02:59	1
4-Methylphenol	0.65	U	10	0.65	ug/L		10/26/19 09:25	10/27/19 02:59	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 02:59	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/26/19 09:25	10/27/19 02:59	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 02:59	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 02:59	1
2,4,6-Trichlorophenol	0.86	U F 2	10	0.86	ug/L		10/26/19 09:25	10/27/19 02:59	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:25	10/27/19 02:59	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/26/19 09:25	10/27/19 02:59	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:25	10/27/19 02:59	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/26/19 09:25	10/27/19 02:59	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/26/19 09:25	10/27/19 02:59	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:25	10/27/19 02:59	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:25	10/27/19 02:59	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/26/19 09:25	10/27/19 02:59	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/26/19 09:25	10/27/19 02:59	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/26/19 09:25	10/27/19 02:59	1
Isophorone	0.80	U	10	0.80	ug/L		10/26/19 09:25	10/27/19 02:59	1
Bis(2-chloroethoxy)methane	0.59	U	10	0.59	ug/L		10/26/19 09:25	10/27/19 02:59	1
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		10/26/19 09:25	10/27/19 02:59	1
Naphthalene	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 02:59	1
4-Chloroaniline	1.9	U F2	10	1.9	ug/L		10/26/19 09:25	10/27/19 02:59	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/26/19 09:25	10/27/19 02:59	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 02:59	1
Hexachlorocyclopentadiene	3.6	U F2	10	3.6	ug/L		10/26/19 09:25	10/27/19 02:59	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/26/19 09:25	10/27/19 02:59	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/26/19 09:25	10/27/19 02:59	1
Dimethyl phthalate	0.77	U F2	10	0.77	ug/L		10/26/19 09:25	10/27/19 02:59	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/26/19 09:25	10/27/19 02:59	1
2,6-Dinitrotoluene	0.83	U	2.0		ug/L		10/26/19 09:25	10/27/19 02:59	1
3-Nitroaniline	1.9	U-F1-F2 UJ	10	1.9	ug/L		10/26/19 09:25	10/27/19 02:59	1
Acenaphthene	1.1		10	1.1	ug/L		10/26/19 09:25	10/27/19 02:59	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: DDA-18-US

Lab Sample ID: 460-194921-10

Matrix: Water

Date Collected: 10/25/19 14:00 Date Received: 10/25/19 20:00

Method: 8270D - Semivolatile Analyte		Qualifier	` ŔĹ		. Unit	D	Prepared	Analyzed	Dil Fa
Dibenzofuran	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 02:59	
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/26/19 09:25	10/27/19 02:59	
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/26/19 09:25	10/27/19 02:59	
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	3 ug/L		10/26/19 09:25	10/27/19 02:59	
Fluorene	0.91	U F2	10	0.91	ug/L		10/26/19 09:25	10/27/19 02:59	
4-Nitroaniline	1.2	U F2	10	1.2	2 ug/L		10/26/19 09:25	10/27/19 02:59	
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/26/19 09:25	10/27/19 02:59	
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 02:59	
Phenanthrene	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 02:59	
Anthracene	0.63	U	10	0.63	3 ug/L		10/26/19 09:25	10/27/19 02:59	
Carbazole	0.68	U	10	0.68	B ug/L		10/26/19 09:25	10/27/19 02:59	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/26/19 09:25	10/27/19 02:59	
Fluoranthene	0.84	U	10	0.84	ug/L		10/26/19 09:25	10/27/19 02:59	
Pyrene	1.6	U	10	1.6	ug/L		10/26/19 09:25	10/27/19 02:59	
Butyl benzyl phthalate	0.85	U	10		ug/L		10/26/19 09:25	10/27/19 02:59	
3,3'-Dichlorobenzidine	1.4	U-F1-F2 UJ	10		ug/L		10/26/19 09:25	10/27/19 02:59	
Chrysene	0.91		2.0		ug/L		10/26/19 09:25	10/27/19 02:59	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0		ug/L		10/26/19 09:25	10/27/19 02:59	
Di-n-octyl phthalate	4.8	U	10		B ug/L		10/26/19 09:25	10/27/19 02:59	
Benzo[k]fluoranthene	0.67	U F2	1.0		ug/L		10/26/19 09:25	10/27/19 02:59	
Indeno[1,2,3-cd]pyrene	0.94		2.0		ug/L		10/26/19 09:25	10/27/19 02:59	
Dibenz(a,h)anthracene	0.72	U	1.0		2 ug/L		10/26/19 09:25	10/27/19 02:59	
Benzo[g,h,i]perylene	1.4	U	10		l ug/L		10/26/19 09:25	10/27/19 02:59	
Diphenyl ether	1.2	U E 2	10		ug/L		10/26/19 09:25	10/27/19 02:59	
n,n'-Dimethylaniline	0.91	U F2	1.0		ug/L		10/26/19 09:25	10/27/19 02:59	
Caprolactam	0.68	U F2	10		3 ug/L		10/26/19 09:25	10/27/19 02:59	
bis (2-chloroisopropyl) ether	0.63		10		ug/L		10/26/19 09:25	10/27/19 02:59	
Bisphenol-A	9.9	U	10		ug/L		10/26/19 09:25	10/27/19 02:59	
N-Methylaniline	1.3	U-F1-F2 UJ	5.0		3 ug/L		10/26/19 09:25	10/27/19 02:59	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L	_			10/26/19 09:25	10/27/19 02:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	90		51 - 108				10/26/19 09:25	10/27/19 02:59	
Phenol-d5 (Surr)	36		14 - 39				10/26/19 09:25	10/27/19 02:59	
Terphenyl-d14 (Surr)	85		40 - 148				10/26/19 09:25	10/27/19 02:59	
2,4,6-Tribromophenol (Surr)	94		26 - 139				10/26/19 09:25	10/27/19 02:59	
2-Fluorophenol (Surr)	52		25 ₋ 58				10/26/19 09:25	10/27/19 02:59	
2-Fluorobiphenyl (Surr)	86		45 - 107				10/26/19 09:25	10/27/19 02:59	
Method: 300.0 - Anions, Ion C	Chromatogra	iphy							
Analyte		Qualifier	RL		. Unit	D	Prepared	Analyzed	Dil Fa
Chloride		F1 J-	1.32	0.15	mg/L			10/26/19 18:15	1
Nitrate as N	0.056		0.10		mg/L			10/26/19 13:32	
Nitrite as N	0.076	U-F1 (),j	0.12	0.076	mg/L			10/26/19 13:32	
Sulfate		F1 J-	6.60		mg/L			10/26/19 18:15	

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: DDA-18-US

Lab Sample ID: 460-194921-10

Matrix: Water

Date Collected: 10/25/19 14:00 Date Received: 10/25/19 20:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	17400		250	66.8	ug/L		10/30/19 03:58	10/30/19 11:51	5
Magnesium	6970		250	24.8	ug/L		10/30/19 03:58	10/30/19 11:51	5
Potassium	2860		250	73.5	ug/L		10/30/19 03:58	10/30/19 11:51	5
Calcium	13100		250	233	ug/L		10/30/19 03:58	10/30/19 11:51	5
- Method: 6010D - Metals (ICP) - I	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	1.7	J	50.0	1.7	ug/L		10/30/19 12:27	10/30/19 19:19	1
Iron, Dissolved	37800		150	34.2	ug/L		10/30/19 12:27	10/30/19 19:19	1
Manganese, Dissolved	783		15.0	0.99	ug/L		10/30/19 12:27	10/30/19 19:19	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.30		0.10	0.068	mg/L			10/28/19 15:28	1
Bicarbonate Alkalinity as CaCO3	46.5		5.0	5.0	mg/L			10/29/19 11:56	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/29/19 11:56	1
Sulfide	0.58	. U	1.0	0.58	mg/L			10/28/19 19:00	1

Client Sample ID: FDGW_102519

Lab Sample ID: 460-194921-11 Date Collected: 10/25/19 00:00 Matrix: Water

Date Received: 10/25/19 20:00

Method: 8260C SIM - Vol									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	1.8		0.40	0.33	ug/L			10/27/19 05:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	91		72 - 133					10/27/19 05:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/30/19 22:41	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/30/19 22:41	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/30/19 22:41	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/30/19 22:41	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/30/19 22:41	1
Acetone	4.4	U	5.0	4.4	ug/L			10/30/19 22:41	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/30/19 22:41	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/30/19 22:41	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/30/19 22:41	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/30/19 22:41	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/30/19 22:41	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/30/19 22:41	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/30/19 22:41	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/30/19 22:41	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/30/19 22:41	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/30/19 22:41	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/30/19 22:41	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/30/19 22:41	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/30/19 22:41	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/30/19 22:41	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: FDGW_102519

Lab Sample ID: 460-194921-11

Date Collected: 10/25/19 00:00 Date Received: 10/25/19 20:00

Matrix: Water

Result	Qualifier	GC/MS (Cor RL		Unit	D	Prepared	Analyzed	Dil Fac
0.28	U	1.0	0.28	ug/L			10/30/19 22:41	
0.43	U	1.0	0.43	ug/L			10/30/19 22:41	
0.20	U	1.0	0.20	ug/L			10/30/19 22:41	1
0.49	U	1.0		-			10/30/19 22:41	1
0.54	U	1.0		-			10/30/19 22:41	1
1.3	U	5.0		-			10/30/19 22:41	1
1.1	U	5.0		-			10/30/19 22:41	1
0.25	U	1.0					10/30/19 22:41	1
0.37	U	1.0		-			10/30/19 22:41	1
0.38	U	1.0		-			10/30/19 22:41	1
		1.0		-			10/30/19 22:41	1
	U			-			10/30/19 22:41	1
				-				1
				-				1
	U			-				1
								1
	_			-				1
				-				1
	_							. 1
				-				1
				-				. 1
	_							. 1
				-				1
				-				1
				-				1
				-				1
0.30	U	1.0	0.30	ug/L			10/30/19 22.41	,
	Qualifier	Unit	<u>D</u>	RT	CAS No.	Prepared	Analyzed	Dil Fac
None		ug/L					10/30/19 22:41	1
_	Qualifier	Limits				Prepared	Analyzed	Dil Fac
								1
100							10/30/19 22:41	1
102		77 - 124					10/30/19 22:41	1
109		72 - 131					10/30/19 22:41	1
latile Organi	c Compo	unds (GC/N	IS SIM)					
		RL	•	Unit	D	Prepared	Analyzed	Dil Fac
0.016	U *	0.050	0.016	ug/L		10/26/19 09:25	10/27/19 06:33	1
0.022	U	0.050	0.022	ug/L		10/26/19 09:25	10/27/19 06:33	1
0.024	U *	0.050				10/26/19 09:25	10/27/19 06:33	1
0.013	U	0.020	0.013	ug/L		10/26/19 09:25	10/27/19 06:33	1
0.15	U ±	0.20		ug/L		10/26/19 09:25	10/27/19 06:33	1
0.13				-		10/06/10 00:05		
0.026	U	0.030	0.026	ug/L		10/20/19 09.25	10/27/19 06:33	1
0.026			0.026	ug/L		10/26/19 09.25	10/27/19 06:33	1
0.026 Organic Co	mpounds	(GC/MS)			ח			
0.026 Organic Co Result	mpounds Qualifier	(GC/MS)	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
0.026 Organic Co	mpounds Qualifier	(GC/MS)	MDL 0.29		<u>D</u>			Dil Fac
	0.20 0.49 0.54 1.3 1.1 0.25 0.37 0.38 1.1 0.30 0.42 0.65 0.21 0.47 1.0 0.32 0.37 0.33 0.34 0.32 0.26 0.35 0.34 0.36 Est. Result None %Recovery 97 100 102 109 latile Organi Result 0.016 0.022	0.25 U 0.37 U 0.38 U 1.1 0.30 U 0.42 U 0.65 U 0.21 U 0.47 U 1.0 U 0.32 U 0.37 U 0.33 U 0.34 U 0.35 U 0.26 U 0.35 U 0.36 U Est. Result Qualifier None %Recovery Qualifier 97 100 102 109	0.20 U 1.0 0.49 U 1.0 0.54 U 1.0 1.3 U 5.0 1.1 U 5.0 0.25 U 1.0 0.37 U 1.0 0.38 U 1.0 0.30 U 1.0 0.42 U 1.0 0.65 U 2.0 0.21 U 1.0 0.47 U 1.0 0.32 U 1.0 0.33 U 1.0 0.34 U 1.0 0.35 U 1.0 0.35 U 1.0 0.36 U 1.0 0.37 U 1.0 0.37 U 1.0 0.39 U 1.0 0.30 U 1.0 0.47 U 1.0 0.47 U 1.0 0.49 U 1.0 0.49 U 1.0 0.40 U 1.0 0.41 U 1.0 0.42 U 1.0 0.44 U 1.0 0.45 U 1.0 0.46 U 1.0 0.47 U 1.0 0.48 U 1.0 0.49 U 1.0 0.49 U 1.0 0.40 U 1.0 0.41 U 1.0 0.41 U 1.0 0.42 U 1.0 0.44 U 1.0 0.45 U 1.0 0.46 U 1.0 0.47 U 1.0 0.48 U 1.0 0.49 U 1.0 0.49 U 1.0 0.40 U 1.0 0	0.20 U 1.0 0.20 0.49 U 1.0 0.49 0.54 U 1.0 0.54 1.3 U 5.0 1.3 1.1 U 5.0 1.1 0.25 U 1.0 0.25 0.37 U 1.0 0.38 1.1 1.0 0.38 1.1 1.0 0.38 0.30 U 1.0 0.30 0.42 U 1.0 0.42 0.65 U 2.0 0.65 0.21 U 1.0 0.21 0.47 U 1.0 0.47 1.0 U 2.0 1.0 0.32 0.37 U 1.0 0.35 0.34 U 1.0 0.35 0.34 U 1.0 0.36 0.35 U 1.0 0.36 0.36 U 1.0 0.36 0.36 U 1.0 0.36 0.37 U 1.0 0.36 0.38 U 1.0 0.36 0.39 U 1.0 0.36 0.39 U 1.0 0.36 0.30 U 1.0 0.36 0.31 U 1.0 0.36 0.32 U 1.0 0.35 0.34 U 1.0 0.35 0.34 U 1.0 0.36 0.35 U 1.0 0.36 0.36 U 1.0 0.36 0.37 U 1.0 0.36 0.38 U 1.0 0.36 0.39 U 1.0 0.36 0.39 U 1.0 0.36 0.31 U 1.0 0.36 0.32 U 0.050 0.002 0.024 U 1.0 0.050 0.022 0.024 U 1.0 0.050 0.022 0.024 U 1.0 0.050 0.022	0.20 U 1.0 0.20 ug/L 0.49 U 1.0 0.49 ug/L 0.54 U 1.0 0.54 ug/L 1.3 U 5.0 1.3 ug/L 1.1 U 5.0 1.1 ug/L 0.25 U 1.0 0.37 ug/L 0.37 U 1.0 0.38 ug/L 0.38 U 1.0 0.38 ug/L 0.30 U 1.0 0.38 ug/L 0.65 U 2.0 0.65 ug/L 0.21 U 1.0 0.21 ug/L 0.47 U 1.0 0.47 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.32 ug/L 0.47 U 1.0 0.32 ug/L 0.39 U 1.0 0.30 ug/L 0.47 U 1.0 0.47 ug/L 0.39 U 1.0 0.39 ug/L 0.47 U 1.0 0.47 ug/L 0.39 U 1.0 0.39 ug/L 0.47 U 1.0 0.47 ug/L 0.50 U 2.0 0.65 ug/L 0.31 U 1.0 0.32 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.32 ug/L 0.34 U 1.0 0.34 ug/L 0.35 U 1.0 0.35 ug/L 0.36 U 1.0 0.36 ug/L 0.36 U 1.0 0.36 ug/L 0.37 U 1.0 0.36 ug/L 0.38 U 1.0 0.36 ug/L 0.39 U 1.0 0.30 ug/L 0.31 U 1.0 0.32 ug/L 0.32 U 1.0 0.35 ug/L 0.34 U 1.0 0.35 ug/L 0.35 U 1.0 0.36 ug/L 0.36 U 1.0 0.36 ug/L 0.37 U 1.0 0.36 ug/L 0.38 U 1.0 0.36 ug/L 0.39 U 1.0 0.30 ug/L 0.40 U 1.0 0.30 ug/L 0.50 U 1.0 Ug/L	0.20 U 1.0 0.20 ug/L 0.49 U 1.0 0.49 ug/L 0.54 U 1.0 0.54 ug/L 1.3 U 5.0 1.3 ug/L 1.1 U 5.0 1.1 ug/L 0.25 U 1.0 0.37 ug/L 0.37 U 1.0 0.38 ug/L 1.1 1 1.0 0.38 ug/L 0.30 U 1.0 0.38 ug/L 0.30 U 1.0 0.30 ug/L 0.42 U 1.0 0.42 ug/L 0.65 U 2.0 0.65 ug/L 0.47 U 1.0 0.21 ug/L 0.47 U 1.0 0.47 ug/L 0.32 U 1.0 0.37 ug/L 0.33 U 1.0 0.37 ug/L 0.34 U 1.0 0.37 ug/L 0.35 U 1.0 0.37 ug/L 0.36 U 1.0 0.21 ug/L 0.37 U 1.0 0.37 ug/L 0.38 U 1.0 0.39 ug/L 0.39 U 1.0 0.47 ug/L 0.39 U 1.0 0.39 ug/L 0.30 U 1.0 0.34 ug/L 0.30 U 1.0 0.35 ug/L 0.34 U 1.0 0.35 ug/L 0.35 U 1.0 0.35 ug/L 0.36 U 1.0 0.36 ug/L 0.37 U 1.0 0.36 ug/L 0.38 U 1.0 0.36 ug/L 0.39 U 1.0 0.36 ug/L 0.39 U 1.0 0.36 ug/L 0.31 U 1.0 0.34 ug/L 0.32 U 1.0 0.35 ug/L 0.34 U 1.0 0.35 ug/L 0.35 U 1.0 0.36 ug/L 0.36 U 1.0 0.36 ug/L Est. Result Qualifier Unit D RT CAS No. Result Qualifier Unit D RT CAS No. Result Qualifier RL MDL Unit D Result Qualifier RL MDL Unit D Result Qualifier RL MDL Unit D O.016 U	0.20 U 1.0 0.20 ug/L 0.49 U 1.0 0.49 ug/L 0.54 U 1.0 0.54 ug/L 1.3 U 5.0 1.3 ug/L 1.1 U 5.0 1.1 ug/L 0.25 U 1.0 0.37 ug/L 0.37 U 1.0 0.38 ug/L 1.1 1 0 0.38 ug/L 1.1 1 1.0 0.38 ug/L 1.1 1 1.0 0.38 ug/L 0.38 U 1.0 0.30 ug/L 0.30 U 1.0 0.30 ug/L 0.42 U 1.0 0.42 ug/L 0.65 U 2.0 0.65 ug/L 0.21 U 1.0 0.21 ug/L 0.47 U 1.0 0.47 ug/L 1.0 U 2.0 1.0 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.32 ug/L 0.33 U 1.0 0.32 ug/L 0.33 U 1.0 0.32 ug/L 0.35 U 1.0 0.32 ug/L 0.36 U 1.0 0.35 ug/L 0.37 U 1.0 0.32 ug/L 0.38 U 1.0 0.39 ug/L 0.39 U 1.0 0.39 ug/L 0.39 U 1.0 0.39 ug/L 0.30 U 1.0 0.39 ug/L 0.31 U 1.0 0.32 ug/L 0.32 U 1.0 0.32 ug/L 0.33 U 1.0 0.34 ug/L 0.34 U 1.0 0.35 ug/L 0.35 U 1.0 0.35 ug/L 0.36 U 1.0 0.36 ug/L 0.37 U 1.0 0.38 ug/L 0.38 U 1.0 0.39 ug/L 0.39 U 1.0 0.39 ug/L 0.30 U 1.0 0.39 ug/L 0.31 U 1.0 0.39 ug/L 0.32 U 1.0 0.39 ug/L 0.34 U 1.0 0.39 ug/L 0.35 U 1.0 0.39 ug/L 0.36 U 1.0 0.39 ug/L 0.37 U 1.0 0.39 ug/L 0.39 U 1.0 0.39 ug/L 0.09 U 1.0 0.39 ug/L 0.09 U 1.0 0.09 0.00 ug/L	0.20 U 1.0 0.20 ug/L 10/30/19 22:41 0.49 U 1.0 0.49 ug/L 10/30/19 22:41 0.54 U 1.0 0.54 ug/L 10/30/19 22:41 1.3 U 5.0 1.3 ug/L 10/30/19 22:41 0.25 U 1.0 0.25 ug/L 10/30/19 22:41 0.25 U 1.0 0.25 ug/L 10/30/19 22:41 0.37 U 1.0 0.37 ug/L 10/30/19 22:41 0.38 U 1.0 0.38 ug/L 10/30/19 22:41 0.30 U 1.0 0.38 ug/L 10/30/19 22:41 0.30 U 1.0 0.38 ug/L 10/30/19 22:41 0.30 U 1.0 0.38 ug/L 10/30/19 22:41 0.42 U 1.0 0.30 ug/L 10/30/19 22:41 0.42 U 1.0 0.42 ug/L 10/30/19 22:41 0.55 U 2.0 0.65 ug/L 10/30/19 22:41 0.47 U 1.0 0.47 ug/L 10/30/19 22:41 0.47 U 1.0 0.47 ug/L 10/30/19 22:41 0.50 U 1.0 0.32 ug/L 10/30/19 22:41 0.30 U 1.0 0.32 ug/L 10/30/19 22:41 0.30 U 1.0 0.32 ug/L 10/30/19 22:41 0.31 U 1.0 0.32 ug/L 10/30/19 22:41 0.32 U 1.0 0.32 ug/L 10/30/19 22:41 0.33 U 1.0 0.32 ug/L 10/30/19 22:41 0.33 U 1.0 0.32 ug/L 10/30/19 22:41 0.34 U 1.0 0.34 ug/L 10/30/19 22:41 0.35 U 1.0 0.32 ug/L 10/30/19 22:41 0.36 U 1.0 0.32 ug/L 10/30/19 22:41 0.37 U 1.0 0.32 ug/L 10/30/19 22:41 0.38 U 1.0 0.32 ug/L 10/30/19 22:41 0.39 U 1.0 0.32 ug/L 10/30/19 22:41 0.30 U 1.0 0.30 ug/L 10/30/19 22:41

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: FDGW_102519

Lab Sample ID: 460-194921-11

Matrix: Water

Date Collected: 10/25/19 00:00 Date Received: 10/25/19 20:00

Method: 8270D - Semivolatil Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
4-Methylphenol	0.65 U	10	0.65	ug/L		10/26/19 09:25	10/27/19 06:07	1
2-Nitrophenol	0.75 U	10	0.75	ug/L		10/26/19 09:25	10/27/19 06:07	1
2,4-Dimethylphenol	0.62 U	10	0.62	ug/L		10/26/19 09:25	10/27/19 06:07	1
2,4-Dichlorophenol	1.1 U	10	1.1	ug/L		10/26/19 09:25	10/27/19 06:07	1
4-Chloro-3-methylphenol	0.58 U	10	0.58	ug/L		10/26/19 09:25	10/27/19 06:07	1
2,4,6-Trichlorophenol	0.86 U	10	0.86	ug/L		10/26/19 09:25	10/27/19 06:07	1
2,4,5-Trichlorophenol	0.88 U	10	0.88	ug/L		10/26/19 09:25	10/27/19 06:07	1
2,4-Dinitrophenol	14 U	20	14	ug/L		10/26/19 09:25	10/27/19 06:07	1
4-Nitrophenol	4.0 U	20	4.0	ug/L		10/26/19 09:25	10/27/19 06:07	1
4,6-Dinitro-2-methylphenol	13 U	20	13	ug/L		10/26/19 09:25	10/27/19 06:07	1
1,3-Dichlorobenzene	2.0 U	10	2.0	ug/L		10/26/19 09:25	10/27/19 06:07	1
1,4-Dichlorobenzene	1.3 U	10	1.3	ug/L		10/26/19 09:25	10/27/19 06:07	1
1,2-Dichlorobenzene	1.3 U	10	1.3	ug/L		10/26/19 09:25	10/27/19 06:07	1
N-Nitrosodi-n-propylamine	0.43 U	1.0	0.43	ug/L		10/26/19 09:25	10/27/19 06:07	1
Hexachloroethane	0.80 U	2.0		ug/L		10/26/19 09:25	10/27/19 06:07	1
Nitrobenzene	0.57 U	1.0	0.57	-		10/26/19 09:25	10/27/19 06:07	
Isophorone	0.80 U	10	0.80	ug/L		10/26/19 09:25	10/27/19 06:07	1
Bis(2-chloroethoxy)methane	0.59 U	10	0.59	ug/L		10/26/19 09:25	10/27/19 06:07	1
1,2,4-Trichlorobenzene	0.64 U	2.0	0.64	ug/L		10/26/19 09:25	10/27/19 06:07	1
Naphthalene	1.1 U	10	1.1	ug/L		10/26/19 09:25	10/27/19 06:07	1
4-Chloroaniline	1.9 U	10	1.9	ug/L		10/26/19 09:25	10/27/19 06:07	1
Hexachlorobutadiene	0.78 U	1.0	0.78	ug/L		10/26/19 09:25	10/27/19 06:07	1
2-Methylnaphthalene	1.1 U	10		ug/L		10/26/19 09:25	10/27/19 06:07	1
Hexachlorocyclopentadiene	3.6 U	10	3.6	ug/L		10/26/19 09:25	10/27/19 06:07	1
2-Chloronaphthalene	1.2 U	10		ug/L		10/26/19 09:25	10/27/19 06:07	
2-Nitroaniline	0.47 U	10		ug/L		10/26/19 09:25	10/27/19 06:07	1
Dimethyl phthalate	0.77 U	10		ug/L		10/26/19 09:25	10/27/19 06:07	1
Acenaphthylene	0.82 U	10	0.82			10/26/19 09:25	10/27/19 06:07	
2,6-Dinitrotoluene	0.83 U	2.0	0.83	-		10/26/19 09:25	10/27/19 06:07	1
3-Nitroaniline	1.9 U	10		ug/L		10/26/19 09:25	10/27/19 06:07	1
Acenaphthene	1.1 U	10		ug/L		10/26/19 09:25	10/27/19 06:07	
Dibenzofuran	1.1 U	10		ug/L		10/26/19 09:25	10/27/19 06:07	1
2,4-Dinitrotoluene	1.0 U	2.0		ug/L		10/26/19 09:25	10/27/19 06:07	1
Diethyl phthalate	0.98 U	10	0.98	-		10/26/19 09:25	10/27/19 06:07	
4-Chlorophenyl phenyl ether	1.3 U	10		ug/L		10/26/19 09:25	10/27/19 06:07	1
Fluorene	0.91 U	10	0.91	-		10/26/19 09:25	10/27/19 06:07	1
4-Nitroaniline	1.2 U	10		ug/L		10/26/19 09:25	10/27/19 06:07	
N-Nitrosodiphenylamine	0.89 U	10	0.89				10/27/19 06:07	1
4-Bromophenyl phenyl ether	0.75 U	10	0.75	_			10/27/19 06:07	1
Phenanthrene	0.58 U	10	0.58			10/26/19 09:25	10/27/19 06:07	
Anthracene	0.63 U	10	0.63	-			10/27/19 06:07	1
Carbazole	0.68 U	10	0.68	-			10/27/19 06:07	1
Di-n-butyl phthalate	0.84 U	10	0.84				10/27/19 06:07	
Fluoranthene	0.84 U	10	0.84				10/27/19 06:07	1
Pyrene	1.6 U	10		ug/L			10/27/19 06:07	1
Butyl benzyl phthalate	0.85 U	10	0.85				10/27/19 06:07	1
3,3'-Dichlorobenzidine	1.4 U	10		ug/L			10/27/19 06:07	1
Chrysene	0.91 U	2.0	0.91				10/27/19 06:07	1
Bis(2-ethylhexyl) phthalate	1.7 U	2.0		ug/L			10/27/19 06:07	. 1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: FDGW_102519

Lab Sample ID: 460-194921-11

Date Collected: 10/25/19 00:00 Date Received: 10/25/19 20:00

Matrix: Water

Analyte	Result	Qualifier	ŘĹ		MDL	Unit	D	Prepared	Analyzed	Dil Fa
Di-n-octyl phthalate	4.8	U	10		4.8	ug/L		10/26/19 09:25	10/27/19 06:07	
Benzo[k]fluoranthene	0.67	U	1.0		0.67	ug/L		10/26/19 09:25	10/27/19 06:07	
Indeno[1,2,3-cd]pyrene	0.94	U	2.0		0.94	ug/L		10/26/19 09:25	10/27/19 06:07	
Dibenz(a,h)anthracene	0.72	U	1.0		0.72	ug/L		10/26/19 09:25	10/27/19 06:07	
Benzo[g,h,i]perylene	1.4	U	10		1.4	ug/L		10/26/19 09:25	10/27/19 06:07	
Diphenyl ether	1.2	U	10		1.2	ug/L		10/26/19 09:25	10/27/19 06:07	
n,n'-Dimethylaniline	0.91	U	1.0		0.91	ug/L		10/26/19 09:25	10/27/19 06:07	
Caprolactam	0.68	U	10		0.68	ug/L		10/26/19 09:25	10/27/19 06:07	
bis (2-chloroisopropyl) ether	0.63	U	10		0.63	ug/L		10/26/19 09:25	10/27/19 06:07	
Bisphenol-A	9.9	U	10		9.9	ug/L		10/26/19 09:25	10/27/19 06:07	
N-Methylaniline	1.3	U	5.0		1.3	ug/L		10/26/19 09:25	10/27/19 06:07	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	R <i>T</i>	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/26/19 09:25	10/27/19 06:07	,
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	99		51 - 108					10/26/19 09:25	10/27/19 06:07	
Phenol-d5 (Surr)	35		14 - 39					10/26/19 09:25	10/27/19 06:07	•
Terphenyl-d14 (Surr)	93		40 - 148					10/26/19 09:25	10/27/19 06:07	•
2,4,6-Tribromophenol (Surr)	101		26 - 139					10/26/19 09:25	10/27/19 06:07	
2-Fluorophenol (Surr)	54		25 - 58					10/26/19 09:25	10/27/19 06:07	•
2-Fluorobiphenyl (Surr)	92		45 - 107					10/26/19 09:25	10/27/19 06:07	•
Method: 300.0 - Anions, Ion C	•									
Analyte		Qualifier	RL_		MDL		D	Prepared	Analyzed	Dil Fac
Chloride	68.9		3.12			mg/L			10/26/19 17:46	26
Nitrate as N	0.056		0.10		0.056	-			10/26/19 13:02	•
Nitrite as N	0.076	U	0.12		0.076	-			10/26/19 13:02	
Sulfate	17.6		0.60		0.35	mg/L			10/26/19 13:02	•
Method: 200.8 - Metals (ICP/N										
Analyte		Qualifier	RL		MDL		D	Prepared	Analyzed	Dil Fac
Sodium	51300		250		66.8	-		10/30/19 03:58	10/30/19 14:10	
								10/30/19 03:58	10/30/19 14:10	Ę
Magnesium	28400		250		24.8	U				
	28400 4490		250		73.5	ug/L		10/30/19 03:58		Ę
Magnesium					73.5	U		10/30/19 03:58 10/30/19 03:58		į
Magnesium Potassium	4490 18800		250 250		73.5 233	ug/L ug/L				ţ
Magnesium Potassium Calcium	4490 18800 - Dissolved	Qualifier	250 250 RL		73.5 233 MDL	ug/L ug/L Unit	D			
Magnesium Potassium Calcium - Method: 6010D - Metals (ICP) Analyte	4490 18800 - Dissolved		250 250		73.5 233 MDL	ug/L ug/L	D	10/30/19 03:58	10/30/19 14:10	Ę
Magnesium Potassium Calcium - Method: 6010D - Metals (ICP) Analyte	4490 18800 - Dissolved Result		250 250 RL		73.5 233 MDL	ug/L ug/L Unit ug/L	D	10/30/19 03:58 Prepared	10/30/19 14:10 Analyzed 10/30/19 19:54	Dil Fac
Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved	4490 18800 - Dissolved Result 459		250 250 RL 50.0		73.5 233 MDL 1.7 34.2	ug/L ug/L Unit ug/L	D	10/30/19 03:58 Prepared 10/30/19 12:27	10/30/19 14:10 Analyzed 10/30/19 19:54 10/30/19 19:54	Dil Fac
Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved	4490 18800 - Dissolved Result 459 8970		250 250 RL 50.0 150		73.5 233 MDL 1.7 34.2	ug/L ug/L Unit ug/L	D	Prepared 10/30/19 12:27 10/30/19 12:27	10/30/19 14:10 Analyzed 10/30/19 19:54 10/30/19 19:54	Dil Fac
Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry	4490 18800 - Dissolved Result 459 8970 38200		250 250 RL 50.0 150		73.5 233 MDL 1.7 34.2 3.0	ug/L ug/L Unit ug/L ug/L ug/L ug/L	D	Prepared 10/30/19 12:27 10/30/19 12:27	10/30/19 14:10 Analyzed 10/30/19 19:54 10/30/19 19:54	Dil Fac
Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte	4490 18800 - Dissolved Result 459 8970 38200	Qualifier	250 250 RL 50.0 150 45.0		73.5 233 MDL 1.7 34.2 3.0 MDL 0.068	ug/L ug/L Unit ug/L ug/L ug/L ug/L		Prepared 10/30/19 12:27 10/30/19 12:27 10/30/19 12:27	Analyzed 10/30/19 19:54 10/30/19 19:54 10/31/19 07:05	Dil Fac
Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved	4490 18800 - Dissolved Result 459 8970 38200 Result	Qualifier	250 250 RL 50.0 150 45.0		73.5 233 MDL 1.7 34.2 3.0 MDL 0.068	ug/L ug/L Unit ug/L ug/L ug/L ug/L		Prepared 10/30/19 12:27 10/30/19 12:27 10/30/19 12:27	Analyzed 10/30/19 19:54 10/30/19 19:54 10/30/19 07:05 Analyzed	Dil Fac
Magnesium Potassium Calcium Method: 6010D - Metals (ICP) Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved General Chemistry Analyte Ammonia (as N)	4490 18800 - Dissolved Result 459 8970 38200 Result 0.52	Qualifier Qualifier	250 250 RL 50.0 150 45.0		73.5 233 MDL 1.7 34.2 3.0 MDL 0.068 5.0	ug/L ug/L Unit ug/L ug/L ug/L ug/L		Prepared 10/30/19 12:27 10/30/19 12:27 10/30/19 12:27	Analyzed 10/30/19 19:54 10/30/19 19:54 10/31/19 07:05 Analyzed 10/28/19 15:53	Dil Fac

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: RBGW_102519

Lab Sample ID: 460-194921-12

Date Collected: 10/25/19 15:00 Date Received: 10/25/19 20:00

Matrix: Water

Method: 8260C SIM - Volat ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.33		0.40	0.33		<u> </u>		10/26/19 15:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97		72 - 133			-		10/26/19 15:11	
			. 2 - / 5 5					7072077077	•
Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/30/19 12:40	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/30/19 12:40	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/30/19 12:40	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/30/19 12:40	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/30/19 12:40	1
Acetone	6.4		5.0	4.4	ug/L			10/30/19 12:40	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/30/19 12:40	
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/30/19 12:40	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/30/19 12:40	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/30/19 12:40	1
cis-1,2-Dichloroethene	0.22	U	1.0		ug/L			10/30/19 12:40	1
Chloroform	0.33	U	1.0	0.33	-			10/30/19 12:40	1
1,2-Dichloroethane	0.43	U	1.0		ug/L			10/30/19 12:40	
2-Butanone (MEK)	1.9		5.0		ug/L			10/30/19 12:40	1
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/30/19 12:40	1
Carbon tetrachloride	0.21		1.0		ug/L			10/30/19 12:40	1
Bromodichloromethane	0.34		1.0		ug/L			10/30/19 12:40	1
1,2-Dichloropropane	0.35		1.0	0.35	-			10/30/19 12:40	1
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/30/19 12:40	
Trichloroethene	0.31		1.0		ug/L			10/30/19 12:40	1
Dibromochloromethane	0.28		1.0	0.28	-			10/30/19 12:40	1
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/30/19 12:40	
Benzene	0.20		1.0		ug/L			10/30/19 12:40	1
trans-1,3-Dichloropropene	0.49		1.0	0.49	-			10/30/19 12:40	1
Bromoform	0.54		1.0		ug/L			10/30/19 12:40	
	1.3		5.0		ug/L ug/L			10/30/19 12:40	
4-Methyl-2-pentanone	1.3		5.0		-				1
2-Hexanone				1.1	U			10/30/19 12:40	1
Tetrachloroethene	0.25		1.0		ug/L			10/30/19 12:40	1
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/30/19 12:40	1
Toluene	0.38		1.0		ug/L			10/30/19 12:40]
Chlorobenzene	0.38		1.0		ug/L			10/30/19 12:40	1
Ethylbenzene	0.30		1.0		ug/L			10/30/19 12:40	1
Styrene	0.42		1.0		ug/L			10/30/19 12:40	1
Xylenes, Total	0.65		2.0		ug/L			10/30/19 12:40	1
Diethyl ether	0.21		1.0		ug/L			10/30/19 12:40	1
MTBE	0.47		1.0		ug/L			10/30/19 12:40	1
Tetrahydrofuran	1.0		2.0		ug/L			10/30/19 12:40	1
Cyclohexane	0.32		1.0		ug/L			10/30/19 12:40	1
1,2,4-Trimethylbenzene	0.37		1.0		ug/L			10/30/19 12:40	1
1,3,5-Trimethylbenzene	0.33		1.0		ug/L			10/30/19 12:40	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			10/30/19 12:40	1
N-Propylbenzene	0.32	1.5	1.0	0.22	ug/L			10/30/19 12:40	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: RBGW_102519

Lab Sample ID: 460-194921-12

Date Collected: 10/25/19 15:00

Hexachlorobutadiene

2-Methylnaphthalene

Matrix: Water

	ganic Compo								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Indane	0.35		1.0		ug/L			10/30/19 12:40	•
Dichlorofluoromethane	0.34		1.0		ug/L			10/30/19 12:40	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			10/30/19 12:40	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	_				10/30/19 12:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	101		74 - 132					10/30/19 12:40	
Toluene-d8 (Surr)	100		80 ₋ 120					10/30/19 12:40	
4-Bromofluorobenzene	102		77 ₋ 124					10/30/19 12:40	
Dibromofluoromethane (Surr)	109		72 - 131					10/30/19 12:40	
Method: 8270D SIM - Semiv	alatila Oraani	c Campa	unde (GC/M	IC CINA)					
Metriou. 0270D 31W - 3erriov Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Benzo[a]anthracene	0.016	U ±	0.050	0.016	ug/L		10/26/19 09:25	10/27/19 06:54	
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/26/19 09:25	10/27/19 06:54	
Benzo[b]fluoranthene	0.024	U ±	0.050	0.024	-			10/27/19 06:54	
Hexachlorobenzene	0.013	U	0.020	0.013	-			10/27/19 06:54	
Pentachlorophenol	0.15		0.20		ug/L		10/26/19 09:25	10/27/19 06:54	
Bis(2-chloroethyl)ether	0.026	-	0.030	0.026	_			10/27/19 06:54	
Analyte Phenol	0.29	Qualifier U	RL 10	0.29	Unit ug/L	D	Prepared 10/26/19 09:25	Analyzed 10/27/19 06:28	Dil Fa
Phenol	0.29	U	10	0.29	ug/L		10/26/19 09:25	10/27/19 06:28	
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:25	10/27/19 06:28	
2-Methylphenol	0.67	U	10	0.67	ug/L		10/26/19 09:25	10/27/19 06:28	
4-Methylphenol	0.65	U	10	0.65	ug/L		10/26/19 09:25	10/27/19 06:28	
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 06:28	
2,4-Dimethylphenol			.0	0.70					
2,4-Dimetryiphenoi	0.62	U	10		ug/L		10/26/19 09:25	10/27/19 06:28	
· · · · · · · · · · · · · · · · · · ·	0.62 1.1			0.62	ug/L ug/L			10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol		U	10	0.62 1.1	-		10/26/19 09:25		
2,4-Dichlorophenol 4-Chloro-3-methylphenol	1.1	U	10 10	0.62 1.1 0.58	ug/L		10/26/19 09:25 10/26/19 09:25	10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol	1.1 0.58	U U U	10 10 10	0.62 1.1 0.58 0.86	ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	1.1 0.58 0.86	U U U	10 10 10 10 10	0.62 1.1 0.58 0.86 0.88	ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol	1.1 0.58 0.86 0.88	U U U U	10 10 10 10 10 20	0.62 1.1 0.58 0.86 0.88	ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol	1.1 0.58 0.86 0.88	U U U U U	10 10 10 10 10 20 20	0.62 1.1 0.58 0.86 0.88 14 4.0	ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol	1.1 0.58 0.86 0.88 14 4.0	U U U U U U	10 10 10 10 10 20 20	0.62 1.1 0.58 0.86 0.88 14 4.0	ug/L ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene	1.1 0.58 0.86 0.88 14 4.0 13	U U U U U U U	10 10 10 10 10 20 20 20	0.62 1.1 0.58 0.86 0.88 14 4.0 13	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene	1.1 0.58 0.86 0.88 14 4.0 13 2.0	U U U U U U U	10 10 10 10 10 20 20 20 10	0.62 1.1 0.58 0.86 0.88 14 4.0 13 2.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3	U U U U U U U U	10 10 10 10 10 20 20 20 10 10	0.62 1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene N-Nitrosodi-n-propylamine	1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 0.43	U U U U U U U U U U	10 10 10 10 10 20 20 20 10 10	0.62 1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene N-Nitrosodi-n-propylamine Hexachloroethane	1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 0.43 0.80	U U U U U U U U U U	10 10 10 10 20 20 20 10 10 10	0.62 1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 0.43 0.80	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene N-Nitrosodi-n-propylamine Hexachloroethane Nitrobenzene	1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 1.3 0.43 0.80 0.57		10 10 10 10 20 20 20 10 10 10 2.0	0.62 1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 0.43 0.80 0.57	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4-Oinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene N-Nitrosodi-n-propylamine Hexachloroethane Nitrobenzene Isophorone	1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 0.43 0.80 0.57		10 10 10 10 20 20 10 10 10 2.0 1.0	0.62 1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 0.43 0.80 0.57	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene N-Nitrosodi-n-propylamine Hexachloroethane Nitrobenzene Isophorone Bis(2-chloroethoxy)methane	1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 0.43 0.80 0.57 0.80		10 10 10 10 20 20 10 10 10 2.0 1.0	0.62 1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 0.43 0.80 0.57 0.80	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28	
2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene N-Nitrosodi-n-propylamine Hexachloroethane Nitrobenzene Isophorone Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene	1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 0.43 0.80 0.57 0.80 0.59 0.64		10 10 10 10 20 20 20 10 10 1.0 2.0 1.0 2.0	0.62 1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 0.43 0.80 0.57 0.80 0.59 0.64	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28	
2,4-Dirhentylphenol 2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 4-Nitrophenol 4,6-Dinitro-2-methylphenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene N-Nitrosodi-n-propylamine Hexachloroethane Nitrobenzene Isophorone Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline	1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 0.43 0.80 0.57 0.80		10 10 10 10 20 20 10 10 10 2.0 1.0	0.62 1.1 0.58 0.86 0.88 14 4.0 13 2.0 1.3 0.43 0.80 0.57 0.80 0.59 0.64 1.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		10/26/19 09:25 10/26/19 09:25	10/27/19 06:28 10/27/19 06:28	

Eurofins TestAmerica, Edison

10/26/19 09:25 10/27/19 06:28

10/26/19 09:25 10/27/19 06:28

11/11/2019

1.0

10

0.78 ug/L

1.1 ug/L

0.78 U

1.1 U

Client: Golder Associates Inc.

Date Received: 10/25/19 20:00

2,4,6-Tribromophenol (Surr)

2-Fluorophenol (Surr)

2-Fluorobiphenyl (Surr)

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: RBGW_102519

Lab Sample ID: 460-194921-12 Date Collected: 10/25/19 15:00

Matrix: Water

Method: 8270D - Semivolatile Analyte		Qualifier	RL		, Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	3.6	U	10	3.6	ug/L		10/26/19 09:25	10/27/19 06:28	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/26/19 09:25	10/27/19 06:28	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/26/19 09:25	10/27/19 06:28	1
Dimethyl phthalate	0.77	U	10	0.77	ug/L		10/26/19 09:25	10/27/19 06:28	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/26/19 09:25	10/27/19 06:28	1
2,6-Dinitrotoluene	0.83	U	2.0	0.83	ug/L		10/26/19 09:25	10/27/19 06:28	1
3-Nitroaniline	1.9	U	10	1.9	ug/L		10/26/19 09:25	10/27/19 06:28	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 06:28	1
Dibenzofuran	1.1	U	10	1.1	ug/L		10/26/19 09:25	10/27/19 06:28	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/26/19 09:25	10/27/19 06:28	1
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/26/19 09:25	10/27/19 06:28	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/26/19 09:25	10/27/19 06:28	1
Fluorene	0.91	U	10	0.91	ug/L		10/26/19 09:25	10/27/19 06:28	1
4-Nitroaniline	1.2	U	10	1.2	ug/L		10/26/19 09:25	10/27/19 06:28	1
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/26/19 09:25	10/27/19 06:28	1
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/26/19 09:25	10/27/19 06:28	1
Phenanthrene	0.58	U	10	0.58	ug/L		10/26/19 09:25	10/27/19 06:28	1
Anthracene	0.63	U	10	0.63	ug/L		10/26/19 09:25	10/27/19 06:28	1
Carbazole	0.68	U	10	0.68	ug/L		10/26/19 09:25	10/27/19 06:28	1
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/26/19 09:25	10/27/19 06:28	1
Fluoranthene	0.84	U	10	0.84	ug/L		10/26/19 09:25	10/27/19 06:28	1
Pyrene	1.6	U	10	1.6	ug/L		10/26/19 09:25	10/27/19 06:28	1
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		10/26/19 09:25	10/27/19 06:28	1
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		10/26/19 09:25	10/27/19 06:28	1
Chrysene	0.91	U	2.0	0.91	ug/L		10/26/19 09:25	10/27/19 06:28	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/26/19 09:25	10/27/19 06:28	1
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		10/26/19 09:25	10/27/19 06:28	1
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		10/26/19 09:25	10/27/19 06:28	1
Indeno[1,2,3-cd]pyrene	0.94	U	2.0	0.94	ug/L		10/26/19 09:25	10/27/19 06:28	1
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		10/26/19 09:25	10/27/19 06:28	1
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/26/19 09:25	10/27/19 06:28	1
Diphenyl ether	1.2	Ü	10		ug/L		10/26/19 09:25	10/27/19 06:28	1
n,n'-Dimethylaniline	0.91	U	1.0		ug/L		10/26/19 09:25	10/27/19 06:28	1
Caprolactam	0.68	U	10		ug/L		10/26/19 09:25	10/27/19 06:28	1
bis (2-chloroisopropyl) ether	0.63		10		ug/L			10/27/19 06:28	1
Bisphenol-A	9.9	U	10		ug/L			10/27/19 06:28	1
N-Methylaniline	1.3		5.0		ug/L			10/27/19 06:28	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	_			10/26/19 09:25	10/27/19 06:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	89		51 - 108				10/26/19 09:25	10/27/19 06:28	1
Phenol-d5 (Surr)	32		14 - 39				10/26/19 09:25	10/27/19 06:28	1
Terphenyl-d14 (Surr)	84		40 - 148				10/26/19 09:25	10/27/19 06:28	1
							CONTRACTOR TO A TOP	TO A MARKET DIA MARKET	

Eurofins TestAmerica, Edison 11/11/2019

10/26/19 09:25 10/27/19 06:28

10/26/19 09:25 10/27/19 06:28

10/26/19 09:25 10/27/19 06:28

1

26 - 139

25 - 58

45 - 107

98

49

82

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: RBGW_102519

Lab Sample ID: 460-194921-12 Date Collected: 10/25/19 15:00

Matrix: Water

Date	Received:	10/25/19	20:00

Method: 300.0 - Anions,	Ion Chromatogra	ıphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.014	U	0.12	0.014	mg/L			10/26/19 14:31	1
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/26/19 14:31	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/26/19 14:31	1
Sulfate	0.35	U	0.60	0.35	mg/L			10/26/19 14:31	1
_ Method: 200.8 - Metals (ICP/MS) - Total R	ecoverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	66.8	U	250	66.8	ug/L		10/30/19 03:58	10/30/19 13:09	5
Magnesium	24.8	U	250	24.8	ug/L		10/30/19 03:58	10/30/19 13:09	5
Potassium	73.5	U	250	73.5	ug/L		10/30/19 03:58	10/30/19 13:09	5
Calcium	233	U	250	233	ug/L		10/30/19 03:58	10/30/19 13:09	5
Method: 6010D - Metals	(ICP) - Dissolved								
Analyte	· ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	1.7	U	50.0	1.7	ug/L		10/30/19 12:27	10/30/19 19:58	1
Iron, Dissolved	34.2	U	150	34.2	ug/L		10/30/19 12:27	10/30/19 19:58	1

General Chemistry

Manganese, Dissolved

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			10/28/19 15:54	1
Bicarbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/29/19 14:04	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/29/19 14:04	1
Sulfide	0.58	U	1.0	0.58	mg/L			10/28/19 19:00	1
	Analyte Ammonia (as N) Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3	Analyte Result Ammonia (as N) 0.068 Bicarbonate Alkalinity as CaCO3 5.0 Carbonate Alkalinity as CaCO3 5.0	AnalyteResult QualifierAmmonia (as N)0.068UBicarbonate Alkalinity as CaCO35.0UCarbonate Alkalinity as CaCO35.0U	Analyte Result Qualifier RL Ammonia (as N) 0.068 U 0.10 Bicarbonate Alkalinity as CaCO3 5.0 U 5.0 Carbonate Alkalinity as CaCO3 5.0 U 5.0	Analyte Result Ammonia (as N) Qualifier RL MDL Ammonia (as N) 0.068 U 0.10 0.068 Bicarbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 Carbonate Alkalinity as CaCO3 5.0 U 5.0 5.0	Analyte Result Qualifier RL MDL Unit Ammonia (as N) 0.068 U 0.10 0.068 mg/L Bicarbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L Carbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L	Analyte Result Ammonia (as N) Qualifier RL MDL MDL Unit D Bicarbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L Carbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L	Analyte Result Ammonia (as N) Qualifier RL MDL MDL Unit D Prepared Bicarbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L Carbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L	Analyte Result Ammonia (as N) Qualifier RL MDL Onto Unit Unit Unit Unit D Prepared Analyzed Ammonia (as N) 0.068 U 0.10 0.068 mg/L 10/28/19 15:54 Bicarbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L 10/29/19 14:04 Carbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L 10/29/19 14:04

15.0

0.99 ug/L

Client Sample ID: TBGW_102519-A

Lab Sample ID: 460-194921-13 Date Collected: 10/25/19 00:00

0.99 U

Matrix: Water

10/30/19 12:27 10/30/19 19:58

Date Received: 10/25/19 20:00

Method: 8260C SIM - Vola	itile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.33	U	0.40	0.33	ug/L			10/26/19 15:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		72 - 133			-		10/26/19 15:34	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/29/19 21:51	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/29/19 21:51	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/29/19 21:51	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/29/19 21:51	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/29/19 21:51	1
Acetone	8.3		5.0	4.4	ug/L			10/29/19 21:51	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/29/19 21:51	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/29/19 21:51	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/29/19 21:51	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/29/19 21:51	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/29/19 21:51	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/29/19 21:51	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/29/19 21:51	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: TBGW_102519-A Lab Sample ID: 460-194921-13

Date Collected: 10/25/19 00:00 Matrix: Water

Date Received: 10/25/19 20:00

Analyte		Qualifier	RL	ME)L U	Jnit	D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	1.9	U	5.0	1	.9 u	ıg/L			10/29/19 21:51	1
1,1,1-Trichloroethane	0.24	U	1.0	0.3	24 u	ıg/L			10/29/19 21:51	1
Carbon tetrachloride	0.21	U	1.0	0.:	21 u	ıg/L			10/29/19 21:51	1
Bromodichloromethane	0.34	U	1.0	0.3	34 u	ıg/L			10/29/19 21:51	1
1,2-Dichloropropane	0.35	U	1.0	0.3	35 u	ıg/L			10/29/19 21:51	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.:	22 u	ıg/L			10/29/19 21:51	1
Trichloroethene	0.31	U	1.0	0.3	31 u	ıg/L			10/29/19 21:51	1
Dibromochloromethane	0.28	U	1.0	0.3	28 u	ıg/L			10/29/19 21:51	1
1,1,2-Trichloroethane	0.43	U	1.0	0.4	43 u	ig/L			10/29/19 21:51	1
Benzene	0.20	U	1.0	0.:	20 u	ıg/L			10/29/19 21:51	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.4	49 u	ıg/L			10/29/19 21:51	1
Bromoform	0.54	U	1.0	0.	54 u	ig/L			10/29/19 21:51	1
4-Methyl-2-pentanone	1.3	U	5.0	1	.3 u	ıg/L			10/29/19 21:51	1
2-Hexanone	1.1	U	5.0	1	.1 u	ıg/L			10/29/19 21:51	1
Tetrachloroethene	0.25	U	1.0	0.:	25 u	ıg/L			10/29/19 21:51	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.3		ıg/L			10/29/19 21:51	1
Toluene	0.38	U	1.0	0.3	38 u	ıg/L			10/29/19 21:51	1
Chlorobenzene	0.38	U	1.0	0.:	38 u	ıg/L			10/29/19 21:51	1
Ethylbenzene	0.30	U	1.0	0.3	30 u	ıg/L			10/29/19 21:51	1
Styrene	0.42	U	1.0	0.4	42 u	ıg/L			10/29/19 21:51	1
Xylenes, Total	0.65	U	2.0	0.0	55 u	ıg/L			10/29/19 21:51	1
Diethyl ether	0.21	U	1.0		21 u				10/29/19 21:51	1
MTBE	0.47	U	1.0	0.4	47 u	ıg/L			10/29/19 21:51	1
Tetrahydrofuran	1.0	U	2.0	1	.0 u	ıg/L			10/29/19 21:51	1
Cyclohexane	0.32	U	1.0	0.3	32 u	ıg/L			10/29/19 21:51	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.3	37 u	ıg/L			10/29/19 21:51	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.	33 u	ıg/L			10/29/19 21:51	1
Isopropylbenzene	0.34	U	1.0	0.3	34 u	ıg/L			10/29/19 21:51	1
N-Propylbenzene	0.32	U	1.0	0.3	32 u	ıg/L			10/29/19 21:51	1
Methylcyclohexane	0.26	U	1.0	0.:	26 u	ıg/L			10/29/19 21:51	1
Indane	0.35	U	1.0		35 u				10/29/19 21:51	1
Dichlorofluoromethane	0.34	U	1.0	0.3	34 u	ıg/L			10/29/19 21:51	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.3	36 u	ıg/L			10/29/19 21:51	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RI	r c	AS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						10/29/19 21:51	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		74 - 132				-		10/29/19 21:51	1
Toluene-d8 (Surr)	99		80 _ 120						10/29/19 21:51	1
4-Bromofluorobenzene	99		77 - 124						10/29/19 21:51	1
Dibromofluoromethane (Surr)	109		72 - 131						10/29/19 21:51	1

Client Sample ID: C-2D

Date Collected: 10/25/19 08:40

Date Received: 10/25/19 20:00

Method: 8260C SIM - Volatile (Organic Cor	npounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	ı	D	Prepared	Analyzed	Dil Fac
1.4-Dioxane	18	I	0.40	0.33	ug/L				10/27/19 05:11	1

Eurofins TestAmerica, Edison

Lab Sample ID: 460-194926-1

11/11/2019

Matrix: Water

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-2D Lab Sample ID: 460-194926-1

Date Collected: 10/25/19 08:40 Date Received: 10/25/19 20:00

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	67	X	72 - 133	10/27/19 05:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	0.40	U	1.0	0.40	ug/L			10/31/19 01:14	
Bromomethane	0.55	U	1.0	0.55	ug/L			10/31/19 01:14	
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/31/19 01:14	
Chloroethane	0.32	U	1.0	0.32	ug/L			10/31/19 01:14	
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/31/19 01:14	
Acetone	4.4	U	5.0	4.4	ug/L			10/31/19 01:14	
Carbon disulfide	0.82	U	1.0		ug/L			10/31/19 01:14	
1,1-Dichloroethene	0.26	U	1.0		ug/L			10/31/19 01:14	
1,1-Dichloroethane	0.26	U	1.0		ug/L			10/31/19 01:14	
trans-1,2-Dichloroethene	0.24	. U	1.0		ug/L			10/31/19 01:14	
cis-1,2-Dichloroethene	0.29		1.0		ug/L			10/31/19 01:14	
Chloroform	0.33		1.0		ug/L			10/31/19 01:14	
1,2-Dichloroethane	0.43	U	1.0		ug/L			10/31/19 01:14	
2-Butanone (MEK)	1.9		5.0		ug/L			10/31/19 01:14	
1,1,1-Trichloroethane	0.24		1.0		ug/L			10/31/19 01:14	
Carbon tetrachloride	0.21		1.0		ug/L			10/31/19 01:14	
3romodichloromethane	0.34		1.0		ug/L			10/31/19 01:14	
1,2-Dichloropropane	0.35		1.0		ug/L			10/31/19 01:14	
cis-1,3-Dichloropropene	0.22		1.0		ug/L			10/31/19 01:14	
Frichloroethene	0.31		1.0		ug/L			10/31/19 01:14	
Dibromochloromethane	0.28		1.0		ug/L			10/31/19 01:14	
1,1,2-Trichloroethane	0.43		1.0		ug/L			10/31/19 01:14	
Benzene	22	O	1.0		ug/L			10/31/19 01:14	
rans-1,3-Dichloropropene	0.49	П	1.0		ug/L			10/31/19 01:14	
Bromoform	0.54		1.0		ug/L			10/31/19 01:14	,
1-Methyl-2-pentanone	1.3		5.0		ug/L			10/31/19 01:14	
2-Hexanone	1.1		5.0		ug/L			10/31/19 01:14	
Tetrachloroethene	0.25		1.0		ug/L			10/31/19 01:14	
1,1,2,2-Tetrachloroethane	0.23		1.0		ug/L			10/31/19 01:14	
			1.0		ug/L ug/L			10/31/19 01:14	
Toluene	0.59		1.0		ug/L ug/L			10/31/19 01:14	
Chlorobenzene	18				ug/L ug/L			10/31/19 01:14	
Ethylbenzene	0.36 0.42		1.0						
Styrene			1.0		ug/L			10/31/19 01:14	
Xylenes, Total	130		2.0		ug/L			10/31/19 01:14	
Diethyl ether	0.21		1.0		ug/L			10/31/19 01:14	
MTBE	0.47	U	1.0		ug/L			10/31/19 01:14	
Tetrahydrofuran	3.0		2.0		ug/L			10/31/19 01:14	
Cyclohexane	5.4		1.0		ug/L			10/31/19 01:14	
1,2,4-Trimethylbenzene	70		1.0		ug/L			10/31/19 01:14	
1,3,5-Trimethylbenzene	32		1.0		ug/L			10/31/19 01:14	
sopropylbenzene	13		1.0		ug/L			10/31/19 01:14	
N-Propylbenzene	15		1.0		ug/L			10/31/19 01:14	
Methylcyclohexane	7.4		1.0		ug/L			10/31/19 01:14	
Indane	73		1.0		ug/L			10/31/19 01:14	
Dichlorofluoromethane	0.34	U	1.0		ug/L			10/31/19 01:14	
1,2,3-Trimethylbenzene	29		1.0	0.36	ug/L			10/31/19 01:14	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-2D Lab Sample ID: 460-194926-1

Date Collected: 10/25/19 08:40 Matrix: Water Date Received: 10/25/19 20:00

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Benzene, 1-ethyl-3-methyl-	24	JA	ug/L		9.25	620-14-4		10/31/19 01:14	
Benzene, 1-ethyl-2-methyl-	22	JA	ug/L		9.69	611-14-3		10/31/19 01:14	1
2-Heptanone, 4,6-dimethyl-	9.7	JA	ug/L		10.26	19549-80-5		10/31/19 01:14	1
Benzene, 1-ethyl-2,3-dimethyl-	5.7	J-N	ug/L		11.74	933-98-2		10/31/19 01:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		74 - 132	-				10/31/19 01:14	
Toluene-d8 (Surr)	94		80 - 120					10/31/19 01:14	1
4-Bromofluorobenzene	94		77 - 124					10/31/19 01:14	1
Dibromofluoromethane (Surr)	98		72 - 131					10/31/19 01:14	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/26/19 09:05	10/27/19 02:39	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/26/19 09:05	10/27/19 02:39	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/26/19 09:05	10/27/19 02:39	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/26/19 09:05	10/27/19 02:39	1
Pentachlorophenol	0.15	₩UJ	0.20	0.15	ug/L		10/26/19 09:05	10/27/19 02:39	1
Bis(2-chloroethyl)ether	1.2		0.030	0.026	ug/L		10/26/19 09:05	10/27/19 02:39	1

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/26/19 09:05	10/27/19 07:03	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/26/19 09:05	10/27/19 07:03	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/26/19 09:05	10/27/19 07:03	1
4-Methylphenol	0.65	U	10	0.65	ug/L		10/26/19 09:05	10/27/19 07:03	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/26/19 09:05	10/27/19 07:03	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/26/19 09:05	10/27/19 07:03	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/26/19 09:05	10/27/19 07:03	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/26/19 09:05	10/27/19 07:03	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/26/19 09:05	10/27/19 07:03	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/26/19 09:05	10/27/19 07:03	1
2,4-Dinitrophenol	14	U *	20	14	ug/L		10/26/19 09:05	10/27/19 07:03	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/26/19 09:05	10/27/19 07:03	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/26/19 09:05	10/27/19 07:03	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/26/19 09:05	10/27/19 07:03	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:05	10/27/19 07:03	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/26/19 09:05	10/27/19 07:03	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/26/19 09:05	10/27/19 07:03	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/26/19 09:05	10/27/19 07:03	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/26/19 09:05	10/27/19 07:03	1
Isophorone	0.80	U	10	0.80	ug/L		10/26/19 09:05	10/27/19 07:03	1
Bis(2-chloroethoxy)methane	0.59	U	10	0.59	ug/L		10/26/19 09:05	10/27/19 07:03	1
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		10/26/19 09:05	10/27/19 07:03	1
Naphthalene	4.6	J	10	1.1	ug/L		10/26/19 09:05	10/27/19 07:03	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/26/19 09:05	10/27/19 07:03	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/26/19 09:05	10/27/19 07:03	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/26/19 09:05	10/27/19 07:03	1
Hexachlorocyclopentadiene	3.6	U	10	3.6	ug/L		10/26/19 09:05	10/27/19 07:03	1
2-Chloronaphthalene	1.2	U	10		ug/L		10/26/19 09:05	10/27/19 07:03	1
2-Nitroaniline	0.47	U	10	0.47			10/26/19 09:05	10/27/19 07:03	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: C-2D Lab Sample ID: 460-194926-1

Date Collected: 10/25/19 08:40 Matrix: Water Date Received: 10/25/19 20:00

Method: 8270D - Semivolatile Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dimethyl phthalate	0.77	U	_	10	0.77	ug/L		10/26/19 09:05	10/27/19 07:03	
Acenaphthylene	0.82	U		10		ug/L		10/26/19 09:05	10/27/19 07:03	
2,6-Dinitrotoluene	0.83			2.0		ug/L		10/26/19 09:05	10/27/19 07:03	
3-Nitroaniline	1.9	U		10		ug/L		10/26/19 09:05	10/27/19 07:03	
Acenaphthene	1.1			10		ug/L		10/26/19 09:05	10/27/19 07:03	
Dibenzofuran	1.1	U		10	1.1			10/26/19 09:05	10/27/19 07:03	
2.4-Dinitrotoluene	1.0			2.0		•			10/27/19 07:03	
Diethyl phthalate	1.1			10		ug/L			10/27/19 07:03	
4-Chlorophenyl phenyl ether	1.3			10		ug/L		10/26/19 09:05	10/27/19 07:03	
Fluorene	0.91	_		10		ug/L			10/27/19 07:03	
4-Nitroaniline	1.2			10		ug/L			10/27/19 07:03	
N-Nitrosodiphenylamine	0.89			10		ug/L			10/27/19 07:03	
4-Bromophenyl phenyl ether	0.75			10		ug/L			10/27/19 07:03	
Phenanthrene	0.58			10		ug/L			10/27/19 07:03	
Anthracene	0.63			10		ug/L ug/L			10/27/19 07:03	
Carbazole	0.68			10		ug/L			10/27/19 07:03	
Di-n-butyl phthalate	0.84			10		_			10/27/19 07:03	
Fluoranthene	0.84			10		ug/L			10/27/19 07:03	
	1.6					ug/L				
Pyrene	0.85			10		ug/L			10/27/19 07:03	
Butyl benzyl phthalate				10		ug/L			10/27/19 07:03	
3,3'-Dichlorobenzidine	1.4			10		ug/L			10/27/19 07:03	
Chrysene	0.91			2.0		ug/L			10/27/19 07:03	1
Bis(2-ethylhexyl) phthalate	1.7			2.0		ug/L			10/27/19 07:03	•
Di-n-octyl phthalate	4.8			10		ug/L			10/27/19 07:03	•
Benzo[k]fluoranthene	0.67			1.0		ug/L			10/27/19 07:03	•
Indeno[1,2,3-cd]pyrene	0.94			2.0		ug/L			10/27/19 07:03	•
Dibenz(a,h)anthracene	0.72			1.0		ug/L			10/27/19 07:03	•
Benzo[g,h,i]perylene	1.4	U		10		ug/L			10/27/19 07:03	•
Diphenyl ether	14			10		ug/L			10/27/19 07:03	•
n,n'-Dimethylaniline	0.91			1.0		ug/L			10/27/19 07:03	•
Caprolactam	0.68			10		ug/L			10/27/19 07:03	1
bis (2-chloroisopropyl) ether	0.63	U		10		ug/L			10/27/19 07:03	1
Bisphenol-A	38			10	9.9	ug/L		10/26/19 09:05	10/27/19 07:03	1
N-Methylaniline	1.3	U		5.0	1.3	ug/L		10/26/19 09:05	10/27/19 07:03	•
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	7.1	J	ug/L		2.	.95		10/26/19 09:05	10/27/19 07:03	
Benzene, (1-methylethyl)-	9.5	JN	ug/L		3.	.73	98-82-8	10/26/19 09:05	10/27/19 07:03	•
Benzene, propyl-	11	JN	ug/L		3.	.99	103-65-1	10/26/19 09:05	10/27/19 07:03	1
Benzene, 1-ethyl-2-methyl-	16	JN	ug/L		4.	.04	611-14-3	10/26/19 09:05	10/27/19 07:03	
Benzene, 1-ethyl-3-methyl-	15	JN	ug/L		4.	.19	620-14-4	10/26/19 09:05	10/27/19 07:03	
2-Heptanone, 4,6-dimethyl-		JN	ug/L			.22		10/26/19 09:05		
Benzene, 1,2,3-trimethyl-		JN	ug/L			.32		10/26/19 09:05		
Benzene, 1,3,5-trimethyl-		JN	ug/L			.53		10/26/19 09:05		
Indane		JN	ug/L ug/L			.65		10/26/19 09:05		
Unknown	17		ug/L			.11			10/27/19 07:03	
Unknown	18		ug/L ug/L			.53			10/27/19 07:03	
Unknown	12		ug/L ug/L			.14			10/27/19 07:03	

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Lab Sample ID: 460-194926-1 Client Sample ID: C-2D

Date Collected: 10/25/19 08:40 Matrix: Water

Date Received: 10/25/19 20:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	86		51 - 108				10/26/19 09:05	10/27/19 07:03	1
Phenol-d5 (Surr)	30		14 - 39				10/26/19 09:05	10/27/19 07:03	1
Terphenyl-d14 (Surr)	86		40 - 148				10/26/19 09:05	10/27/19 07:03	1
2,4,6-Tribromophenol (Surr)	112		26 - 139				10/26/19 09:05	10/27/19 07:03	1
2-Fluorophenol (Surr)	44		25 - 58				10/26/19 09:05	10/27/19 07:03	1
2-Fluorobiphenyl (Surr)	81		45 - 107				10/26/19 09:05	10/27/19 07:03	1
Method: 6010D - Metals (IC	,					_			
Analyte	Result	Qualifier	RL 50.0	MDL 1.7		D	Prepared	Analyzed	Dil Fac
Analyte Cobalt, Dissolved	Result 11.4		50.0	1.7	ug/L	<u>D</u>	10/30/19 12:27	10/30/19 20:03	Dil Fac
Analyte	Result			1.7 34.2		<u>D</u>	<u> </u>		Dil Fac 1 1
Analyte Cobalt, Dissolved Iron, Dissolved	Result 11.4 31100		50.0 150	1.7 34.2	ug/L ug/L	<u>D</u>	10/30/19 12:27 10/30/19 12:27	10/30/19 20:03 10/30/19 20:03	1 1 1
Analyte Cobalt, Dissolved Iron, Dissolved Manganese, Dissolved	Result 11.4 31100 2170		50.0 150	1.7 34.2 0.99	ug/L ug/L	<u>D</u>	10/30/19 12:27 10/30/19 12:27	10/30/19 20:03 10/30/19 20:03	Dil Fac

Client Sample ID: TBGW_102519-B Lab Sample ID: 460-194926-2

Date Collected: 10/25/19 00:00

Date Received: 10/25/19 20:00

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,4-Dioxane	0.33	U	0.40	0.33	ug/L			10/26/19 15:57	1		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene	101		72 - 133			-		10/26/19 15:57			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/30/19 23:38	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/30/19 23:38	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/30/19 23:38	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/30/19 23:38	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/30/19 23:38	1
Acetone	7.7		5.0	4.4	ug/L			10/30/19 23:38	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/30/19 23:38	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/30/19 23:38	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/30/19 23:38	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/30/19 23:38	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/30/19 23:38	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/30/19 23:38	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/30/19 23:38	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/30/19 23:38	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/30/19 23:38	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/30/19 23:38	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/30/19 23:38	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/30/19 23:38	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/30/19 23:38	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/30/19 23:38	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/30/19 23:38	1

Eurofins TestAmerica, Edison

11/11/2019

Matrix: Water

Client: Golder Associates Inc.

Job ID: 460-194826-2 Project/Site: DS&G Semi-Annual Groundwater SDG: 194826-2

Client Sample ID: TBGW_102519-B

Lab Sample ID: 460-194926-2

Matrix: Water

Date Collected: 10/25/19 00:00 Date Received: 10/25/19 20:00

Analyte	Result	Qualifier	RL	MD	L Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	0.43	U	1.0	0.4	3 ug/L			10/30/19 23:38	1
Benzene	0.20	U	1.0	0.2	0 ug/L			10/30/19 23:38	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.4	9 ug/L			10/30/19 23:38	1
Bromoform	0.54	U	1.0	0.5	4 ug/L			10/30/19 23:38	1
4-Methyl-2-pentanone	1.3	U	5.0	1.	3 ug/L			10/30/19 23:38	1
2-Hexanone	1.1	U	5.0	1.	1 ug/L			10/30/19 23:38	1
Tetrachloroethene	0.25	U	1.0	0.2	5 ug/L			10/30/19 23:38	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.3	7 ug/L			10/30/19 23:38	1
Toluene	0.38	U	1.0	0.3	8 ug/L			10/30/19 23:38	1
Chlorobenzene	0.38	U	1.0	0.3	8 ug/L			10/30/19 23:38	1
Ethylbenzene	0.30	U	1.0	0.3	0 ug/L			10/30/19 23:38	1
Styrene	0.42	U	1.0	0.4	2 ug/L			10/30/19 23:38	1
Xylenes, Total	0.65	U	2.0	0.6	5 ug/L			10/30/19 23:38	1
Diethyl ether	0.21	U	1.0	0.2	1 ug/L			10/30/19 23:38	1
MTBE	0.47	U	1.0		7 ug/L			10/30/19 23:38	1
Tetrahydrofuran	1.0	U	2.0		0 ug/L			10/30/19 23:38	1
Cyclohexane	0.32	U	1.0		2 ug/L			10/30/19 23:38	1
1,2,4-Trimethylbenzene	0.37	U	1.0		7 ug/L			10/30/19 23:38	1
1,3,5-Trimethylbenzene	0.33	U	1.0		3 ug/L			10/30/19 23:38	1
Isopropylbenzene	0.34	U	1.0		4 ug/L			10/30/19 23:38	1
N-Propylbenzene	0.32	U	1.0	0.3	2 ug/L			10/30/19 23:38	1
Methylcyclohexane	0.26	U	1.0		6 ug/L			10/30/19 23:38	1
Indane	0.35	U	1.0	0.3	5 ug/L			10/30/19 23:38	1
Dichlorofluoromethane	0.34	U	1.0		4 ug/L			10/30/19 23:38	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.3	6 ug/L			10/30/19 23:38	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/30/19 23:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		74 - 132					10/30/19 23:38	1
Toluene-d8 (Surr)	96		80 - 120					10/30/19 23:38	1
4-Bromofluorobenzene	96		77 - 124					10/30/19 23:38	1
Dibromofluoromethane (Surr)	98		72 ₋ 131					10/30/19 23:38	1

Eurofins TestAmerica, Edison 11/11/2019

Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-01 Lab Sample ID: 460-195120-1

Date Collected: 10/28/19 13:35
Date Received: 10/28/19 20:20

Matrix: Water

Job ID: 460-195120-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.056	U –	0.10	0.056	mg/L		· · · · · · · · · · · · · · · · · · ·	10/29/19 14:08	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/29/19 14:08	1
Sulfate	20.2		0.60	0.35	mg/L			10/29/19 14:08	1
_ Method: 300.0 - Anions, Ion Chr	omatogra	phy - DL							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	39.1	Q	1.80	0.21	mg/L			10/29/19 15:53	15
- Method: 200.8 - Metals (ICP/MS)	- Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	19500		250	66.8	ug/L		10/31/19 21:00	11/01/19 16:22	5
Magnesium	5630		250	24.8	ug/L		10/31/19 21:00	11/01/19 16:22	5
Potassium	2490		250	73.5	ug/L		10/31/19 21:00	11/01/19 16:22	5
Calcium	14400		250	233	ug/L		10/31/19 21:00	11/01/19 16:22	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.15		0.10	0.034	mg/L			10/31/19 12:21	1
Bicarbonate Alkalinity as CaCO3	54.8		5.0	5.0	mg/L			10/30/19 19:48	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/30/19 19:48	1
Sulfide	0.58		1.0	0.58	mg/L			11/01/19 13:00	

Client Sample ID: DDA-05 Lab Sample ID: 460-195120-2

Date Collected: 10/28/19 10:35

Date Received: 10/28/19 20:20

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/29/19 14:23	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/29/19 14:23	1
Sulfate	12.2		0.60	0.35	mg/L			10/29/19 14:23	1

mediod. 300.0 - Allions, ion one	mawyrd	ipily - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	24.6	D	1.08	0.13	mg/L			10/29/19 16:07	9
Method: 200.8 - Metals (ICP/MS) -	Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

method. Zoo.o - metals (i	orinioj - Total Necoverable							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	19000	250	66.8	ug/L		10/31/19 21:00	11/01/19 16:24	5
Magnesium	7300	250	24.8	ug/L		10/31/19 21:00	11/01/19 16:24	5
Potassium	2410	250	73.5	ug/L		10/31/19 21:00	11/01/19 16:24	5
Calcium	10500	250	233	ug/L		10/31/19 21:00	11/01/19 16:24	5
Canal								

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	4.5		0.10	0.034	mg/L			10/31/19 11:34	1
Bicarbonate Alkalinity as CaCO3	90.6		5.0	5.0	mg/L			10/30/19 19:55	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/30/19 19:55	1
Sulfide	0.58	U	1.0	0.58	mg/L			11/01/19 13:00	1

Eurofins TestAmerica, Edison 11/18/2019

Client: Golder Associates Inc.

Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MHW-1D

Lab Sample ID: 460-195120-3

Matrix: Water

Date Collected: 10/28/19 10:30 Date Received: 10/28/19 20:20

Method: 8260C SIM - Vola									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	8.1		0.40	0.33	ug/L			10/31/19 06:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		72 - 133			-		10/31/19 06:29	1
Method: 8260C - Volatile (Organic Compo	unde hv G	C/MS						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/31/19 23:19	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/31/19 23:19	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/31/19 23:19	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/31/19 23:19	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/31/19 23:19	1
Acetone	4.4	U	5.0	4.4	ug/L			10/31/19 23:19	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/31/19 23:19	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/31/19 23:19	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/31/19 23:19	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/31/19 23:19	1
cis-1,2-Dichloroethene	0.22	U	1.0		ug/L			10/31/19 23:19	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/31/19 23:19	1
1,2-Dichloroethane	0.43	U	1.0		ug/L			10/31/19 23:19	1
2-Butanone (MEK)	1.9	U	5.0		ug/L			10/31/19 23:19	1
1,1,1-Trichloroethane	0.24	U	1.0		ug/L			10/31/19 23:19	1
Carbon tetrachloride	0.21	U	1.0		ug/L			10/31/19 23:19	1
Bromodichloromethane	0.34	U	1.0		ug/L			10/31/19 23:19	1
1,2-Dichloropropane	0.35	U	1.0		ug/L			10/31/19 23:19	1
cis-1,3-Dichloropropene	0.22	U	1.0		ug/L			10/31/19 23:19	1
Trichloroethene	0.31	U	1.0		ug/L			10/31/19 23:19	1
Dibromochloromethane	0.28	U	1.0		ug/L			10/31/19 23:19	1
1,1,2-Trichloroethane	0.43	U	1.0		ug/L			10/31/19 23:19	1
Benzene	0.20		1.0		ug/L			10/31/19 23:19	1
trans-1,3-Dichloropropene	0.49	U	1.0		ug/L			10/31/19 23:19	1
Bromoform	0.54		1.0		ug/L			10/31/19 23:19	1
4-Methyl-2-pentanone	1.3		5.0		ug/L			10/31/19 23:19	1
2-Hexanone	1.1		5.0		ug/L			10/31/19 23:19	1
Tetrachloroethene	0.25		1.0		ug/L			10/31/19 23:19	1
1,1,2,2-Tetrachloroethane	0.37		1.0		ug/L			10/31/19 23:19	1
Toluene	0.38		1.0		ug/L			10/31/19 23:19	1
Chlorobenzene	0.38		1.0		ug/L			10/31/19 23:19	1
Ethylbenzene	0.30		1.0		ug/L			10/31/19 23:19	1
Styrene	0.42		1.0		ug/L			10/31/19 23:19	1
Xylenes, Total	0.65		2.0		ug/L			10/31/19 23:19	1
Diethyl ether	0.21		1.0		ug/L			10/31/19 23:19	1
MTBE	0.47		1.0		ug/L			10/31/19 23:19	1
Tetrahydrofuran	1.0		2.0		ug/L			10/31/19 23:19	1
Cyclohexane	0.32		1.0		ug/L ug/L			10/31/19 23:19	1
1,2,4-Trimethylbenzene	0.32		1.0		ug/L ug/L			10/31/19 23:19	1
1,3,5-Trimethylbenzene	0.37		1.0		ug/L ug/L			10/31/19 23:19	1
	0.33		1.0					10/31/19 23:19	1
Isopropylbenzene N-Propylbenzene	0.34		1.0		ug/L			10/31/19 23:19	1
					ug/L				
Methylcyclohexane	0.26	U	1.0	0.∠6	ug/L			10/31/19 23:19	1

Eurofins TestAmerica, Edison

11/18/2019

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MHW-1D

Lab Sample ID: 460-195120-3 Date Collected: 10/28/19 10:30 Matrix: Water

Date Received: 10/28/19 20:20

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indane	0.35	U	1.0		0.35	ug/L			10/31/19 23:19	1
Dichlorofluoromethane	0.34	U	1.0		0.34	ug/L			10/31/19 23:19	1
1,2,3-Trimethylbenzene	0.36	U	1.0		0.36	ug/L			10/31/19 23:19	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	1	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				·		10/31/19 23:19	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		74 - 132						10/31/19 23:19	1
Toluene-d8 (Surr)	101		80 - 120						10/31/19 23:19	1
4-Bromofluorobenzene	103		77 - 124						10/31/19 23:19	1
Dibromofluoromethane (Surr)	110		72 - 131						10/31/19 23:19	

Method: 8270D SIM - Se	mivolatile Organi	c Compour	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/30/19 09:28	10/31/19 02:03	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/30/19 09:28	10/31/19 02:03	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/30/19 09:28	10/31/19 02:03	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/30/19 09:28	10/31/19 02:03	1
Pentachlorophenol	0.15	U	0.20	0.15	ug/L		10/30/19 09:28	10/31/19 02:03	1
Bis(2-chloroethyl)ether	0.13		0.030	0.026	ug/L		10/30/19 09:28	10/31/19 02:03	1

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/30/19 09:28	10/30/19 23:09	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/30/19 09:28	10/30/19 23:09	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/30/19 09:28	10/30/19 23:09	1
4-Methylphenol	0.65	U	10	0.65	ug/L		10/30/19 09:28	10/30/19 23:09	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/30/19 09:28	10/30/19 23:09	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/30/19 09:28	10/30/19 23:09	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/30/19 09:28	10/30/19 23:09	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/30/19 09:28	10/30/19 23:09	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/30/19 09:28	10/30/19 23:09	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/30/19 09:28	10/30/19 23:09	1
2,4-Dinitrophenol	14	U	20	14	ug/L		10/30/19 09:28	10/30/19 23:09	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/30/19 09:28	10/30/19 23:09	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/30/19 09:28	10/30/19 23:09	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/30/19 09:28	10/30/19 23:09	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/30/19 09:28	10/30/19 23:09	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/30/19 09:28	10/30/19 23:09	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/30/19 09:28	10/30/19 23:09	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/30/19 09:28	10/30/19 23:09	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/30/19 09:28	10/30/19 23:09	1
Isophorone	0.80	U	10	0.80	ug/L		10/30/19 09:28	10/30/19 23:09	1
Bis(2-chloroethoxy)methane	0.59	U	10	0.59	ug/L		10/30/19 09:28	10/30/19 23:09	1
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		10/30/19 09:28	10/30/19 23:09	1
Naphthalene	1.1	U	10	1.1	ug/L		10/30/19 09:28	10/30/19 23:09	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/30/19 09:28	10/30/19 23:09	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/30/19 09:28	10/30/19 23:09	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/30/19 09:28	10/30/19 23:09	1

Eurofins TestAmerica, Edison

Page 22 of 2072

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MHW-1D

Lab Sample ID: 460-195120-3 Date Collected: 10/28/19 10:30

Matrix: Water

Date Received: 10/28/19 20:20

Method: 8270D - Semivolatile Analyte		mpounds Qualifier) (GC/M5) (RL) Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	3.6		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
	1.2		10			-		10/30/19 09:28	10/30/19 23:09	1
2-Chloronaphthalene 2-Nitroaniline	0.47		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
	0.47		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
Dimethyl phthalate	0.77		10			ug/L ug/L		10/30/19 09:28		1
Acenaphthylene	0.83		2.0			-		10/30/19 09:28	10/30/19 23:09 10/30/19 23:09	1
2,6-Dinitrotoluene 3-Nitroaniline	1.9		2.0 10			ug/L		10/30/19 09:28	10/30/19 23:09	1
	1.1		10			ug/L ug/L		10/30/19 09:28		1
Acenaphthene Dibenzofuran	1.1		10		1.1			10/30/19 09:28	10/30/19 23:09 10/30/19 23:09	1
	1.0		2.0			ug/L				
2,4-Dinitrotoluene	0.98		2.0			ug/L		10/30/19 09:28	10/30/19 23:09	1
Diethyl phthalate						•		10/30/19 09:28	10/30/19 23:09	
4-Chlorophenyl phenyl ether	1.3		10 10			ug/L		10/30/19 09:28	10/30/19 23:09	1
Fluorene	0.91					ug/L		10/30/19 09:28	10/30/19 23:09	1
4-Nitroaniline	1.2		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
N-Nitrosodiphenylamine	0.89		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
4-Bromophenyl phenyl ether	0.75		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
Phenanthrene	0.58		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
Anthracene	0.63		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
Carbazole	0.68		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
Di-n-butyl phthalate	0.84		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
Fluoranthene	0.84		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
Pyrene	1.6		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
Butyl benzyl phthalate	0.85		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
3,3'-Dichlorobenzidine	1.4		10			ug/L		10/30/19 09:28	10/30/19 23:09	1
Chrysene	0.91		2.0			ug/L		10/30/19 09:28	10/30/19 23:09	1
Bis(2-ethylhexyl) phthalate	1.7		2.0			ug/L			10/30/19 23:09	1
Di-n-octyl phthalate	4.8		10			ug/L			10/30/19 23:09	1
Benzo[k]fluoranthene	0.67		1.0			ug/L			10/30/19 23:09	1
Indeno[1,2,3-cd]pyrene	0.94		2.0			ug/L			10/30/19 23:09	1
Dibenz(a,h)anthracene	0.72		1.0			ug/L			10/30/19 23:09	1
Benzo[g,h,i]perylene	1.4		10			ug/L			10/30/19 23:09	1
Diphenyl ether	1.2		10			ug/L			10/30/19 23:09	1
n,n'-Dimethylaniline	0.91	U	1.0	C		ug/L		10/30/19 09:28	10/30/19 23:09	1
Caprolactam	0.68		10						10/30/19 23:09	1
bis (2-chloroisopropyl) ether	0.63		10			ug/L		10/30/19 09:28		1
Bisphenol-A	9.9		10			ug/L		10/30/19 09:28		1
N-Methylaniline	1.3	U	5.0		1.3	ug/L		10/30/19 09:28	10/30/19 23:09	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/30/19 09:28	10/30/19 23:09	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	98		51 - 108					10/30/19 09:28	10/30/19 23:09	1
Phenol-d5 (Surr)	37		14 - 39					10/30/19 09:28	10/30/19 23:09	1
Terphenyl-d14 (Surr)	101		40 - 148					10/30/19 09:28	10/30/19 23:09	1
2,4,6-Tribromophenol (Surr)	98		26 - 139					10/30/19 09:28	10/30/19 23:09	1
2-Fluorophenol (Surr)	54		25 - 58					10/30/19 09:28	10/30/19 23:09	1
2-Fluorobiphenyl (Surr)	92		45 - 107					10/30/19 09:28	10/30/19 23:09	1

Eurofins TestAmerica, Edison 11/18/2019

Client: Golder Associates Inc.

Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: MHW-1D Lab Sample ID: 460-195120-3

Date Collected: 10/28/19 10:30 Matrix: Water

Date Received: 10/28/19 20:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.056	U	0.10	0.056	mg/L			10/29/19 14:38	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/29/19 14:38	1
Sulfate	19.1		0.60	0.35	mg/L			10/29/19 14:38	1
Method: 300.0 - Anions, Ion Chr	omatogra	phy - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	36.5	D	1.68	0.20	mg/L			10/29/19 16:52	14
Method: 200.8 - Metals (ICP/MS)	- Total R	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	4860		50.0	13.4	ug/L		10/31/19 21:00	11/01/19 16:27	1
Magnesium	1390		50.0	5.0	ug/L		10/31/19 21:00	11/01/19 16:27	1
Potassium	671		50.0	14.7	ug/L		10/31/19 21:00	11/01/19 16:27	1
Calcium	2710		50.0	46.6	ug/L		10/31/19 21:00	11/01/19 16:27	1
Method: 6010D - Metals (ICP) - [Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	79.4		50.0	1.7	ug/L		11/01/19 09:25	11/01/19 20:24	1
Iron, Dissolved	20100		150	34.2	ug/L		11/01/19 09:25	11/01/19 20:24	1
Manganese, Dissolved	3210		15.0	0.99	ug/L		11/01/19 09:25	11/01/19 20:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.21		0.10	0.034	mg/L			10/31/19 12:12	1
Bicarbonate Alkalinity as CaCO3	74.4		5.0	5.0	mg/L			10/30/19 20:03	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			10/30/19 20:03	1
Sulfide	0.58	11	1.0	0.58	mg/L			11/01/19 13:00	1

Client Sample ID: TBGW_102819

Date Collected: 10/28/19 00:00

Date Received: 10/28/19 20:20

Lab	Sample	W:	460-195120-4
			3 8 3 8 5

Matrix: Water

Analyte	Result	Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.33	U	0.40	0.33	ug/L			10/31/19 02:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		72 - 133			-		10/31/19 02:41	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			10/31/19 22:07	1
Bromomethane	0.55	U	1.0	0.55	ug/L			10/31/19 22:07	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			10/31/19 22:07	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/31/19 22:07	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/31/19 22:07	1
Acetone	8.6		5.0	4.4	ug/L			10/31/19 22:07	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			10/31/19 22:07	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			10/31/19 22:07	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/31/19 22:07	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ua/L			10/31/19 22:07	1

Eurofins TestAmerica, Edison

11/18/2019

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_102819

Lab Sample ID: 460-195120-4

Matrix: Water

Date Collected: 10/28/19 00:00 Date Received: 10/28/19 20:20

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			10/31/19 22:07	
Chloroform	0.33	U	1.0	0.33	ug/L			10/31/19 22:07	•
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			10/31/19 22:07	
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			10/31/19 22:07	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/31/19 22:07	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/31/19 22:07	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/31/19 22:07	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/31/19 22:07	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/31/19 22:07	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/31/19 22:07	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			10/31/19 22:07	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			10/31/19 22:07	1
Benzene	0.20	U	1.0	0.20	ug/L			10/31/19 22:07	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			10/31/19 22:07	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/31/19 22:07	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			10/31/19 22:07	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			10/31/19 22:07	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/31/19 22:07	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/31/19 22:07	1
Toluene	0.38	U	1.0	0.38	ug/L			10/31/19 22:07	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/31/19 22:07	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/31/19 22:07	1
Styrene	0.42	U	1.0	0.42	ug/L			10/31/19 22:07	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			10/31/19 22:07	1
Diethyl ether	0.21	U	1.0	0.21	ug/L			10/31/19 22:07	1
MTBE	0.47	U	1.0	0.47	ug/L			10/31/19 22:07	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			10/31/19 22:07	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			10/31/19 22:07	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			10/31/19 22:07	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			10/31/19 22:07	1
Isopropylbenzene	0.34	U	1.0		ug/L			10/31/19 22:07	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			10/31/19 22:07	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			10/31/19 22:07	1
Indane	0.35	U	1.0		ug/L			10/31/19 22:07	1
Dichlorofluoromethane	0.34	U	1.0		ug/L			10/31/19 22:07	1
1,2,3-Trimethylbenzene	0.36		1.0		ug/L			10/31/19 22:07	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L			-		10/31/19 22:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		74 - 132					10/31/19 22:07	
Toluene-d8 (Surr)	99		80 - 120					10/31/19 22:07	7
4-Bromofluorobenzene	102		77 - 124					10/31/19 22:07	1

Eurofins TestAmerica, Edison 11/18/2019

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Method: 8260C SIM - Volatile Organic Compounds (GC/MS)

Client Sample ID: DDA-20-US

Lab Sample ID: 460-195187-1 Date Collected: 10/29/19 14:20

Matrix: Water

Date Received: 10/29/19 20:35

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	5.8		0.40	0.33	ug/L			11/01/19 09:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	89		72 - 133					11/01/19 09:10	1
Method: 8260C - Volatile On Analyte		unds by G Qualifier	C/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40		1.0	0.40			rrepared	11/02/19 08:47	1
Bromomethane	0.55		1.0	0.55	-			11/02/19 08:47	1
Vinyl chloride	0.17		1.0	0.17				11/02/19 08:47	1
Chloroethane	0.32		1.0	0.32	-			11/02/19 08:47	
Methylene Chloride	0.32		1.0		ug/L			11/02/19 08:47	. 1
Acetone	4.4		5.0		ug/L			11/02/19 08:47	1
Carbon disulfide	0.82		1.0		ug/L			11/02/19 08:47	
1,1-Dichloroethene	0.26		1.0		ug/L			11/02/19 08:47	1
1,1-Dichloroethane		U F4	1.0	0.26				11/02/19 08:47	1
trans-1,2-Dichloroethene	0.24		1.0	0.24				11/02/19 08:47	
cis-1,2-Dichloroethene	0.22		1.0	0.22	-			11/02/19 08:47	1
Chloroform	0.33		1.0	0.33	-			11/02/19 08:47	1
1,2-Dichloroethane	1.4		1.0		ug/L			11/02/19 08:47	
2-Butanone (MEK)	1.9	11	5.0		ug/L			11/02/19 08:47	1
1,1,1-Trichloroethane	0.24		1.0	0.24	-			11/02/19 08:47	1
Carbon tetrachloride	0.21		1.0	0.21	-			11/02/19 08:47	
Bromodichloromethane	0.34		1.0	0.34				11/02/19 08:47	1
1,2-Dichloropropane		U F 4	1.0	0.35	-			11/02/19 08:47	1
cis-1,3-Dichloropropene	0.22		1.0	0.22	-			11/02/19 08:47	
Trichloroethene	0.31		1.0	0.31				11/02/19 08:47	1
Dibromochloromethane	0.28		1.0	0.28	-			11/02/19 08:47	1
1,1,2-Trichloroethane	0.43		1.0	0.43	-			11/02/19 08:47	
Benzene		J F4	1.0		ug/L			11/02/19 08:47	1
trans-1,3-Dichloropropene	0.49		1.0	0.49	-			11/02/19 08:47	1
Bromoform	0.54		1.0		ug/L			11/02/19 08:47	
4-Methyl-2-pentanone	1.3		5.0		ug/L			11/02/19 08:47	1
2-Hexanone	1.1		5.0		ug/L			11/02/19 08:47	1
Tetrachloroethene	0.25		1.0	0.25	_			11/02/19 08:47	1
1,1,2,2-Tetrachloroethane		U F4	1.0	0.37	_			11/02/19 08:47	1
Toluene	0.38		1.0	0.38	-			11/02/19 08:47	1
Chlorobenzene	0.38		1.0		ug/L			11/02/19 08:47	1
Ethylbenzene	0.30		1.0		ug/L			11/02/19 08:47	1
Styrene	0.42		1.0		ug/L			11/02/19 08:47	1
Xylenes, Total	0.65		2.0		ug/L			11/02/19 08:47	1
Diethyl ether	0.21		1.0		ug/L			11/02/19 08:47	1
MTBE	0.85		1.0		ug/L			11/02/19 08:47	1
Tetrahydrofuran	1.0		2.0		ug/L ug/L			11/02/19 08:47	1
Cyclohexane	0.32		1.0		ug/L			11/02/19 08:47	1
1,2,4-Trimethylbenzene	0.52		1.0		ug/L ug/L			11/02/19 08:47	1
1,3,5-Trimethylbenzene	0.33		1.0		ug/L ug/L			11/02/19 08:47	1
Isopropylbenzene	0.33		1.0		ug/L ug/L			11/02/19 08:47	1
N-Propylbenzene		U F1	1.0		ug/L ug/L			11/02/19 08:47	1
Methylcyclohexane	0.32	O 1Y	1.0	0.02	ug/L ug/L			11102/13 00.47	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-20-US

Lab Sample ID: 460-195187-1

Date Collected: 10/29/19 14:20 Matrix: Water Date Received: 10/29/19 20:35

Analyte	Result	Qualifier	RL	M	DL	Unit	D	Prepared	Analyzed	Dil Fac
Indane	0.35	U	1.0	0	.35	ug/L			11/02/19 08:47	1
Dichlorofluoromethane	0.34	U	1.0	0	.34	ug/L			11/02/19 08:47	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0	.36	ug/L			11/02/19 08:47	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/02/19 08:47	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		74 - 132						11/02/19 08:47	1
Toluene-d8 (Surr)	101		80 - 120						11/02/19 08:47	1
4-Bromofluorobenzene	96		77 - 124						11/02/19 08:47	1
Dibromofluoromethane (Surr)	97		72 - 131						11/02/19 08:47	1

Method: 8270D SIM - Semiv	olatile Organic	: Compoun	ids (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	₩ UJ	0.050	0.016	ug/L		10/31/19 09:32	10/31/19 23:26	1
Benzo[a]pyrene	0.022	A M	0.050	0.022	ug/L		10/31/19 09:32	10/31/19 23:26	1
Benzo[b]fluoranthene	0.024	₩ UJ	0.050	0.024	ug/L		10/31/19 09:32	10/31/19 23:26	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/31/19 09:32	10/31/19 23:26	1
Pentachlorophenol	0.15	U≛ UJ	0.20	0.15	ug/L		10/31/19 09:32	10/31/19 23:26	1
Bis(2-chloroethyl)ether	0.83	JJ	0.030	0.026	ug/L		10/31/19 09:32	10/31/19 23:26	1

Method: 8270D - Semivolatil Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U-F1-F2 R	10	0.29	ug/L		10/31/19 09:32	10/31/19 22:05	1
2-Chlorophenol	0.38	U-F1-F2UJ	10	0.38	ug/L		10/31/19 09:32	10/31/19 22:05	1
2-Methylphenol	0.67	U-F1-F2 UJ	10	0.67	ug/L		10/31/19 09:32	10/31/19 22:05	1
4-Methylphenol	0.65	U-F1-F2UJ	10	0.65	ug/L		10/31/19 09:32	10/31/19 22:05	1
2-Nitrophenol	0.75	U-F1-F2 UJ	10	0.75	ug/L		10/31/19 09:32	10/31/19 22:05	1
2,4-Dimethylphenol	0.62	U-F1-F2 UJ	10	0.62	ug/L		10/31/19 09:32	10/31/19 22:05	1
2,4-Dichlorophenol	1.1	U F1-F2	10	1.1	ug/L		10/31/19 09:32	10/31/19 22:05	1
4-Chloro-3-methylphenol	0.58	U-F1-F2 UJ	10	0.58	ug/L		10/31/19 09:32	10/31/19 22:05	1
2,4,6-Trichlorophenol	0.86	U-F1-F2 UJ	10	0.86	ug/L		10/31/19 09:32	10/31/19 22:05	1
2,4,5-Trichlorophenol	0.88	U-F1-F2 UJ	10	0.88	ug/L		10/31/19 09:32	10/31/19 22:05	1
2,4-Dinitrophenol	14	U*F1 R	20	14	ug/L		10/31/19 09:32	10/31/19 22:05	1
4-Nitrophenol	4.0	U-F1-F2 R	20	4.0	ug/L		10/31/19 09:32	10/31/19 22:05	1
4,6-Dinitro-2-methylphenol	13	U-F1-F2 UJ	20	13	ug/L		10/31/19 09:32	10/31/19 22:05	1
1,3-Dichlorobenzene	2.0	U F2	10	2.0	ug/L		10/31/19 09:32	10/31/19 22:05	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/31/19 09:32	10/31/19 22:05	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/31/19 09:32	10/31/19 22:05	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/31/19 09:32	10/31/19 22:05	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/31/19 09:32	10/31/19 22:05	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/31/19 09:32	10/31/19 22:05	1
Isophorone	0.80	U	10	0.80	ug/L		10/31/19 09:32	10/31/19 22:05	1
Bis(2-chloroethoxy)methane	0.59	U-F1 UJ	10	0.59	ug/L		10/31/19 09:32	10/31/19 22:05	1
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		10/31/19 09:32	10/31/19 22:05	1
Naphthalene	1.1	U	10	1.1	ug/L		10/31/19 09:32	10/31/19 22:05	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/31/19 09:32	10/31/19 22:05	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/31/19 09:32	10/31/19 22:05	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/31/19 09:32	10/31/19 22:05	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-20-US

Date Received: 10/29/19 20:35

Lab Sample ID: 460-195187-1 Date Collected: 10/29/19 14:20

Matrix: Water

Method: 8270D - Semivolatile Analyte		Qualifier	RL			, Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene		U F2	10			ug/L		-	10/31/19 22:05	1
2-Chloronaphthalene	1.2		10			ug/L		10/31/19 09:32	10/31/19 22:05	1
2-Nitroaniline		U F2	10			-		10/31/19 09:32	10/31/19 22:05	1
Dimethyl phthalate	0.77	U	10		0.77				10/31/19 22:05	1
Acenaphthylene	0.82		10			ug/L			10/31/19 22:05	1
2,6-Dinitrotoluene	0.83	U	2.0			ug/L			10/31/19 22:05	1
3-Nitroaniline	1.9	U	10			ug/L			10/31/19 22:05	1
Acenaphthene	1.1	U F2	10		1.1	ug/L			10/31/19 22:05	
Dibenzofuran	1.1		10		1.1	ug/L			10/31/19 22:05	1
2.4-Dinitrotoluene		U F2	2.0		1.0	ug/L			10/31/19 22:05	1
Diethyl phthalate	0.98	U	10			ug/L			10/31/19 22:05	
4-Chlorophenyl phenyl ether	1.3		10		1.3	ug/L			10/31/19 22:05	1
Fluorene	0.91		10		0.91	-			10/31/19 22:05	1
4-Nitroaniline	1.2		10			ug/L			10/31/19 22:05	1
N-Nitrosodiphenylamine		U-F4∪J	10			ug/L			10/31/19 22:05	. 1
4-Bromophenyl phenyl ether	0.75		10			ug/L			10/31/19 22:05	. 1
Phenanthrene		U-F1 UJ	10			ug/L			10/31/19 22:05	1
Anthracene		U-F1 UJ	10			ug/L			10/31/19 22:05	1
Carbazole	0.68		10			ug/L			10/31/19 22:05	1
Di-n-butyl phthalate	0.84		10			ug/L			10/31/19 22:05	1
Fluoranthene	0.84		10			ug/L			10/31/19 22:05	1
Pyrene	1.6		10			ug/L			10/31/19 22:05	1
Butyl benzyl phthalate	0.85		10			ug/L			10/31/19 22:05	1
3,3'-Dichlorobenzidine	1.4		10		1.4	-			10/31/19 22:05	1
Chrysene	0.91		2.0		0.91	ug/L			10/31/19 22:05	1
Bis(2-ethylhexyl) phthalate	1.7		2.0		1.7	ug/L			10/31/19 22:05	1
Di-n-octyl phthalate		U-F1UJ	10		4.8	ug/L			10/31/19 22:05	1
Benzo[k]fluoranthene		U-F1UJ	1.0			ug/L			10/31/19 22:05	1
Indeno[1,2,3-cd]pyrene	0.94		2.0			ug/L			10/31/19 22:05	1
Dibenz(a,h)anthracene	0.72		1.0			ug/L			10/31/19 22:05	. 1
Benzo[g,h,i]perylene	1.4		10			ug/L			10/31/19 22:05	. 1
Diphenyl ether	1.2		10			ug/L			10/31/19 22:05	· · · · · · · · · · · · · · · · · · ·
n,n'-Dimethylaniline	0.91		1.0			ug/L			10/31/19 22:05	1
Caprolactam	0.68		10			ug/L			10/31/19 22:05	. 1
bis (2-chloroisopropyl) ether	0.63		10			ug/L			10/31/19 22:05	· · · · · · · · · · · · · · · · · · ·
Bisphenol-A		U-F1 R	10			ug/L			10/31/19 22:05	1
N-Methylaniline		U-F1UJ	5.0			ug/L			10/31/19 22:05	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	i	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					10/31/19 09:32	10/31/19 22:05	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	82	_	51 - 108					10/31/19 09:32	10/31/19 22:05	1
Phenol-d5 (Surr)	26		14 - 39						10/31/19 22:05	1
Terphenyl-d14 (Surr)	53		40 - 148					10/31/19 09:32	10/31/19 22:05	1
2,4,6-Tribromophenol (Surr)	85		26 - 139					10/31/19 09:32	10/31/19 22:05	1
2-Fluorophenol (Surr)	41		25 - 58					10/31/19 09:32	10/31/19 22:05	1
2-Fluorobiphenyl (Surr)	74		45 - 107					10/31/19 09:32	10/31/19 22:05	1

Eurofins TestAmerica, Edison 11/18/2019

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Lab Sample ID: 460-195187-1 Client Sample ID: DDA-20-US Date Collected: 10/29/19 14:20

Matrix: Water

Date Received: 10/29/19 20:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	63.9	F1 R	3.00	0.35	mg/L			10/31/19 05:22	25
Nitrate as N	0.37		0.10	0.056	mg/L			10/30/19 18:21	1
Nitrite as N	0.076	U-F1UJ	0.12	0.076	mg/L			10/30/19 18:21	1
Sulfate	17.8	F1 J-	0.60	0.35	mg/L			10/30/19 18:21	1
- Method: 200.8 - Metals (ICP/MS)	- Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	24200		250	66.8	ug/L		10/31/19 21:00	11/01/19 15:34	5
Magnesium	6440		250	24.8	ug/L		10/31/19 21:00	11/01/19 15:34	5
Potassium	1940		250	73.5	ug/L		10/31/19 21:00	11/01/19 15:34	5
Calcium	17100		250	233	ug/L		10/31/19 21:00	11/01/19 15:34	5
: Method: 6010D - Metals (ICP) - I	Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	17.3		50.0	1.7	ug/L		11/01/19 09:25	11/01/19 20:08	1
Iron, Dissolved	7810		150	34.2	ug/L		11/01/19 09:25	11/01/19 20:08	1
Manganese, Dissolved	309		15.0	0.99	ug/L		11/01/19 09:25	11/01/19 20:08	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			11/01/19 10:49	1
	25.2		5.0	5.0	mg/L			11/01/19 12:24	1
Bicarbonate Alkalinity as CaCO3									
Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			11/01/19 12:24	1

Client Sample ID: DDA-20-TZ

Date Collected: 10/29/19 14:50

Date Received: 10/29/19 20:35

Lab Sample ID: 460-195187-2

Matrix: Water

Method: 8260C SIM - Volatile (Organic Compound	ds (GC/MS)					
Analyte	Result Qualifie	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	50	0.40	0.33 ug/L			10/31/19 22:35	1
Surrogate	%Recovery Qualifie				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99	72 - 133				10/31/19 22:35	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			11/02/19 09:05	1
Bromomethane	0.55	U	1.0	0.55	ug/L			11/02/19 09:05	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			11/02/19 09:05	1
Chloroethane	0.32	U	1.0	0.32	ug/L			11/02/19 09:05	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			11/02/19 09:05	1
Acetone	4.4	U	5.0	4.4	ug/L			11/02/19 09:05	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			11/02/19 09:05	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			11/02/19 09:05	1
1,1-Dichloroethane	0.29	J	1.0	0.26	ug/L			11/02/19 09:05	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			11/02/19 09:05	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			11/02/19 09:05	1
Chloroform	0.33	U	1.0	0.33	ug/L			11/02/19 09:05	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			11/02/19 09:05	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-20-TZ

Date Received: 10/29/19 20:35

Lab Sample ID: 460-195187-2 Date Collected: 10/29/19 14:50

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			11/02/19 09:05	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	l ug/L			11/02/19 09:05	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			11/02/19 09:05	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			11/02/19 09:05	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			11/02/19 09:05	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	2 ug/L			11/02/19 09:05	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			11/02/19 09:05	1
Dibromochloromethane	0.28	U	1.0	0.28	3 ug/L			11/02/19 09:05	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			11/02/19 09:05	1
Benzene	30		1.0	0.20	ug/L			11/02/19 09:05	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			11/02/19 09:05	1
Bromoform	0.54	U	1.0	0.54	ug/L			11/02/19 09:05	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	3 ug/L			11/02/19 09:05	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			11/02/19 09:05	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			11/02/19 09:05	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			11/02/19 09:05	1
Toluene	0.55	J	1.0	0.38	3 ug/L			11/02/19 09:05	1
Chlorobenzene	0.58	J	1.0	0.38	ug/L			11/02/19 09:05	1
Ethylbenzene	17		1.0	0.30	ug/L			11/02/19 09:05	1
Styrene	0.42	U	1.0	0.42	2 ug/L			11/02/19 09:05	1
Xylenes, Total	30		2.0	0.65	ug/L			11/02/19 09:05	1
Diethyl ether	0.76	J	1.0	0.21	ug/L			11/02/19 09:05	1
MTBE	0.47	U	1.0	0.47	ug/L			11/02/19 09:05	1
Tetrahydrofuran	15		2.0	1.0	ug/L			11/02/19 09:05	1
Cyclohexane	0.32	U	1.0	0.32	2 ug/L			11/02/19 09:05	1
1,2,4-Trimethylbenzene	21		1.0	0.37	ug/L			11/02/19 09:05	1
1,3,5-Trimethylbenzene	2.0		1.0	0.33	ug/L			11/02/19 09:05	1
Isopropylbenzene	4.5		1.0	0.34	ug/L			11/02/19 09:05	1
N-Propylbenzene	4.5		1.0	0.32	2 ug/L			11/02/19 09:05	1
Methylcyclohexane	2.8		1.0	0.26	ug/L			11/02/19 09:05	1
Indane	4.6		1.0	0.35	ug/L			11/02/19 09:05	1
Dichlorofluoromethane	3.7		1.0	0.34	ug/L			11/02/19 09:05	1
1,2,3-Trimethylbenzene	2.7		1.0	0.36	ug/L			11/02/19 09:05	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Benzene, 1-ethyl-4-methyl-	6.0	JN	ug/L	10	0.09	622-96-8		11/02/19 09:05	1
Benzene, 1-ethyl-2-methyl-	5.3	JN	ug/L	10	0.37	611-14-3		11/02/19 09:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		74 - 132			-		11/02/19 09:05	1
Toluene-d8 (Surr)	100		80 - 120					11/02/19 09:05	1
4-Bromofluorobenzene	97		77 - 124					11/02/19 09:05	1
Dibromofluoromethane (Surr)	96		72 - 131					11/02/19 09:05	1

Method: 8270D SIM - Semivo	latile Organic	Compour	ids (GC/MS	SIM)					
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016 L	J	0.050	0.016	ug/L		10/31/19 09:32	10/31/19 23:47	1
Benzo[a]pyrene	0.022 L	J	0.050	0.022	ug/L		10/31/19 09:32	10/31/19 23:47	1
Benzo[b]fluoranthene	0.024 L	J	0.050	0.024	ug/L		10/31/19 09:32	10/31/19 23:47	1
Hexachlorobenzene	0.013 L	J	0.020	0.013	ug/L		10/31/19 09:32	10/31/19 23:47	1

Eurofins TestAmerica, Edison

Job ID: 460-195120-1 Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-20-TZ

Date Received: 10/29/19 20:35

Lab Sample ID: 460-195187-2 Date Collected: 10/29/19 14:50

Matrix: Water

Method: 8270D SIM - Semivola	itile Organi	c Compou	ınds (GC/MS	SIM) (Co	ontinued)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/31/19 09:32	10/31/19 23:47	

Pentachlorophenol	0.15	U ±	0.20	0.15	ug/L		10/31/19 09:32	10/31/19 23:47	-
Method: 8270D - Semivolatil	a Organic Co	nnounde i	CC/MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Phenol	0.29	U	10	0.29	ug/L		10/31/19 09:32	11/01/19 00:10	
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/31/19 09:32	11/01/19 00:10	
2-Methylphenol	0.67	U	10	0.67	ug/L		10/31/19 09:32	11/01/19 00:10	
4-Methylphenol	0.65	U	10	0.65	ug/L		10/31/19 09:32	11/01/19 00:10	
2-Nitrophenol	0.75	U	10		ug/L		10/31/19 09:32	11/01/19 00:10	
2,4-Dimethylphenol	0.62	U	10	0.62			10/31/19 09:32	11/01/19 00:10	
2,4-Dichlorophenol	1.1	U	10	1.1			10/31/19 09:32	11/01/19 00:10	
4-Chloro-3-methylphenol	0.58	U	10	0.58	-		10/31/19 09:32	11/01/19 00:10	
2,4,6-Trichlorophenol	0.86		10	0.86				11/01/19 00:10	
2,4,5-Trichlorophenol	0.88		10		ug/L			11/01/19 00:10	
2,4-Dinitrophenol	14		20					11/01/19 00:10	
4-Nitrophenol	4.0		20		ug/L			11/01/19 00:10	
4,6-Dinitro-2-methylphenol	13		20		ug/L			11/01/19 00:10	
Bis(2-chloroethyl)ether	8.7	~	1.0	0.63				11/01/19 00:10	
1,3-Dichlorobenzene	2.0	П	10		ug/L			11/01/19 00:10	
1.4-Dichlorobenzene	1.3		10		ug/L			11/01/19 00:10	
1,2-Dichlorobenzene	1.3		10					11/01/19 00:10	
	0.43		1.0	0.43	-			11/01/19 00:10	
N-Nitrosodi-n-propylamine					_				
Hexachloroethane	0.80		2.0		•			11/01/19 00:10	
Nitrobenzene	0.57		1.0		ug/L			11/01/19 00:10	
Isophorone	0.80		10	0.80	ug/L			11/01/19 00:10	
Bis(2-chloroethoxy)methane	0.59		10		ug/L			11/01/19 00:10	
1,2,4-Trichlorobenzene	0.64		2.0	0.64	•			11/01/19 00:10	
Naphthalene	1.1		10	1.1	ug/L			11/01/19 00:10	
4-Chloroaniline	1.9		10	1.9	ug/L			11/01/19 00:10	
Hexachlorobutadiene	0.78		1.0	0.78	ug/L			11/01/19 00:10	
2-Methylnaphthalene	1.1		10	1.1	ug/L			11/01/19 00:10	
Hexachlorocyclopentadiene	3.6		10		ug/L			11/01/19 00:10	
2-Chloronaphthalene	1.2		10		_			11/01/19 00:10	
2-Nitroaniline	0.47		10	0.47	ug/L		10/31/19 09:32	11/01/19 00:10	
Dimethyl phthalate	0.77		10	0.77	-			11/01/19 00:10	
Acenaphthylene	0.82		10	0.82	ug/L			11/01/19 00:10	
2,6-Dinitrotoluene	0.83		2.0	0.83	-			11/01/19 00:10	
3-Nitroaniline	1.9	U	10	1.9	ug/L		10/31/19 09:32	11/01/19 00:10	
Acenaphthene	1.1	U	10	1.1	ug/L		10/31/19 09:32	11/01/19 00:10	
Dibenzofuran	1.1	U	10	1.1	ug/L		10/31/19 09:32	11/01/19 00:10	
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/31/19 09:32	11/01/19 00:10	
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/31/19 09:32	11/01/19 00:10	
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/31/19 09:32	11/01/19 00:10	
Fluorene	0.91	U	10	0.91	ug/L		10/31/19 09:32	11/01/19 00:10	
4-Nitroaniline	1.2	U	10	1.2	ug/L		10/31/19 09:32	11/01/19 00:10	
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/31/19 09:32	11/01/19 00:10	
4-Bromophenyl phenyl ether	0.75	U	10		ug/L		10/31/19 09:32	11/01/19 00:10	
Phenanthrene	0.58	U	10		ug/L		10/31/19 09:32	11/01/19 00:10	
Anthracene	0.63	U	10		ug/L		10/31/19 09:32	11/01/19 00:10	
Carbazole	0.68		10		ug/L			11/01/19 00:10	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-20-TZ

Date Received: 10/29/19 20:35

Lab Sample ID: 460-195187-2 Date Collected: 10/29/19 14:50

Matrix: Water

Method: 8270D - Semivolatile						_	Dronavad	Anabasad	Dit C-
Analyte	0.84	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Di-n-butyl phthalate		_	10		ug/L			11/01/19 00:10	
Fluoranthene	0.84		10		ug/L			11/01/19 00:10	
Pyrene	1.6		10		ug/L			11/01/19 00:10	
Butyl benzyl phthalate	0.85		10		ug/L			11/01/19 00:10	
3,3'-Dichlorobenzidine	1.4		10		ug/L			11/01/19 00:10	
Chrysene	0.91		2.0		ug/L			11/01/19 00:10	,
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L			11/01/19 00:10	
Di-n-octyl phthalate	4.8		10		ug/L			11/01/19 00:10	
Benzo[k]fluoranthene	0.67		1.0		ug/L			11/01/19 00:10	
Indeno[1,2,3-cd]pyrene	0.94		2.0	0.94	ug/L			11/01/19 00:10	
Dibenz(a,h)anthracene	0.72	U	1.0		ug/L		10/31/19 09:32	11/01/19 00:10	
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		10/31/19 09:32	11/01/19 00:10	
Diphenyl ether	1.2	U	10	1.2	ug/L		10/31/19 09:32	11/01/19 00:10	
n,n'-Dimethylaniline	1.8		1.0	0.91	ug/L		10/31/19 09:32	11/01/19 00:10	
Caprolactam	0.68	U	10	0.68	ug/L		10/31/19 09:32	11/01/19 00:10	
bis (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/31/19 09:32	11/01/19 00:10	
Bisphenol-A	9.9	U	10	9.9	ug/L		10/31/19 09:32	11/01/19 00:10	
N-Methylaniline	1.3	U	5.0	1.3	ug/L		10/31/19 09:32	11/01/19 00:10	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Benzene, 1,2,3-trimethyl-		JN	ug/L		.25	526-73-8		11/01/19 00:10	
2-Isopropoxyphenol		JN	ug/L	5	i.48	4812-20-8	10/31/19 09:32	11/01/19 00:10	
1,3,5-Triazine-2,4,6(1H,3H,5H)		JN	ug/L		6.62	827-16-7	10/31/19 09:32	11/01/19 00:10	
-trione, 1,3,5-trimethyl- Unknown	30	J	ug/L	7	7.05		10/31/19 09:32	11/01/19 00:10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	80		51 - 108				10/31/19 09:32	11/01/19 00:10	
Phenol-d5 (Surr)	25		14 - 39				10/31/19 09:32	11/01/19 00:10	
Terphenyl-d14 (Surr)	47		40 - 148				10/31/19 09:32	11/01/19 00:10	
2,4,6-Tribromophenol (Surr)	100		26 - 139				10/31/19 09:32	11/01/19 00:10	
2-Fluorophenol (Surr)	37		25 - 58				10/31/19 09:32	11/01/19 00:10	
2-Fluorobiphenyl (Surr)	71		45 - 107				10/31/19 09:32	11/01/19 00:10	
Method: 300.0 - Anions, Ion C	:hromatogra	inhv							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	69.7		3.12	0.36	mg/L			10/31/19 15:20	20
Nitrate as N	0.056	U	0.10		mg/L			10/30/19 20:16	
Nitrite as N	0.076		0.12		mg/L			10/30/19 20:16	
Sulfate	1.96		0.60		mg/L			10/30/19 20:16	
· Method: 200.8 - Metals (ICP/N	AS) Tatal D	ocovorsh	lo.						
Metriou. 200.0 - Metais (ICP/N Analyte		ecoverabi Qualifier	le RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Sodium	31200		250		ug/L		-	11/01/19 16:29	
Magnesium	7700		250		ug/L			11/01/19 16:29	,
Potassium	2630		250		ug/L			11/01/19 16:29	;
Calcium	12300		250		ug/L			11/01/19 16:29	
					J. –				
Method: 6010D - Metals (ICP)			_				_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Cobalt, Dissolved	35.1		50.0	17	ug/L		11/01/10 00:25	11/01/19 21:00	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Method: 6010D - Metals (ICP) - Dissolved (Continued)

Lab Sample ID: 460-195187-2 Client Sample ID: DDA-20-TZ

Date Collected: 10/29/19 14:50 Matrix: Water

Date Received: 10/29/19 20:35

modification includes (101)	micronia ca (o o i i cii i ca o o	7							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Iron, Dissolved	44600		150	34.2	ug/L		11/01/19 09:25	11/01/19 21:00	1	
Manganese, Dissolved	424		15.0	0.99	ug/L		11/01/19 09:25	11/01/19 21:00	1	
General Chemistry Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	

wonton an whommon y									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	2.2	8	0.10	0.068	mg/L			11/01/19 10:55	1
Bicarbonate Alkalinity as CaCO3	49.4		5.0	5.0	mg/L			11/01/19 12:38	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			11/01/19 12:38	1
Sulfide	0.58	U	1.0	0.58	mg/L			11/01/19 13:00	1
	Analyte Ammonia (as N) Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3	AnalyteResultAmmonia (as N)2.2Bicarbonate Alkalinity as CaCO349.4Carbonate Alkalinity as CaCO35.0	AnalyteResult QualifierAmmonia (as N)2.2Bicarbonate Alkalinity as CaCO349.4Carbonate Alkalinity as CaCO35.0	Analyte Result Ammonia (as N) Qualifier RL Bicarbonate Alkalinity as CaCO3 49.4 5.0 Carbonate Alkalinity as CaCO3 5.0 U 5.0	Analyte Result Ammonia (as N) Qualifier RL MDL Bicarbonate Alkalinity as CaCO3 49.4 5.0 5.0 Carbonate Alkalinity as CaCO3 5.0 U 5.0 5.0	Analyte Result Ammonia (as N) Result Result Alkalinity as CaCO3 Qualifier RL Qualifier RL MDL O.10 Unit MDL O.068 Unit MDL O.068 MDL O.068	Analyte Result Ammonia (as N) Qualifier RL MDL mg/L Unit mg/L D Bicarbonate Alkalinity as CaCO3 49.4 5.0 5.0 mg/L Carbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L	Analyte Result Ammonia (as N) Qualifier RL MDL MDL Unit D mg/L Prepared Bicarbonate Alkalinity as CaCO3 49.4 5.0 5.0 mg/L mg/L Carbonate Alkalinity as CaCO3 5.0 U 5.0 5.0 mg/L	Analyte Result Ammonia (as N) Qualifier RL MDL on the MID on th

Client Sample ID: AWC-E1(132) Lab Sample ID: 460-195187-3

Date Collected: 10/29/19 13:50 Matrix: Water Date Received: 10/29/19 20:35

Method: 6010D - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	16200		150	34.2	ug/L		11/01/19 09:34	11/02/19 22:04	1
Manganese	1180		15.0	0.99	ug/L		11/01/19 09:34	11/02/19 22:04	1
Cobalt	10.6	J	50.0	1.7	ug/L		11/01/19 09:34	11/02/19 22:04	1

Method: 6010D - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	9.7	J	50.0	1.7	ug/L		11/01/19 09:25	11/01/19 20:36	1
Iron, Dissolved	7760		150	34.2	ug/L		11/01/19 09:25	11/01/19 20:36	1
Manganese, Dissolved	1090		15.0	0.99	ug/L		11/01/19 09:25	11/01/19 20:36	1

Client Sample ID: AWC-E1(156) Lab Sample ID: 460-195187-4

Date Received: 10/29/19 20:35

Date Collected: 10/29/19 14:55 Matrix: Water

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	33400		150	34.2	ug/L		11/01/19 09:34	11/02/19 22:08	1
Manganese	1120		15.0	0.99	ug/L		11/01/19 09:34	11/02/19 22:08	1
Cobalt	10.7	J	50.0	1.7	ug/L		11/01/19 09:34	11/02/19 22:08	1

Method: 6010D - Metals (ICI	P) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	9.1	J	50.0	1.7	ug/L		11/01/19 09:25	11/01/19 20:40	1
Iron, Dissolved	9150		150	34.2	ug/L		11/01/19 09:25	11/01/19 20:40	1
Manganese, Dissolved	1080		15.0	0.99	ug/L		11/01/19 09:25	11/01/19 20:40	1

Client Sample ID: AWC-E2(140) Lab Sample ID: 460-195187-5

Date Collected: 10/29/19 08:55 Date Received: 10/29/19 20:35

Method: 6010D - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	8420		150	34.2	ug/L		11/01/19 09:24	11/02/19 16:59	1
Manganese	901		15.0	0.99	ug/L		11/01/19 09:24	11/02/19 16:59	1
Cobalt	7.0	J	50.0	1.7	ug/L		11/01/19 09:24	11/02/19 16:59	1

Eurofins TestAmerica, Edison

Matrix: Water

Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: AWC-E2(140)

Lab Sample ID: 460-195187-5

Date Collected: 10/29/19 08:55 Matrix: Water

Date Received: 10/29/19 20:35

Method: 6010D - Metals (IC	P) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	6.6	J	50.0	1.7	ug/L		11/01/19 09:25	11/01/19 20:44	1
Iron, Dissolved	8110		150	34.2	ug/L		11/01/19 09:25	11/01/19 20:44	1
Manganese, Dissolved	882		15.0	0.99	ug/L		11/01/19 09:25	11/01/19 20:44	1

Lab Sample ID: 460-195187-6 Client Sample ID: AWC-E2(165) Date Collected: 10/29/19 09:30

Date Received: 10/29/19 20:35

Method: 6010D - Metals (ICP)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	4710	150	34.2	ug/L		11/01/19 09:34	11/02/19 22:12	1
Manganese	550	15.0	0.99	ug/L		11/01/19 09:34	11/02/19 22:12	1
Cobalt	9.7 J	50.0	1.7	ug/L		11/01/19 09:34	11/02/19 22:12	1

Method: 6010D - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	7.5	J	50.0	1.7	ug/L		11/01/19 09:25	11/01/19 20:48	1
Iron, Dissolved	3630		150	34.2	ug/L		11/01/19 09:25	11/01/19 20:48	1
Manganese, Dissolved	523		15.0	0.99	ug/L		11/01/19 09:25	11/01/19 20:48	1

Client Sample ID: AWC-K1 Lab Sample ID: 460-195187-7 Date Collected: 10/29/19 12:15 Matrix: Water

Date Received: 10/29/19 20:35

Method: 8260C SIM - Vol	atile Organic Con	npounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.94		0.40	0.33	ug/L			11/01/19 12:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		72 - 133			-		11/01/19 12:32	1

Method: 8260C - Volatile O	rganic Compo	unds by GC/	MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			11/02/19 09:23	1
Bromomethane	0.55	U	1.0	0.55	ug/L			11/02/19 09:23	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			11/02/19 09:23	1
Chloroethane	0.32	U	1.0	0.32	ug/L			11/02/19 09:23	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			11/02/19 09:23	1
Acetone	4.4	U	5.0	4.4	ug/L			11/02/19 09:23	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			11/02/19 09:23	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			11/02/19 09:23	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			11/02/19 09:23	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			11/02/19 09:23	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			11/02/19 09:23	1
Chloroform	0.33	U	1.0	0.33	ug/L			11/02/19 09:23	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			11/02/19 09:23	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			11/02/19 09:23	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			11/02/19 09:23	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			11/02/19 09:23	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			11/02/19 09:23	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			11/02/19 09:23	1

Eurofins TestAmerica, Edison

11/18/2019

Job ID: 460-195120-1

Matrix: Water

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: AWC-K1

Lab Sample ID: 460-195187-7 Date Collected: 10/29/19 12:15

Matrix: Water

Date Received: 10/29/19 20:35

					D	Prepared	=	Dil Fa
0.22	U	1.0					11/02/19 09:23	
1.7		1.0	0.31	ug/L			11/02/19 09:23	
0.28	U	1.0	0.28	ug/L			11/02/19 09:23	
0.43	U	1.0	0.43	ug/L			11/02/19 09:23	
0.20	U	1.0	0.20	ug/L			11/02/19 09:23	
0.49	U	1.0	0.49	ug/L			11/02/19 09:23	
0.54	U	1.0	0.54	ug/L			11/02/19 09:23	
1.3	U	5.0	1.3	ug/L			11/02/19 09:23	
1.1	U	5.0	1.1	ug/L			11/02/19 09:23	
0.25	U	1.0	0.25	ug/L			11/02/19 09:23	
0.37	U	1.0		_			11/02/19 09:23	
0.38	U	1.0		_			11/02/19 09:23	
0.38	U	1.0		-			11/02/19 09:23	
0.30	U			_			11/02/19 09:23	
				_			11/02/19 09:23	
				-				
				_				
				_				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
				-				
0.36	U	1.0	0.36	ug/L			11/02/19 09:23	
Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil F
None		ug/L					11/02/19 09:23	
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
98		74 - 132					11/02/19 09:23	
100		80 - 120					11/02/19 09:23	
94		77 - 124					11/02/19 09:23	
96		72 - 131					11/02/19 09:23	
latila Organi	a Campa	unda (CC/R	10 01881					
		unus (GC/N RL		Unit	D	Prepared	Analyzed	Dil F
		0.050					-	
				•				
0.013		0.020	0.013				11/01/19 00:08	
	_			ug/L ug/L			11/01/19 00:08	
	11*	ስ ኃሳ						
0.15		0.20		•				
		0.20 0.030	0.026	•			11/01/19 00:08	
0.15	U	0.030		•				
	Result 0.22 1.7 0.28 0.43 0.20 0.49 0.54 1.3 1.1 0.25 0.37 0.38 0.38 0.30 0.42 0.65 0.21 0.47 1.0 0.32 0.37 0.33 0.34 0.32 0.26 0.35 0.34 0.36 Est. Result None %Recovery 98 100 94 96 100 94 96 100	Result Qualifier	Result Qualifier RL	Result Qualifier RL MDL	Result Qualifier RL	1.7	Result Qualifier RL MDL Unit D Prepared	Result Qualifier RL MIDL Unit D Prepared Analyzed 1.7 1.0 0.02 ug/L 1.1 1.1 1.1 1.1 1.1 1.2 1.1 1.2 1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: AWC-K1

Date Received: 10/29/19 20:35

3,3'-Dichlorobenzidine

Lab Sample ID: 460-195187-7 Date Collected: 10/29/19 12:15

Matrix: Water

Method: 8270D - Semivolatil Analyte		Qualifier	ŔĹ	MDL	•	D	Prepared	Analyzed	Dil Fac
2-Chlorophenol	0.38		10	0.38	ug/L		10/31/19 09:32	11/01/19 00:31	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/31/19 09:32	11/01/19 00:31	
4-Methylphenol	0.65	U	10	0.65	ug/L		10/31/19 09:32	11/01/19 00:31	
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/31/19 09:32	11/01/19 00:31	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/31/19 09:32	11/01/19 00:31	1
2,4-Dichlorophenol	1.1	Ü	10	1.1	ug/L		10/31/19 09:32	11/01/19 00:31	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/31/19 09:32	11/01/19 00:31	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/31/19 09:32	11/01/19 00:31	
2,4,5-Trichlorophenol	0.88	Ü	10	0.88	ug/L		10/31/19 09:32	11/01/19 00:31	• • • • • • •
2,4-Dinitrophenol	14	U *	20		ug/L		10/31/19 09:32	11/01/19 00:31	
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/31/19 09:32	11/01/19 00:31	
4,6-Dinitro-2-methylphenol	13	U	20		ug/L		10/31/19 09:32		
1,3-Dichlorobenzene	2.0	U	10		ug/L		10/31/19 09:32	11/01/19 00:31	
1,4-Dichlorobenzene	1.3	U	10		ug/L		10/31/19 09:32	11/01/19 00:31	
1,2-Dichlorobenzene	1.3	U	10		ug/L			11/01/19 00:31	• • • • • • • •
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L			11/01/19 00:31	
Hexachloroethane	0.80		2.0		ug/L			11/01/19 00:31	
Nitrobenzene	0.57		1.0		ug/L			11/01/19 00:31	1
Isophorone	0.80		10		ug/L			11/01/19 00:31	
Bis(2-chloroethoxy)methane	0.59		10		ug/L			11/01/19 00:31	
1,2,4-Trichlorobenzene	0.64		2.0		ug/L			11/01/19 00:31	
Naphthalene	1.1		10		ug/L			11/01/19 00:31	
4-Chloroaniline	1.9		10		ug/L			11/01/19 00:31	1
Hexachlorobutadiene	0.78		1.0		ug/L			11/01/19 00:31	
2-Methylnaphthalene	1.1		10		ug/L			11/01/19 00:31	
Hexachlorocyclopentadiene	3.6		10		ug/L			11/01/19 00:31	
2-Chloronaphthalene	1.2		10		ug/L		10/31/19 09:32		
2-Nitroaniline	0.47		10	0.47	_			11/01/19 00:31	
Dimethyl phthalate	0.77		10		ug/L		10/31/19 09:32		
Acenaphthylene	0.82		10	0.82	-			11/01/19 00:31	
2,6-Dinitrotoluene	0.83		2.0		ug/L			11/01/19 00:31	
3-Nitroaniline	1.9		10		ug/L ug/L		10/31/19 09:32		
Acenaphthene	1.1		10		ug/L		10/31/19 09:32		
Dibenzofuran	1.1		10		ug/L			11/01/19 00:31	
2,4-Dinitrotoluene	1.0		2.0		-			11/01/19 00:31	
Diethyl phthalate	0.98		10		ug/L ug/L		10/31/19 09:32		
• •	1.3		10		ug/L ug/L			11/01/19 00:31	
4-Chlorophenyl phenyl ether Fluorene	0.91		10		-			11/01/19 00:31	
4-Nitroaniline	1.2		10		ug/L			11/01/19 00:31	
					ug/L				
N-Nitrosodiphenylamine	0.89		10		ug/L			11/01/19 00:31	•
4-Bromophenyl phenyl ether	0.75 0.58		10		ug/L			11/01/19 00:31 11/01/19 00:31	
Phenanthrene			10		ug/L				
Anthracene	0.63		10		ug/L			11/01/19 00:31	
Carbazole	0.68		10		ug/L			11/01/19 00:31	
Di-n-butyl phthalate	0.84		10		ug/L			11/01/19 00:31	
Fluoranthene	0.84		10		ug/L		10/31/19 09:32		1
Pyrene	1.6		10		ug/L			11/01/19 00:31	
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L			11/01/19 00:31	1

10

1.4 ug/L

1.4 U

Eurofins TestAmerica, Edison

10/31/19 09:32 11/01/19 00:31

Page 36 of 2072 11/18/2019

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: AWC-K1

Lab Sample ID: 460-195187-7

Matrix: Water

Date Collected: 10/29/19 12:15 Date Received: 10/29/19 20:35

Method: 8270D - Semivolatile Analyte		mpounds Qualifier	(GC/MS) (GRL		l) Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	0.91		2.0	0.91			•	11/01/19 00:31	- Dir r u
Bis(2-ethylhexyl) phthalate	1.7		2.0	1.7			10/31/19 09:32		
Di-n-octyl phthalate	4.8		10	4.8	-			11/01/19 00:31	
Benzo[k]fluoranthene	0.67		1.0		ug/L			11/01/19 00:31	
Indeno[1,2,3-cd]pyrene	0.94		2.0		ug/L			11/01/19 00:31	
Dibenz(a,h)anthracene	0.72		1.0		ug/L			11/01/19 00:31	
Benzo[g,h,i]perylene	1.4		10		ug/L			11/01/19 00:31	
Diphenyl ether	1.2		10		ug/L			11/01/19 00:31	
n,n'-Dimethylaniline	0.91		1.0	0.91	-			11/01/19 00:31	
Caprolactam	0.68		10		ug/L			11/01/19 00:31	
bis (2-chloroisopropyl) ether	0.63		10		ug/L			11/01/19 00:31	
Bisphenol-A	9.9		10		ug/L			11/01/19 00:31	
N-Methylaniline	1.3		5.0		ug/L			11/01/19 00:31	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	_			•	11/01/19 00:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	88		51 - 108				10/31/19 09:32	11/01/19 00:31	
Phenol-d5 (Surr)	30		14 - 39				10/31/19 09:32	11/01/19 00:31	
Terphenyl-d14 (Surr)	73		40 - 148				10/31/19 09:32	11/01/19 00:31	
2,4,6-Tribromophenol (Surr)	108		26 - 139				10/31/19 09:32	11/01/19 00:31	
2-Fluorophenol (Surr)	45		25 - 58				10/31/19 09:32	11/01/19 00:31	
2-Fluorobiphenyl (Surr)	77		45 - 107				10/31/19 09:32	11/01/19 00:31	
- Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cobalt, Dissolved	1.7	U	50.0	1.7	ug/L		11/01/19 09:25	11/01/19 20:52	•
Iron, Dissolved	7830		150		ug/L		11/01/19 09:25	11/01/19 20:52	
Manganese, Dissolved	120		15.0	0.99	ug/L		11/01/19 09:25	11/01/19 20:52	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Ammonia (as N)	0.1 0.068	J-B U	0.10	0.068	mg/L			11/01/19 10:57	•
Client Sample ID: FDGW_	**					Lć	ıb Sample	ID: 460-195	
Date Collected: 10/29/19 00:00 Date Received: 10/29/19 20:35								Matrix	: Wate
Method: 8260C SIM - Volatile	Organic Co	mpounds	(GC/MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dioxane	39		0.40	0.33	ug/L			10/31/19 23:26	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	101		72 - 133					10/31/19 23:26	
Method: 8260C - Volatile Org									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	0.40		1.0		ug/L			11/02/19 09:42	
Bromomethane	0.55	U	1.0		ug/L			11/02/19 09:42	•
Vinyl chloride	0.17		1.0	0.17					

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: FDGW_102919

Lab Sample ID: 460-195187-8 Date Collected: 10/29/19 00:00

Matrix: Water

Date Received: 10/29/19 20:35

Method: 8260C - Volatile Organalyte		Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroethane	0.32	U	1.0)	0.32	ug/L			11/02/19 09:42	1
Methylene Chloride	0.32	U	1.0)	0.32	ug/L			11/02/19 09:42	1
Acetone	4.4	U	5.0)		ug/L			11/02/19 09:42	1
Carbon disulfide	0.82	U	1.0)	0.82	ug/L			11/02/19 09:42	1
1,1-Dichloroethene	0.26	U	1.0)	0.26	ug/L			11/02/19 09:42	1
1,1-Dichloroethane	0.26	J	1.0)	0.26	ug/L			11/02/19 09:42	1
trans-1,2-Dichloroethene	0.24		1.0)		ug/L			11/02/19 09:42	1
cis-1,2-Dichloroethene	0.22	U	1.0)	0.22	ug/L			11/02/19 09:42	1
Chloroform	0.33	U	1.0)		ug/L			11/02/19 09:42	1
1,2-Dichloroethane	0.43	U	1.0)		ug/L			11/02/19 09:42	1
2-Butanone (MEK)	1.9	U	5.0)		ug/L			11/02/19 09:42	1
1,1,1-Trichloroethane	0.24	U	1.0			ug/L			11/02/19 09:42	1
Carbon tetrachloride	0.21	U	1.0)		ug/L			11/02/19 09:42	1
Bromodichloromethane	0.34		1.0			ug/L			11/02/19 09:42	1
1,2-Dichloropropane	0.35		1.0			ug/L			11/02/19 09:42	1
cis-1,3-Dichloropropene	0.22		1.0			ug/L			11/02/19 09:42	
Trichloroethene	0.31		1.0			ug/L			11/02/19 09:42	1
Dibromochloromethane	0.28		1.0			ug/L			11/02/19 09:42	1
1,1,2-Trichloroethane	0.43		1.0			ug/L			11/02/19 09:42	
Benzene	30	Ū	1.0			ug/L			11/02/19 09:42	. 1
trans-1,3-Dichloropropene	0.49	U	1.0			ug/L			11/02/19 09:42	. 1
Bromoform	0.54		1.0			ug/L			11/02/19 09:42	
4-Methyl-2-pentanone	1.3		5.0			ug/L			11/02/19 09:42	. 1
2-Hexanone	1.1		5.0			ug/L			11/02/19 09:42	1
Tetrachloroethene	0.25		1.0			ug/L			11/02/19 09:42	
1,1,2,2-Tetrachloroethane	0.37		1.0			ug/L			11/02/19 09:42	. 1
Toluene	0.52		1.0			ug/L			11/02/19 09:42	. 1
Chlorobenzene	0.60		1.0			ug/L			11/02/19 09:42	
Ethylbenzene	17	J	1.0			ug/L			11/02/19 09:42	1
Styrene	0.42	11	1.0			ug/L			11/02/19 09:42	1
	32		2.0			ug/L			11/02/19 09:42	
Xylenes, Total	0.82	ı	1.0			ug/L ug/L			11/02/19 09:42	1
Diethyl ether MTBE	0.82		1.0			ug/L ug/L			11/02/19 09:42	1
			2.0			ug/L ug/L			11/02/19 09:42	
Tetrahydrofuran	14 0.32	11	1.0			_			11/02/19 09:42	1
Cyclohexane		U				ug/L ug/L			11/02/19 09:42	1
1,2,4-Trimethylbenzene	22		1.0			_				1
1,3,5-Trimethylbenzene	2.2		1.0			ug/L			11/02/19 09:42	1
Isopropylbenzene	4.6		1.0			ug/L			11/02/19 09:42	1
N-Propylbenzene	4.7		1.0			ug/L			11/02/19 09:42	1
Methylcyclohexane	3.0		1.0			ug/L			11/02/19 09:42	1
Indane	4.7		1.0			ug/L			11/02/19 09:42	1
Dichlorofluoromethane	3.5		1.0			ug/L			11/02/19 09:42	1
1,2,3-Trimethylbenzene	2.8		1.0)	0.36	ug/L			11/02/19 09:42	1
Tentatively Identified Compound	Est. Result		Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Benzene, 1-ethyl-4-methyl-	6.6	JN	ug/L		10.	.09	622-96-8		11/02/19 09:42	1
Benzene, 1-ethyl-2-methyl-	5.6	JN	ug/L		10.	.37	611-14-3		11/02/19 09:42	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	-	74 - 132	-			-		11/02/19 09:42	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: FDGW_102919

Lab Sample ID: 460-195187-8

Date Collected: 10/29/19 00:00 Matrix: Water Date Received: 10/29/19 20:35

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)										
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac				
Toluene-d8 (Surr)	100		80 - 120		11/02/19 09:42	1				
4-Bromofluorobenzene	93		77 - 124		11/02/19 09:42	1				
Dibromofluoromethane (Surr)	98		72 - 131		11/02/19 09:42	1				

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)													
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		10/31/19 09:32	11/01/19 00:30	1				
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		10/31/19 09:32	11/01/19 00:30	1				
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		10/31/19 09:32	11/01/19 00:30	1				
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		10/31/19 09:32	11/01/19 00:30	1				
Pentachlorophenol	0.15	U *	0.20	0.15	ug/L		10/31/19 09:32	11/01/19 00:30	1				

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		10/31/19 09:32	11/01/19 00:52	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/31/19 09:32	11/01/19 00:52	1
2-Methylphenol	0.67	U	10	0.67	ug/L		10/31/19 09:32	11/01/19 00:52	1
4-Methylphenol	0.65	U	10	0.65	ug/L		10/31/19 09:32	11/01/19 00:52	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/31/19 09:32	11/01/19 00:52	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		10/31/19 09:32	11/01/19 00:52	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		10/31/19 09:32	11/01/19 00:52	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		10/31/19 09:32	11/01/19 00:52	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		10/31/19 09:32	11/01/19 00:52	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		10/31/19 09:32	11/01/19 00:52	1
2,4-Dinitrophenol	14	U *	20	14	ug/L		10/31/19 09:32	11/01/19 00:52	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		10/31/19 09:32	11/01/19 00:52	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		10/31/19 09:32	11/01/19 00:52	1
Bis(2-chloroethyl)ether	8.4		1.0	0.63	ug/L		10/31/19 09:32	11/01/19 00:52	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/31/19 09:32	11/01/19 00:52	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/31/19 09:32	11/01/19 00:52	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		10/31/19 09:32	11/01/19 00:52	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		10/31/19 09:32	11/01/19 00:52	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		10/31/19 09:32	11/01/19 00:52	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		10/31/19 09:32	11/01/19 00:52	1
Isophorone	0.80	U	10	0.80	ug/L		10/31/19 09:32	11/01/19 00:52	1
Bis(2-chloroethoxy)methane	0.59	U	10	0.59	ug/L		10/31/19 09:32	11/01/19 00:52	1
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		10/31/19 09:32	11/01/19 00:52	1
Naphthalene	1.1	U	10	1.1	ug/L		10/31/19 09:32	11/01/19 00:52	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		10/31/19 09:32	11/01/19 00:52	1
Hexachlorobutadiene	0.78	U	1.0	0.78	ug/L		10/31/19 09:32	11/01/19 00:52	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		10/31/19 09:32	11/01/19 00:52	1
Hexachlorocyclopentadiene	3.6	U	10	3.6	ug/L		10/31/19 09:32	11/01/19 00:52	1
2-Chloronaphthalene	1.2	U	10	1.2	ug/L		10/31/19 09:32	11/01/19 00:52	1
2-Nitroaniline	0.47	U	10	0.47	ug/L		10/31/19 09:32	11/01/19 00:52	1
Dimethyl phthalate	0.77	U	10	0.77			10/31/19 09:32	11/01/19 00:52	1
Acenaphthylene	0.82	U	10	0.82	ug/L		10/31/19 09:32	11/01/19 00:52	1
2,6-Dinitrotoluene	0.83	U	2.0	0.83	ug/L		10/31/19 09:32	11/01/19 00:52	1
3-Nitroaniline	1.9	U	10	1.9	ug/L		10/31/19 09:32	11/01/19 00:52	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/31/19 09:32	11/01/19 00:52	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: FDGW_102919

Lab Sample ID: 460-195187-8 Date Collected: 10/29/19 00:00

Matrix: Water

Date Received: 10/29/19 20:35

Method: 8270D - Semivolatile Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Dibenzofuran	1.1	U	10	1.1	ug/L		10/31/19 09:32	11/01/19 00:52	
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/31/19 09:32	11/01/19 00:52	
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/31/19 09:32	11/01/19 00:52	
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/31/19 09:32	11/01/19 00:52	
Fluorene	0.91	U	10	0.91	ug/L		10/31/19 09:32	11/01/19 00:52	
4-Nitroaniline	1.2	U	10	1.2	ug/L		10/31/19 09:32	11/01/19 00:52	
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/31/19 09:32	11/01/19 00:52	
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/31/19 09:32	11/01/19 00:52	
Phenanthrene	0.58	U	10	0.58	ug/L		10/31/19 09:32	11/01/19 00:52	
Anthracene	0.63	U	10	0.63	ug/L		10/31/19 09:32	11/01/19 00:52	
Carbazole	0.68	U	10	0.68	ug/L		10/31/19 09:32	11/01/19 00:52	
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		10/31/19 09:32	11/01/19 00:52	
Fluoranthene	0.84	U	10	0.84	ug/L		10/31/19 09:32	11/01/19 00:52	
Pyrene	1.6	U	10	1.6	ug/L		10/31/19 09:32	11/01/19 00:52	
Butyl benzyl phthalate	0.85	U	10		ug/L		10/31/19 09:32	11/01/19 00:52	
3,3'-Dichlorobenzidine	1.4	U	10		ug/L		10/31/19 09:32	11/01/19 00:52	
Chrysene	0.91	U	2.0	0.91	_		10/31/19 09:32	11/01/19 00:52	
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		10/31/19 09:32	11/01/19 00:52	
Di-n-octyl phthalate	4.8	U	10		ug/L		10/31/19 09:32	11/01/19 00:52	
Benzo[k]fluoranthene	0.67		1.0		ug/L			11/01/19 00:52	
Indeno[1,2,3-cd]pyrene	0.94		2.0		ug/L			11/01/19 00:52	
Dibenz(a,h)anthracene	0.72		1.0		ug/L			11/01/19 00:52	
Benzo[g,h,i]perylene	1.4		10		ug/L			11/01/19 00:52	
Diphenyl ether	1.2		10		ug/L			11/01/19 00:52	
n,n'-Dimethylaniline	1.8	Ū	1.0		ug/L			11/01/19 00:52	
Caprolactam	0.68	U	10		ug/L			11/01/19 00:52	
bis (2-chloroisopropyl) ether	0.63		10		ug/L			11/01/19 00:52	
Bisphenol-A	9.9		10		ug/L			11/01/19 00:52	
N-Methylaniline	1.3		5.0		ug/L			11/01/19 00:52	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Benzene, 1,3-dimethyl-	6.9	JN	ug/L	3	.39	108-38-3	10/31/19 09:32	11/01/19 00:52	
Benzene, 1,2,3-trimethyl-	15	JN	ug/L	4	.25	526-73-8	10/31/19 09:32	11/01/19 00:52	
2-Isopropoxyphenol	8.1	JN	ug/L	5	.48	4812-20-8	10/31/19 09:32	11/01/19 00:52	
1,3,5-Triazine-2,4,6(1H,3H,5H)	7.5	JN	ug/L	6	.62	827-16-7	10/31/19 09:32	11/01/19 00:52	
-trione, 1,3,5-trimethyl- Unknown	29	J	ug/L	7	.05		10/31/19 09:32	11/01/19 00:52	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	84		51 - 108				~	11/01/19 00:52	
Phenol-d5 (Surr)	26		14 - 39					11/01/19 00:52	
Terphenyl-d14 (Surr)	58		40 - 148					11/01/19 00:52	
2,4,6-Tribromophenol (Surr)	106		26 - 139					11/01/19 00:52	
2-Fluorophenol (Surr)	41		25 - 58					11/01/19 00:52	
2-Fluorobiphenyl (Surr)	75		45 - 107				10/31/19 09:32	11/01/19 00:52	
Method: 300.0 - Anions, Ion C			gov. s	15 21 30°° 1	13. 27	,	Pose !	A1 - 1	m
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride	68.3		3.24	0.38	mg/L			10/30/19 23:36	2

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: FDGW_102919

Lab Sample ID: 460-195187-8

Date Collected: 10/29/19 00:00 Matrix: Water Date Received: 10/29/19 20:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrite as N	0.076	U	0.12	0.076	mg/L			10/30/19 16:03	1
Sulfate	1.60		0.60	0.35	mg/L			10/30/19 16:03	1
Method: 200.8 - Metals (ICP/MS) - Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	33100		250	66.8	ug/L		10/31/19 21:00	11/01/19 16:31	5
Magnesium	8280		250	24.8	ug/L		10/31/19 21:00	11/01/19 16:31	5
Potassium	2710		250	73.5	ug/L		10/31/19 21:00	11/01/19 16:31	5
Calcium	12400		250	233	ug/L		10/31/19 21:00	11/01/19 16:31	5
Method: 6010D - Metals (ICP) -	Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	33.5	J	50.0	1.7	ug/L		11/01/19 09:25	11/01/19 20:56	1
Iron, Dissolved	44400		150	34.2	ug/L		11/01/19 09:25	11/01/19 20:56	1
Manganese, Dissolved	426		15.0	0.99	ug/L		11/01/19 09:25	11/01/19 20:56	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	2.2	8	0.10	0.068	mg/L			11/01/19 10:58	1
Bicarbonate Alkalinity as CaCO3	52.2		5.0	5.0	mg/L			11/04/19 12:55	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			11/04/19 12:55	1

Client Sample ID: TBGW_102919 Lab Sample ID: 460-195187-9

Date Collected: 10/29/19 14:50 Matrix: Water Date Received: 10/29/19 20:35

Method:	8260C	SIM -	Volatile	Organic	Compounds	(GC/MS)	

yte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dioxane	0.33	U	0.40	0.33	ug/L			10/31/19 17:05	1
ogate omofluorobenzene	%Recovery	Qualifier	Limits 72 - 133			-	Prepared	Analyzed 10/31/19 17:05	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			11/02/19 08:28	1
Bromomethane	0.55	U	1.0	0.55	ug/L			11/02/19 08:28	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			11/02/19 08:28	1
Chloroethane	0.32	U	1.0	0.32	ug/L			11/02/19 08:28	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			11/02/19 08:28	1
Acetone	9.2		5.0	4.4	ug/L			11/02/19 08:28	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			11/02/19 08:28	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			11/02/19 08:28	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			11/02/19 08:28	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			11/02/19 08:28	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			11/02/19 08:28	1
Chloroform	0.33	U	1.0	0.33	ug/L			11/02/19 08:28	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			11/02/19 08:28	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			11/02/19 08:28	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			11/02/19 08:28	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_102919

Lab Sample ID: 460-195187-9 Date Collected: 10/29/19 14:50

Matrix: Water

Date Received: 10/29/19 20:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			11/02/19 08:28	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			11/02/19 08:28	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			11/02/19 08:28	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			11/02/19 08:28	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			11/02/19 08:28	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			11/02/19 08:28	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			11/02/19 08:28	1
Benzene	0.20	U	1.0	0.20	ug/L			11/02/19 08:28	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			11/02/19 08:28	1
Bromoform	0.54	U	1.0	0.54	ug/L			11/02/19 08:28	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			11/02/19 08:28	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			11/02/19 08:28	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			11/02/19 08:28	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			11/02/19 08:28	1
Toluene	0.38	U	1.0	0.38	ug/L			11/02/19 08:28	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			11/02/19 08:28	1
Ethylbenzene	0.30	U	1.0		ug/L			11/02/19 08:28	1
Styrene	0.42	U	1.0	0.42	ug/L			11/02/19 08:28	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			11/02/19 08:28	1
Diethyl ether	0.21	U	1.0		ug/L			11/02/19 08:28	1
MTBE	0.47	U	1.0		ug/L			11/02/19 08:28	1
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			11/02/19 08:28	1
Cyclohexane	0.32	U	1.0	0.32	ug/L			11/02/19 08:28	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			11/02/19 08:28	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			11/02/19 08:28	1
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			11/02/19 08:28	1
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			11/02/19 08:28	1
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			11/02/19 08:28	1
Indane	0.35	U	1.0	0.35	ug/L			11/02/19 08:28	1
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			11/02/19 08:28	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			11/02/19 08:28	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L					11/02/19 08:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		74 - 132			•		11/02/19 08:28	1
Toluene-d8 (Surr)	100		80 - 120					11/02/19 08:28	1
4-Bromofluorobenzene	96		77 - 124					11/02/19 08:28	1

Client Sample ID: DGC-7S

Dibromofluoromethane (Surr)

Date Collected: 10/30/19 10:00

Date Received: 10/30/19 20:50

Lab Sample ID: 460-195259-1

11/02/19 08:28

Matrix: Water

Method: 300.0 - Anions, lor	n Chromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	29.1		1.32	0.15	mg/L			11/01/19 10:58	11
Nitrate as N	0.056	U	0.10	0.056	mg/L			11/01/19 00:12	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			11/01/19 00:12	1

72 - 131

97

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Lab Sample ID: 460-195259-1 Client Sample ID: DGC-7S

Date Collected: 10/30/19 10:00 Matrix: Water

Date Received: 10/30/19 20:50

Method: 300.0 - Anio	,		•	MO	l lmi4	D	Duamanad	Anabaad	Dil Foo
Analyte	Result	Qualifier	RL	MDL	Unit	U	Prepared	Analyzed	Dil Fac
Sulfate	25.8		6.60	3.81	mg/L			11/01/19 10:58	
– Method: 200.8 - Meta	ls (ICP/MS) - Total R	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	15600		250	66.8	ua/L		10/31/19 21:00	11/01/19 16:39	5

momonio moono mocaro (romano)	I O COLL I COOO FOI ORDIO							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	15600	250	66.8	ug/L		10/31/19 21:00	11/01/19 16:39	5
Magnesium	10600	250	24.8	ug/L		10/31/19 21:00	11/01/19 16:39	5
Potassium	2600	250	73.5	ug/L		10/31/19 21:00	11/01/19 16:39	5
Calcium	19500	250	233	ug/L		10/31/19 21:00	11/01/19 16:39	5

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.104 0.39	J+	0.10	0.068	mg/L			11/01/19 12:16	1
Bicarbonate Alkalinity as CaCO3	116		5.0	5.0	mg/L			11/01/19 13:52	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			11/01/19 13:52	1
Sulfide	0.58	U	1.0	0.58	mg/L			11/01/19 17:45	1

Client Sample ID: DGC-7C Lab Sample ID: 460-195259-2 Matrix: Water

Date Collected: 10/30/19 10:30 Date Received: 10/30/19 20:50

Method: 8260C SIM - Volatile	Organic Co	mpounds ((GC/MS)					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.33	U	0.40	0.33 ug/L			11/03/19 14:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Garrogate	7011ecovery	Quanner	Limits		_	rrepareu	Anaryzeu	Diriac
4-Bromofluorobenzene	91		72 - 133				11/03/19 14:06	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			11/04/19 16:45	1
Bromomethane	0.55	U	1.0	0.55	ug/L			11/04/19 16:45	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			11/04/19 16:45	1
Chloroethane	0.32	U	1.0	0.32	ug/L			11/04/19 16:45	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			11/04/19 16:45	1
Acetone	17	U	5.0 17	4.4	ug/L			11/04/19 16:45	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			11/04/19 16:45	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			11/04/19 16:45	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			11/04/19 16:45	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			11/04/19 16:45	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			11/04/19 16:45	1
Chloroform	0.33	U	1.0	0.33	ug/L			11/04/19 16:45	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			11/04/19 16:45	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			11/04/19 16:45	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			11/04/19 16:45	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			11/04/19 16:45	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			11/04/19 16:45	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			11/04/19 16:45	1
cis-1,3-Dichloropropene	0.22	Ú	1.0	0.22	ug/L			11/04/19 16:45	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			11/04/19 16:45	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			11/04/19 16:45	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			11/04/19 16:45	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DGC-7C Lab Sample ID: 460-195259-2

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene 0.20 U 1.0 0.20 ug/L 11/04/19 16:45 trans-1,3-Dichloropropene 0.49 U 1.0 0.49 ug/L 11/04/19 16:45 1 0.54 U 1.0 Bromoform 0.54 ug/L 11/04/19 16:45 5.0 4-Methyl-2-pentanone 1.3 U 1.3 ug/L 11/04/19 16:45 1 2-Hexanone 1.1 5.0 1.1 ug/L 11/04/19 16:45 1.0 1 Tetrachloroethene 0.25 Ü 0.25 11/04/19 16:45 ug/L 1,1,2,2-Tetrachloroethane 0.37 U 1.0 0.37 ug/L 11/04/19 16:45 1 Toluene 1.0 0.38 ug/L 11/04/19 16:45 1 1.5 1.0 0.38 ug/L 1 Chlorobenzene 0.53 11/04/19 16:45 Ethylbenzene 0.30 U 1.0 0.30 ug/L 11/04/19 16:45 1 Styrene 0.42 U 1.0 0.42 ug/L 1 11/04/19 16:45 Xylenes, Total 0.65 U 2.0 0.65 ug/L 11/04/19 16:45 0.21 ug/L Diethyl ether 0.21 U 1.0 11/04/19 16:45 1 1.0 MTBE 0.47 ug/L 11/04/19 16:45 1 1.7 Tetrahydrofuran 1.0 U 2.0 1.0 ug/L 11/04/19 16:45 0.32 U Cyclohexane 1.0 0.32 ug/L 11/04/19 16:45 1 1,2,4-Trimethylbenzene 0.37 U 1.0 0.37 ug/L 11/04/19 16:45 1 1,3,5-Trimethylbenzene 0.33 U 1.0 0.33 ug/L 11/04/19 16:45 Isopropylbenzene 0.34 U 1.0 0.34 ug/L 11/04/19 16:45 N-Propylbenzene 0.32 U 1.0 0.32 ua/L 11/04/19 16:45 1 U 1.0 Methylcyclohexane 0.26 0.26 ug/L 11/04/19 16:45 Indane 0.35 U 1.0 0.35 ug/L 11/04/19 16:45 1 Dichlorofluoromethane U 1.0 0.34 ug/L 0.34 11/04/19 16:45 1,2,3-Trimethylbenzene 0.36 Ü 1.0 0.36 ug/L 11/04/19 16:45 Tentatively Identified Compound Est. Result Qualifier Unit D RT CAS No. Dil Fac Prepared Analyzed ug/L Tentatively Identified Compound 11/04/19 16:45 None Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 99 74 - 132 1,2-Dichloroethane-d4 (Surr) 11/04/19 16:45 Toluene-d8 (Surr) 100 80 - 120 11/04/19 16:45 1 96 4-Bromofluorobenzene 77 - 124 11/04/19 16:45 1 Dibromofluoromethane (Surr) 98 72 - 131 11/04/19 16:45 Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) Analyte Result Qualifier MDL Unit D Dil Fac RL Prepared Analyzed Benzo[a]anthracene 0.016 U 0.050 0.016 ug/L 11/01/19 09:10 11/01/19 23:30 11/01/19 09:10 11/01/19 23:30 0.022 U 0.050 0.022 ug/L Benzo[a]pyrene 1 Benzo[b]fluoranthene 0.024 U 0.050 0.024 ug/L 11/01/19 09:10 11/01/19 23:30 1 0.020 Hexachlorobenzene 0.013 U 0.013 ug/L 11/01/19 09:10 11/01/19 23:30 1 Pentachlorophenol 0.15 U 0.20 0.15 ug/L 11/01/19 09:10 11/01/19 23:30 1 Bis(2-chloroethyl)ether 0.026 U 0.030 0.026 ug/L 11/01/19 09:10 11/01/19 23:30 1 Method: 8270D - Semivolatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Phenol 0.29 U 10 0.29 ug/L 11/01/19 09:10 11/02/19 00:59

Eurofins TestAmerica, Edison

11/02/19 00:59

11/01/19 09:10 11/02/19 00:59

11/01/19 09:10 11/02/19 00:59

11/01/19 09:10 11/02/19 00:59

11/01/19 09:10

11/18/2019

1

1

1

10

10

10

10

0.38

0.67

0.65

0.75 ug/L

ug/L

ug/L

ug/L

0.38 U

0.75 U

U

0.67 U

0.65

2-Chlorophenol

2-Methylphenol

4-Methylphenol

2-Nitrophenol

Client: Golder Associates Inc.

Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DGC-7C Lab Sample ID: 460-195259-2

Date Collected: 10/30/19 10:30 Matrix: Water Date Received: 10/30/19 20:50

Method: 8270D - Semivolatile Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		11/01/19 09:10	11/02/19 00:59	
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		11/01/19 09:10	11/02/19 00:59	
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		11/01/19 09:10	11/02/19 00:59	
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		11/01/19 09:10	11/02/19 00:59	
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		11/01/19 09:10	11/02/19 00:59	
2,4-Dinitrophenol	14	U	20	14	ug/L		11/01/19 09:10	11/02/19 00:59	
4-Nitrophenol	4.0	U	20	4.0	ug/L		11/01/19 09:10	11/02/19 00:59	
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		11/01/19 09:10	11/02/19 00:59	
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		11/01/19 09:10	11/02/19 00:59	
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		11/01/19 09:10	11/02/19 00:59	
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		11/01/19 09:10	11/02/19 00:59	
N-Nitrosodi-n-propylamine	0.43	U	1.0		ug/L		11/01/19 09:10	11/02/19 00:59	
Hexachloroethane	0.80	U	2.0	0.80	ug/L		11/01/19 09:10	11/02/19 00:59	
Nitrobenzene	0.57	U	1.0		ug/L		11/01/19 09:10	11/02/19 00:59	
Isophorone	0.80		10	0.80	ug/L			11/02/19 00:59	
Bis(2-chloroethoxy)methane	0.59		10	0.59	ug/L			11/02/19 00:59	
1,2,4-Trichlorobenzene	0.64		2.0		ug/L			11/02/19 00:59	
Naphthalene	1.1	U	10	1.1	ug/L		11/01/19 09:10	11/02/19 00:59	
4-Chloroaniline	1.9		10	1.9	ug/L		11/01/19 09:10	11/02/19 00:59	
Hexachlorobutadiene	0.78		1.0		ug/L			11/02/19 00:59	
2-Methylnaphthalene	1.1		10	1.1	ug/L		11/01/19 09:10	11/02/19 00:59	
Hexachlorocyclopentadiene	3.6		10		ug/L			11/02/19 00:59	
2-Chloronaphthalene	1.2		10					11/02/19 00:59	
2-Nitroaniline	0.47		10		ug/L			11/02/19 00:59	
Dimethyl phthalate	0.77		10		ug/L			11/02/19 00:59	
Acenaphthylene	0.82		10		ug/L			11/02/19 00:59	
2.6-Dinitrotoluene	0.83		2.0		ug/L			11/02/19 00:59	
3-Nitroaniline	1.9		10	1.9	ug/L			11/02/19 00:59	
Acenaphthene	1.1		10	1.1	ug/L			11/02/19 00:59	
Dibenzofuran		U	10	1.1	ug/L			11/02/19 00:59	
2.4-Dinitrotoluene	1.0		2.0	1.0	ug/L			11/02/19 00:59	
Diethyl phthalate	0.98		10		ug/L			11/02/19 00:59	
4-Chlorophenyl phenyl ether	1.3		10		ug/L			11/02/19 00:59	
Fluorene	0.91		10	0.91				11/02/19 00:59	
4-Nitroaniline	1.2		10		ug/L			11/02/19 00:59	
N-Nitrosodiphenylamine	0.89		10		ug/L			11/02/19 00:59	
4-Bromophenyl phenyl ether	0.75		10		ug/L			11/02/19 00:59	
Phenanthrene	0.58		10		ug/L			11/02/19 00:59	
Anthracene	0.63		10		ug/L			11/02/19 00:59	
Carbazole	0.68		10		ug/L			11/02/19 00:59	
Di-n-butyl phthalate	0.84		10		ug/L			11/02/19 00:59	
Fluoranthene	0.84		10		ug/L			11/02/19 00:59	
Pyrene	1.6		10		ug/L			11/02/19 00:59	
Butyl benzyl phthalate	0.85		10		ug/L			11/02/19 00:59	
3,3'-Dichlorobenzidine	1.4		10		ug/L			11/02/19 00:59	
Chrysene	0.91		2.0		ug/L ug/L			11/02/19 00:59	
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L ug/L			11/02/19 00:59	
Di-n-octyl phthalate	4.8		10		ug/L			11/02/19 00:59	
Benzo[k]fluoranthene	0.67		1.0		ug/L ug/L			11/02/19 00:59	

Eurofins TestAmerica, Edison 11/18/2019

Page 45 of 2072

Client: Golder Associates Inc.

Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DGC-7C Lab Sample ID: 460-195259-2

Date Collected: 10/30/19 10:30 Matrix: Water Date Received: 10/30/19 20:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	0.94	U	2.0	0.94	ug/L		11/01/19 09:10	11/02/19 00:59	1
Dibenz(a,h)anthracene	0.72	U	1.0	0.72	ug/L		11/01/19 09:10	11/02/19 00:59	1
Benzo[g,h,i]perylene	1.4	U	10	1.4	ug/L		11/01/19 09:10	11/02/19 00:59	1
Diphenyl ether	1.2	U	10	1.2	ug/L		11/01/19 09:10	11/02/19 00:59	1
n,n'-Dimethylaniline	0.91	U	1.0	0.91	ug/L		11/01/19 09:10	11/02/19 00:59	1
Caprolactam	0.68	U	10	0.68	ug/L		11/01/19 09:10	11/02/19 00:59	1
bis (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		11/01/19 09:10	11/02/19 00:59	1
Bisphenol-A	9.9	U	10	9.9	ug/L		11/01/19 09:10	11/02/19 00:59	1
N-Methylaniline	1.3	U	5.0	1.3	ug/L		11/01/19 09:10	11/02/19 00:59	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L	_			11/01/19 09:10	11/02/19 00:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	76		51 - 108				11/01/19 09:10	11/02/19 00:59	1
Phenol-d5 (Surr)	27		14 - 39				11/01/19 09:10	11/02/19 00:59	1
Terphenyl-d14 (Surr)	75		40 - 148				11/01/19 09:10	11/02/19 00:59	1
2,4,6-Tribromophenol (Surr)	84		26 - 139				11/01/19 09:10	11/02/19 00:59	1
2-Fluorophenol (Surr)	40		25 - 58				11/01/19 09:10	11/02/19 00:59	1
2-Fluorobiphenyl (Surr)	69		45 - 107				11/01/19 09:10	11/02/19 00:59	1
Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	22.1	J	50.0	1.7	ug/L		11/01/19 09:25	11/01/19 21:04	1
Iron, Dissolved	91800		150	34.2	ug/L		11/01/19 09:25	11/01/19 21:04	1
Manganese, Dissolved	1020		15.0	0.99	ug/L		11/01/19 09:25	11/01/19 21:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	2.2		0.10	0.068				11/01/19 12:17	1

Client Sample ID: DDA-10-US Lab Sample ID: 460-195259-3

Date Collected: 10/30/19 11:35 Matrix: Water Date Received: 10/30/19 20:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			11/04/19 17:04	1
Bromomethane	0.55	U	1.0	0.55	ug/L			11/04/19 17:04	1
Vinyl chloride	0.61	J	1.0	0.17	ug/L			11/04/19 17:04	1
Chloroethane	0.32	U	1.0	0.32	ug/L			11/04/19 17:04	1
Methylene Chloride	0.41	J	1.0	0.32	ug/L			11/04/19 17:04	1
Acetone	5.8	U	5:0 5.8	4.4	ug/L			11/04/19 17:04	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			11/04/19 17:04	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			11/04/19 17:04	1
1,1-Dichloroethane	0.86	J	1.0	0.26	ug/L			11/04/19 17:04	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			11/04/19 17:04	1
cis-1,2-Dichloroethene	0.88	J	1.0	0.22	ug/L			11/04/19 17:04	1
Chloroform	0.33	U	1.0	0.33	ug/L			11/04/19 17:04	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			11/04/19 17:04	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			11/04/19 17:04	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-10-US

Lab Sample ID: 460-195259-3 Date Collected: 10/30/19 11:35

Matrix: Water

Date Received: 10/30/19 20:50

Analyte	Result	Qualifier	RL	MD	_ Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.24	U	1.0	0.2	ug/L			11/04/19 17:04	
Carbon tetrachloride	0.21	U	1.0	0.2	1 ug/L			11/04/19 17:04	
Bromodichloromethane	0.34	U	1.0		4 ug/L			11/04/19 17:04	1
1,2-Dichloropropane	0.35	U	1.0	0.3	5 ug/L			11/04/19 17:04	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.2	2 ug/L			11/04/19 17:04	1
Trichloroethene	0.31	U	1.0	0.3	1 ug/L			11/04/19 17:04	1
Dibromochloromethane	0.28	U	1.0	0.2	3 ug/L			11/04/19 17:04	1
1,1,2-Trichloroethane	0.43	U	1.0	0.4	3 ug/L			11/04/19 17:04	1
Benzene	150		1.0	0.2	ug/L			11/04/19 17:04	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.4	g ug/L			11/04/19 17:04	1
Bromoform	0.54	U	1.0	0.5	4 ug/L			11/04/19 17:04	1
4-Methyl-2-pentanone	1.3	U	5.0		3 ug/L			11/04/19 17:04	1
2-Hexanone	1.1	U	5.0		1 ug/L			11/04/19 17:04	1
Tetrachloroethene	0.25	U	1.0		5 ug/L			11/04/19 17:04	
1,1,2,2-Tetrachloroethane	0.37	U	1.0		7 ug/L			11/04/19 17:04	1
Toluene	0.52	J	1.0		3 ug/L			11/04/19 17:04	1
Chlorobenzene	2.5	-	1.0		3 ug/L			11/04/19 17:04	1
Ethylbenzene	19		1.0		ug/L			11/04/19 17:04	1
Styrene	0.42	U	1.0		2 ug/L			11/04/19 17:04	1
Xylenes, Total	11		2.0		ug/L			11/04/19 17:04	1
Diethyl ether	3.7		1.0		1 ug/L			11/04/19 17:04	1
MTBE	0.47	U	1.0		7 ug/L			11/04/19 17:04	1
Tetrahydrofuran	1.0		2.0		ug/L			11/04/19 17:04	1
Cyclohexane	21	•	1.0		2 ug/L			11/04/19 17:04	1
1,4-Dioxane	160		50		3 ug/L			11/04/19 17:04	1
1,2,4-Trimethylbenzene	11		1.0		7 ug/L			11/04/19 17:04	1
1,3,5-Trimethylbenzene	2.0		1.0		3 ug/L			11/04/19 17:04	1
Isopropylbenzene	8.1		1.0		ug/L ug/L			11/04/19 17:04	1
N-Propylbenzene	7.7		1.0		ug/L			11/04/19 17:04	1
Methylcyclohexane	41		1.0		ug/L			11/04/19 17:04	
Indane	5.9		1.0		5 ug/L			11/04/19 17:04	1
Dichlorofluoromethane	17		1.0		ug/L			11/04/19 17:04	1
1,2,3-Trimethylbenzene	2.2		1.0		ug/L			11/04/19 17:04	1
i,a,o-i illiottiy iwottacii c	din e din		1.0	0.0	o ug/L			11/04/10 17:04	
Tentatively Identified Compound	Est. Result	-	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Propene		JN	ug/L		1.37	115-07-1		11/04/19 17:04	1
Cyclopentane, methyl-		JN	ug/L		3.67	96-37-7		11/04/19 17:04	1
Hexane, 2-methyl-		JN	ug/L		4.18	591-76-4		11/04/19 17:04	1
Hexane, 3-methyl-		JN	ug/L		4.34	589-34-4		11/04/19 17:04	1
Cyclopentane, 1,1-dimethyl-	7.9	JN	ug/L		4.41	1638-26-2		11/04/19 17:04	7
Isopropylcyclobutane	13	JN	ug/L		4.67	872-56-0		11/04/19 17:04	1
Heptane	11	JN	ug/L		4.74	142-82-5		11/04/19 17:04	1
Cyclopentane, ethyl-	7.7	JN	ug/L		5.51	1640-89-7		11/04/19 17:04	:
Unknown	5.5	J	ug/L	1	3.16			11/04/19 17:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		74 - 132					11/04/19 17:04	1
Toluene-d8 (Surr)	99		80 - 120					11/04/19 17:04	1
4-Bromofluorobenzene	96		77 - 124					11/04/19 17:04	1
Dibromofluoromethane (Surr)	100		72 - 131					11/04/19 17:04	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-10-US

Lab Sample ID: 460-195259-3

Matrix: Water

Date Collected: 10/30/19 11:35 Date Received: 10/30/19 20:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.28	J	0.50	0.16	ug/L		11/01/19 09:10	11/05/19 02:44	10
Benzo[a]pyrene	0.22	U	0.50	0.22	ug/L		11/01/19 09:10	11/05/19 02:44	10
Benzo[b]fluoranthene	0.24	U	0.50	0.24	ug/L		11/01/19 09:10	11/05/19 02:44	10
Hexachlorobenzene	0.13	U	0.20	0.13	ug/L		11/01/19 09:10	11/05/19 02:44	10
Pentachlorophenol	1.5	U	2.0	1.5	ug/L		11/01/19 09:10	11/05/19 02:44	10
Bis(2-chloroethyl)ether	36		0.30	0.26	ug/L		11/01/19 09:10	11/05/19 02:44	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		11/01/19 09:10	11/02/19 01:20	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		11/01/19 09:10	11/02/19 01:20	1
2-Methylphenol	0.67	U	10	0.67	ug/L		11/01/19 09:10	11/02/19 01:20	1
4-Methylphenol	0.65	U	10	0.65	ug/L		11/01/19 09:10	11/02/19 01:20	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		11/01/19 09:10	11/02/19 01:20	1
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		11/01/19 09:10	11/02/19 01:20	1
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		11/01/19 09:10	11/02/19 01:20	1
4-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		11/01/19 09:10	11/02/19 01:20	1
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		11/01/19 09:10	11/02/19 01:20	1
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		11/01/19 09:10	11/02/19 01:20	1
2,4-Dinitrophenol	14	U	20	14	ug/L		11/01/19 09:10	11/02/19 01:20	1
4-Nitrophenol	4.0	U	20	4.0	ug/L		11/01/19 09:10	11/02/19 01:20	1
4,6-Dinitro-2-methylphenol	13	U	20	13	ug/L		11/01/19 09:10	11/02/19 01:20	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		11/01/19 09:10	11/02/19 01:20	1
1,4-Dichlorobenzene	1.3	U	10	1.3	ug/L		11/01/19 09:10	11/02/19 01:20	1
1,2-Dichlorobenzene	1.3	U	10	1.3	ug/L		11/01/19 09:10	11/02/19 01:20	1
N-Nitrosodi-n-propylamine	0.43	U	1.0	0.43	ug/L		11/01/19 09:10	11/02/19 01:20	1
Hexachloroethane	0.80	U	2.0	0.80	ug/L		11/01/19 09:10	11/02/19 01:20	1
Nitrobenzene	0.57	U	1.0	0.57	ug/L		11/01/19 09:10	11/02/19 01:20	1
Isophorone	0.80	U	10	0.80	ug/L		11/01/19 09:10	11/02/19 01:20	1
Bis(2-chloroethoxy)methane	0.59	U	10	0.59	ug/L		11/01/19 09:10	11/02/19 01:20	1
1,2,4-Trichlorobenzene	0.64	U	2.0	0.64	ug/L		11/01/19 09:10	11/02/19 01:20	1
Naphthalene	1.1	U	10	1.1	ug/L		11/01/19 09:10	11/02/19 01:20	1
4-Chloroaniline	1.9	U	10	1.9	ug/L		11/01/19 09:10	11/02/19 01:20	1
Hexachlorobutadiene	0.78		1.0	0.78			11/01/19 09:10	11/02/19 01:20	1
2-Methylnaphthalene	1.1	U	10	1.1	ug/L		11/01/19 09:10	11/02/19 01:20	1
Hexachlorocyclopentadiene	3.6	U	10	3.6	ug/L		11/01/19 09:10	11/02/19 01:20	1
2-Chloronaphthalene	1.2	U	10		ug/L		11/01/19 09:10	11/02/19 01:20	1
2-Nitroaniline	0.47	U	10	0.47			11/01/19 09:10	11/02/19 01:20	1
Dimethyl phthalate	0.77	U	10	0.77			11/01/19 09:10	11/02/19 01:20	1
Acenaphthylene	0.82		10	0.82			11/01/19 09:10	11/02/19 01:20	1
2,6-Dinitrotoluene	0.83	U	2.0	0.83			11/01/19 09:10	11/02/19 01:20	1
3-Nitroaniline	1.9	U	10		ug/L		11/01/19 09:10	11/02/19 01:20	1
Acenaphthene	1.1	U	10				11/01/19 09:10	11/02/19 01:20	
Dibenzofuran	1.1	U	10		ug/L		11/01/19 09:10	11/02/19 01:20	1
2,4-Dinitrotoluene	1.0		2.0		ug/L			11/02/19 01:20	1
Diethyl phthalate	0.98		10		ug/L			11/02/19 01:20	
4-Chlorophenyl phenyl ether	1.3		10		ug/L			11/02/19 01:20	1
Fluorene	0.91		10		ug/L			11/02/19 01:20	1
4-Nitroaniline	1.2		10		ug/L			11/02/19 01:20	1
N-Nitrosodiphenylamine	0.89		10		ug/L			11/02/19 01:20	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-10-US

Lab Sample ID: 460-195259-3 Date Collected: 10/30/19 11:35

Matrix: Water

Date Received: 10/30/19 20:50

Method: 8270D - Semivolatile Analyte	Result	Qualifier	ŘĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		11/01/19 09:10	11/02/19 01:20	1
Phenanthrene	0.58	U	10	0.58	ug/L		11/01/19 09:10	11/02/19 01:20	
Anthracene	0.63	U	10	0.63	ug/L		11/01/19 09:10	11/02/19 01:20	1
Carbazole	0.68	U	10	0.68	ug/L		11/01/19 09:10	11/02/19 01:20	1
Di-n-butyl phthalate	0.84	U	10	0.84	ug/L		11/01/19 09:10	11/02/19 01:20	1
Fluoranthene	0.84	U	10	0.84	ug/L		11/01/19 09:10	11/02/19 01:20	1
Pyrene	1.6	U	10	1.6	ug/L		11/01/19 09:10	11/02/19 01:20	1
Butyl benzyl phthalate	0.85	U	10	0.85	ug/L		11/01/19 09:10	11/02/19 01:20	1
3,3'-Dichlorobenzidine	1.4	U	10	1.4	ug/L		11/01/19 09:10	11/02/19 01:20	1
Chrysene	0.91	U	2.0	0.91	ug/L		11/01/19 09:10	11/02/19 01:20	1
Bis(2-ethylhexyl) phthalate	1.7	U	2.0	1.7	ug/L		11/01/19 09:10	11/02/19 01:20	1
Di-n-octyl phthalate	4.8	U	10	4.8	ug/L		11/01/19 09:10	11/02/19 01:20	1
Benzo[k]fluoranthene	0.67	U	1.0	0.67	ug/L		11/01/19 09:10	11/02/19 01:20	1
Indeno[1,2,3-cd]pyrene	0.94	U	2.0	0.94	ug/L		11/01/19 09:10	11/02/19 01:20	1
Dibenz(a,h)anthracene	0.72	U	1.0		ug/L		11/01/19 09:10	11/02/19 01:20	1
Benzo[g,h,i]perylene	1.4	U	10		ug/L		11/01/19 09:10	11/02/19 01:20	1
Diphenyl ether	1.2		10		ug/L			11/02/19 01:20	1
n,n'-Dimethylaniline	0.91	U	1.0		ug/L		11/01/19 09:10	11/02/19 01:20	1
Caprolactam	0.68	U	10		ug/L		11/01/19 09:10	11/02/19 01:20	1
bis (2-chloroisopropyl) ether	0.63		10		ug/L			11/02/19 01:20	1
Bisphenol-A	9.9		10		ug/L			11/02/19 01:20	1
N-Methylaniline	1.3		5.0		ug/L			11/02/19 01:20	1
TV Meany Mannine	1.0	Ü	0.0	1.0	ug, L		1 170 17 10 00.10	11702710 01.20	·
Tentatively Identified Compound	Est. Result		Unit		RT _	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	8.7		ug/L	2	.47		11/01/19 09:10	11/02/19 01:20	1
Carbamic acid, ethyl-, methyl ester		JN	ug/L	2	.69	6135-31-5	11/01/19 09:10	11/02/19 01:20	1
Unknown	35	J	ug/L	3	.87			11/02/19 01:20	1
2-Isopropoxyphenol	29	JN	ug/L	5	.20	4812-20-8	11/01/19 09:10	11/02/19 01:20	1
1-Propanol, 3-phenoxy-	14	JN	ug/L	5	.65	6180-61-6	11/01/19 09:10	11/02/19 01:20	1
Unknown	9.1	J	ug/L	5	.94		11/01/19 09:10	11/02/19 01:20	1
Unknown	8.5	J	ug/L	6	.09		11/01/19 09:10	11/02/19 01:20	1
Unknown	7.3	J	ug/L	6	.18		11/01/19 09:10	11/02/19 01:20	1
Unknown	41	J	ug/L	6	.78		11/01/19 09:10	11/02/19 01:20	1
Unknown	13	J	ug/L	7	.08		11/01/19 09:10	11/02/19 01:20	1
Unknown	13	J	ug/L	9	.45		11/01/19 09:10	11/02/19 01:20	1
Unknown	11	J	ug/L	11	.11		11/01/19 09:10	11/02/19 01:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	80		51 ₋ 108				•	11/02/19 01:20	277.40
Phenol-d5 (Surr)	24		14 - 39					11/02/19 01:20	1
Terphenyl-d14 (Surr)	24 81		40 ₋ 148					11/02/19 01:20	1
2,4,6-Tribromophenol (Surr)	85		26 ₋ 139					11/02/19 01:20	
2-Fluorophenol (Surr)	38		25 ₋ 58					11/02/19 01:20	1
2-Fluorobiphenyl (Surr)	70		45 ₋ 107					11/02/19 01:20	1
Method: 300.0 - Anions, Ion C									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	86.4	_	3.84		mg/L			11/01/19 19:58	32
Nitrate as N	0.056	U	0.10		mg/L			11/01/19 04:11	1
		U			mg/L			11/01/19 04:11	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: DDA-10-US

Lab Sample ID: 460-195259-3

Date Collected: 10/30/19 11:35 Date Received: 10/30/19 20:50

Matrix: Water

Job ID: 460-195120-1

Method: 300.0 - Anions, Ion C	hroma	togra	phy (Contin	ued)						
Analyte	F	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate		7.48		0.60	0.35	mg/L			11/01/19 04:11	
Method: 200.8 - Metals (ICP/N	IS) - To	tal R	ecoverable							
Analyte			Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sodium		3200		250	66.8	ug/L		10/31/19 21:00	11/01/19 16:46	
Magnesium		7610		250	24.8	ug/L		10/31/19 21:00	11/01/19 16:46	
Potassium		5070		250	73.5	ug/L		10/31/19 21:00	11/01/19 16:46	į
Calcium		3100		250	233	ug/L		10/31/19 21:00	11/01/19 16:46	
Method: 6010D - Metals (ICP)	- Disso	lved								
Analyte			Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cobalt, Dissolved		60.0		50.0	1.7	ug/L		11/01/19 09:25	11/01/19 21:07	
Iron, Dissolved		3100		150	34.2	ug/L		11/01/19 09:25	11/01/19 21:07	
Manganese, Dissolved		4500		15.0	0.99	ug/L		11/01/19 09:25	11/01/19 21:07	,
General Chemistry										
Analyte	F	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ammonia (as N)	0.104	0,69	J+	0.10	0.068	mg/L			11/01/19 12:34	-
Bicarbonate Alkalinity as CaCO3		97.0		5.0	5.0	mg/L			11/01/19 13:59	
			1.1	5.0	5.0	mg/L			11/01/19 13:59	
Carbonate Alkalinity as CaCO3		5.0	U	5.0	5.0	mg/L			1 1/0 1/ 10 10.00	

Client Sample ID: RBGW_103019

Date Collected: 10/30/19 14:15

Date Received: 10/30/19 20:50

Lab Sample ID: 460-195259-4 Matrix: Water

Method: 8260C SIM - Volat	ile Organic Co	mpounds	(GC/MS)					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.33	U	0.40	0.33 ug/L			11/02/19 12:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		72 - 133				11/02/19 12:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			11/04/19 15:32	1
Bromomethane	0.55	U	1.0	0.55	ug/L			11/04/19 15:32	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			11/04/19 15:32	1
Chloroethane	0.32	U	1.0	0.32	ug/L			11/04/19 15:32	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			11/04/19 15:32	1
Acetone	4.4	U	5.0	4.4	ug/L			11/04/19 15:32	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			11/04/19 15:32	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			11/04/19 15:32	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			11/04/19 15:32	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			11/04/19 15:32	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			11/04/19 15:32	1
Chloroform	0.33	U	1.0	0.33	ug/L			11/04/19 15:32	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			11/04/19 15:32	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			11/04/19 15:32	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			11/04/19 15:32	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			11/04/19 15:32	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: RBGW_103019

Lab Sample ID: 460-195259-4 Date Collected: 10/30/19 14:15

Matrix: Water

Date Received: 10/30/19 20:50

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Bromodichloromethane	0.34	U	1.0		ug/L			11/04/19 15:32	
1,2-Dichloropropane	0.35	U	1.0		ug/L			11/04/19 15:32	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			11/04/19 15:32	
Trichloroethene	0.31	U	1.0	0.31	ug/L			11/04/19 15:32	
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			11/04/19 15:32	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			11/04/19 15:32	
Benzene	0.20	U	1.0	0.20	ug/L			11/04/19 15:32	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			11/04/19 15:32	
Bromoform	0.54	U	1.0	0.54	ug/L			11/04/19 15:32	
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			11/04/19 15:32	
2-Hexanone	1.1	U	5.0	1.1	ug/L			11/04/19 15:32	
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			11/04/19 15:32	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			11/04/19 15:32	
Toluene	0.38	U	1.0	0.38	ug/L			11/04/19 15:32	
Chlorobenzene	0.38	U	1.0	0.38	ug/L			11/04/19 15:32	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			11/04/19 15:32	
Styrene	0.42	U	1.0	0.42	ug/L			11/04/19 15:32	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			11/04/19 15:32	
Diethyl ether	0.21	U	1.0	0.21	ug/L			11/04/19 15:32	
MTBE	0.47	U	1.0	0.47	ug/L			11/04/19 15:32	
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			11/04/19 15:32	
Cyclohexane	0.32	U	1.0	0.32	ug/L			11/04/19 15:32	
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			11/04/19 15:32	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			11/04/19 15:32	
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			11/04/19 15:32	
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			11/04/19 15:32	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			11/04/19 15:32	
Indane	0.35	U	1.0	0.35	ug/L			11/04/19 15:32	
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			11/04/19 15:32	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			11/04/19 15:32	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					11/04/19 15:32	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		74 - 132					11/04/19 15:32	
Toluene-d8 (Surr)	99		80 _ 120					11/04/19 15:32	
4-Bromofluorobenzene	96		77 - 124					11/04/19 15:32	

Method: 8270D SIM - Sem	ivolatile Organi	c Compour	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		11/01/19 09:10	11/02/19 00:11	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		11/01/19 09:10	11/02/19 00:11	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		11/01/19 09:10	11/02/19 00:11	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		11/01/19 09:10	11/02/19 00:11	1
Pentachlorophenol	0.15	U	0.20	0.15	ug/L		11/01/19 09:10	11/02/19 00:11	1
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026	ug/L		11/01/19 09:10	11/02/19 00:11	1

Eurofins TestAmerica, Edison 11/18/2019

Job ID: 460-195120-1 Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: RBGW_103019

Lab Sample ID: 460-195259-4 Data Callactad: 40/20/40 44:45

Adatriv. Water

Date Collected: 10/30/19 14:1 Date Received: 10/30/19 20:5	-							wiatrix	: vvater
Method: 8270D - Semivolat	***	. ,	•						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	0.29	U	10	0.29	ug/L		11/01/19 09:10	11/02/19 01:41	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		11/01/19 09:10	11/02/19 01:41	1
2-Methylphenol	0.67	U	10	0.67	ug/L		11/01/19 09:10	11/02/19 01:41	1
4-Methylphenol	0.65	U	10	0.65	ug/L		11/01/19 09:10	11/02/19 01:41	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		11/01/19 09:10	11/02/19 01:41	1

2,4-Dimethylphenol 0.62 U 10 11/01/19 09:10 11/02/19 01:41 1 0.62 ug/L 2,4-Dichlorophenol 1.1 U 10 11/01/19 09:10 11/02/19 01:41 1 1.1 ug/L 4-Chloro-3-methylphenol 0.58 -11 10 11/01/19 09:10 11/02/19 01:41 1 0.58 ug/L 2,4,6-Trichlorophenol 0.86 U 10 0.86 ug/L 11/01/19 09:10 11/02/19 01:41 1 2,4,5-Trichlorophenol 0.88 U 10 0.88 ug/L 11/01/19 09:10 11/02/19 01:41 1 2,4-Dinitrophenol 14 U 20 14 ug/L 11/01/19 09:10 11/02/19 01:41 1 4.0 U 20 11/01/19 09:10 11/02/19 01:41 4-Nitrophenol 4.0 ug/L 1 4,6-Dinitro-2-methylphenol 13 U 20 13 ug/L 11/01/19 09:10 11/02/19 01:41 1 2.0 10 2.0 11/01/19 09:10 11/02/19 01:41 1,3-Dichlorobenzene U ug/L 1 1,4-Dichlorobenzene 1.3 U 10 1.3 ug/L 11/01/19 09:10 11/02/19 01:41 1 1.2-Dichlorobenzene 1.3 Ü 10 11/01/19 09:10 11/02/19 01:41 1 1.3 ug/L N-Nitrosodi-n-propylamine 0.43 U 1.0 0.43 ug/L 11/01/19 09:10 11/02/19 01:41 1 Hexachloroethane 0.80 U 2.0 0.80 ug/L 11/01/19 09:10 11/02/19 01:41 1 Nitrobenzene 0.57 U 1.0 0.57 ug/L 11/01/19 09:10 11/02/19 01:41 1 Isophorone 0.80 U 10 0.80 ug/L 11/01/19 09:10 11/02/19 01:41 1 Bis(2-chloroethoxy)methane 0.59 U 10 0.59 ug/L 11/01/19 09:10 11/02/19 01:41 1 1,2,4-Trichlorobenzene 0.64 U 2.0 0.64 ug/L 11/01/19 09:10 11/02/19 01:41 Naphthalene 10 11/01/19 09:10 11/02/19 01:41 1.1 U 1.1 ug/L 1 10 4-Chloroaniline 1.9 U 1.9 ug/L 11/01/19 09:10 11/02/19 01:41 1 Hexachlorobutadiene 0.78 U 1.0 11/01/19 09:10 11/02/19 01:41 1 0.78 ug/L 2-Methylnaphthalene 1.1 U 10 1.1 ug/L 11/01/19 09:10 11/02/19 01:41 1 10 Hexachlorocyclopentadiene 3.6 U 3.6 ug/L 11/01/19 09:10 11/02/19 01:41 1 10 2-Chloronaphthalene 1.2 U 1.2 ug/L 11/01/19 09:10 11/02/19 01:41 2-Nitroaniline 0.47 U 10 0.47 ug/L 11/01/19 09:10 11/02/19 01:41 1 10 Dimethyl phthalate 0.77 U 0.77 ug/L 11/01/19 09:10 11/02/19 01:41 1 10 0.82 Acenaphthylene Ü 11/01/19 09:10 11/02/19 01:41 1 0.82 ug/L 2.0 2,6-Dinitrotoluene 0.83 U 0.83 ug/L 11/01/19 09:10 11/02/19 01:41 1 1.9 U 3-Nitroaniline 10 1.9 ug/L 11/01/19 09:10 11/02/19 01:41 1 Acenaphthene 1.1 Ü 10 ug/L 11/01/19 09:10 11/02/19 01:41 1 1.1 U 10 1 Dibenzofuran 11/01/19 09:10 11/02/19 01:41 1.1 ug/L 2,4-Dinitrotoluene 1.0 U 2.0 11/01/19 09:10 11/02/19 01:41 1.0 ug/L 10 Diethyl phthalate 0.98 H 0.98 11/01/19 09:10 11/02/19 01:41 1 ug/L 4-Chlorophenyl phenyl ether 1.3 U 10 11/01/19 09:10 11/02/19 01:41 1.3 ug/L 1 Fluorene 0.91 U 10 0.91 ug/L 11/01/19 09:10 11/02/19 01:41 1 4-Nitroaniline 1.2 Ü 10 1.2 11/01/19 09:10 11/02/19 01:41 1 ug/L 0.89 10 11/01/19 09:10 11/02/19 01:41 N-Nitrosodiphenylamine U 0.89 ug/L 1 4-Bromophenyl phenyl ether 0.75 U 10 0.75 ug/L 11/01/19 09:10 11/02/19 01:41 1 Phenanthrene 0.58 U 10 11/01/19 09:10 11/02/19 01:41 1 0.58 ug/L Anthracene 0.63 U 10 0.63 ug/L 11/01/19 09:10 11/02/19 01:41 1 0.68 U 10 0.68 ug/L 11/01/19 09:10 11/02/19 01:41 Carbazole 1 Di-n-butyl phthalate 0.84 U 10 0.84 ug/L 11/01/19 09:10 11/02/19 01:41 1 Fluoranthene 0.84 U 10 0.84 ug/L 11/01/19 09:10 11/02/19 01:41 1 10 Pyrene 1.6 U 1.6 ug/L 11/01/19 09:10 11/02/19 01:41 1 Butyl benzyl phthalate 0.85 U 10 0.85 ug/L 11/01/19 09:10 11/02/19 01:41

> Eurofins TestAmerica, Edison 11/18/2019

Page 52 of 2072

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: RBGW_103019

Lab Sample ID: 460-195259-4 Date Collected: 10/30/19 14:15

Matrix: Water

Date Received: 10/30/19 20:50

Method: 8270D - Semivolatile					•				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
3,3'-Dichlorobenzidine	1.4		10		ug/L		11/01/19 09:10		1
Chrysene	0.91		2.0		ug/L			11/02/19 01:41	1
Bis(2-ethylhexyl) phthalate	1.7		2.0		ug/L		11/01/19 09:10		1
Di-n-octyl phthalate	4.8		10		ug/L		11/01/19 09:10	11/02/19 01:41	1
Benzo[k]fluoranthene	0.67	U	1.0		ug/L		11/01/19 09:10	11/02/19 01:41	1
ndeno[1,2,3-cd]pyrene	0.94	U	2.0	0.94	ug/L		11/01/19 09:10	11/02/19 01:41	1
Dibenz(a,h)anthracene	0.72	U	1.0		ug/L		11/01/19 09:10	11/02/19 01:41	1
Benzo[g,h,i]perylene	1.4	U	10		ug/L		11/01/19 09:10	11/02/19 01:41	1
Diphenyl ether	1.2	U	10	1.2	ug/L		11/01/19 09:10	11/02/19 01:41	1
n,n'-Dimethylaniline	0.91	U	1.0	0.91	ug/L		11/01/19 09:10	11/02/19 01:41	1
Caprolactam	0.68	U	10	0.68	ug/L		11/01/19 09:10	11/02/19 01:41	1
bis (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		11/01/19 09:10	11/02/19 01:41	1
Bisphenol-A	9.9	U	10	9.9	ug/L		11/01/19 09:10	11/02/19 01:41	1
N-Methylaniline	1.3	U	5.0	1.3	ug/L		11/01/19 09:10	11/02/19 01:41	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D .	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L				11/01/19 09:10	11/02/19 01:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	81		51 - 108				11/01/19 09:10	11/02/19 01:41	1
Phenol-d5 (Surr)	29		14 - 39				11/01/19 09:10	11/02/19 01:41	1
Terphenyl-d14 (Surr)	88		40 - 148				11/01/19 09:10	11/02/19 01:41	1
2,4,6-Tribromophenol (Surr)	89		26 - 139				11/01/19 09:10	11/02/19 01:41	
2-Fluorophenol (Surr)	43		25 - 58				11/01/19 09:10	11/02/19 01:41	1
2-Fluorobiphenyl (Surr)	72		45 - 107				11/01/19 09:10	11/02/19 01:41	1
		_							
Method: 300.0 - Anions, Ion C			D.	MDI	11:4		Dunnand	A I I	D:: E
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	0.014		0.12	0.014	-			11/01/19 08:05	1
Nitrate as N	0.056		0.10	0.056	-			11/01/19 08:05	1
Nitrite as N	0.076	. .	0.12	0.076	-			11/01/19 08:05	1
Sulfate	0.35	U	0.60	0.35	mg/L			11/01/19 08:05	1
Method: 200.8 - Metals (ICP/N	,								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Sodium	66.8	U	250	66.8	ug/L		10/31/19 21:00	11/01/19 16:48	5
Magnesium	24.8	U	250	24.8	ug/L		10/31/19 21:00	11/01/19 16:48	5
Potassium	73.5	U	250	73.5	ug/L		10/31/19 21:00	11/01/19 16:48	5
Calcium	233	U	250	233	ug/L		10/31/19 21:00	11/01/19 16:48	5
Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt, Dissolved	1.7		50.0	1.7	ug/L		11/01/19 09:25		1
Iron, Dissolved	34.2		150		ug/L		11/01/19 09:25		1
Manganese, Dissolved	0.99		15.0		ug/L		11/01/19 09:25		1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
							-	-	
Ammonia (as N)	0.068	U	0.10	0.068	mg/L			11/01/19 12:29	1
Ammonia (as N) Bicarbonate Alkalinity as CaCO3	0.068 5.0		0.10 5.0	0.068 5.0	mg/L mg/L			11/01/19 12:29 11/01/19 14:05	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: RBGW_103019

Lab Sample ID: 460-195259-4 Date Collected: 10/30/19 14:15

Matrix: Water

Date Received: 10/30/19 20:50

General Chemistry (Continued))								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfide	0.58	U	1.0	0.58	mg/L			11/01/19 17:45	1

Client Sample ID: TBGW_103019

Lab Sample ID: 460-195259-5

Date Collected: 10/30/19 14:15 Date Received: 10/30/19 20:50

Matrix: Water

Method: 8260C SIM - Vola	itile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.33	U	0.40	0.33	ug/L			11/02/19 13:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		72 - 133			-		11/02/19 13:13	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			11/04/19 13:20	1
Bromomethane	0.55	U	1.0	0.55	ug/L			11/04/19 13:20	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			11/04/19 13:20	1
Chloroethane	0.32	U	1.0	0.32	ug/L			11/04/19 13:20	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			11/04/19 13:20	1
Acetone	8.8		5.0	4.4	ug/L			11/04/19 13:20	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			11/04/19 13:20	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			11/04/19 13:20	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			11/04/19 13:20	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			11/04/19 13:20	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			11/04/19 13:20	1
Chloroform	0.33	U	1.0	0.33	ug/L			11/04/19 13:20	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			11/04/19 13:20	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			11/04/19 13:20	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			11/04/19 13:20	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			11/04/19 13:20	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			11/04/19 13:20	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			11/04/19 13:20	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			11/04/19 13:20	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			11/04/19 13:20	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			11/04/19 13:20	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			11/04/19 13:20	1
Benzene	0.20	U	1.0	0.20	ug/L			11/04/19 13:20	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			11/04/19 13:20	1
Bromoform	0.54	U	1.0	0.54	ug/L			11/04/19 13:20	1
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			11/04/19 13:20	1
2-Hexanone	1.1	U	5.0	1.1	ug/L			11/04/19 13:20	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			11/04/19 13:20	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			11/04/19 13:20	1
Toluene	0.38	U	1.0	0.38	ug/L			11/04/19 13:20	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			11/04/19 13:20	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			11/04/19 13:20	1
Styrene	0.42	U	1.0	0.42	-			11/04/19 13:20	1
Xylenes, Total	0.65	U	2.0	0.65	ug/L			11/04/19 13:20	1
Diethyl ether	0.21	U	1.0	0.21				11/04/19 13:20	1

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-195120-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_103019

Lab Sample ID: 460-195259-5 Date Collected: 10/30/19 14:15

Matrix: Water

Date Received: 10/30/19 20:50

Analyte	Result	Qualifier	RL		MDL	Unit	D	Prepared	Analyzed	Dil Fac
MTBE	0.47	U	1.0	,	0.47	ug/L			11/04/19 13:20	1
Tetrahydrofuran	1.0	U	2.0)	1.0	ug/L			11/04/19 13:20	1
Cyclohexane	0.32	U	1.0)	0.32	ug/L			11/04/19 13:20	1
1,2,4-Trimethylbenzene	0.37	U	1.0)	0.37	ug/L			11/04/19 13:20	1
1,3,5-Trimethylbenzene	0.33	U	1.0)	0.33	ug/L			11/04/19 13:20	1
Isopropylbenzene	0.34	U	1.0)	0.34	ug/L			11/04/19 13:20	1
N-Propylbenzene	0.32	U	1.0)	0.32	ug/L			11/04/19 13:20	1
Methylcyclohexane	0.26	U	1.0)	0.26	ug/L			11/04/19 13:20	1
Indane	0.35	U	1.0)	0.35	ug/L			11/04/19 13:20	1
Dichlorofluoromethane	0.34	U	1.0)	0.34	ug/L			11/04/19 13:20	1
1,2,3-Trimethylbenzene	0.36	U	1.0)	0.36	ug/L			11/04/19 13:20	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Tentatively Identified Compound	None		ug/L						11/04/19 13:20	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		74 - 132	-					11/04/19 13:20	1
Toluene-d8 (Surr)	100		80 - 120						11/04/19 13:20	1
4-Bromofluorobenzene	95		77 - 124						11/04/19 13:20	1
Dibromofluoromethane (Surr)	97		72 - 131						11/04/19 13:20	1

Client: Golder Associates Inc.

Job ID: 460-195926-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: AWC-E1 (132) Lab Sample ID: 460-195926-1

Date Collected: 11/07/19 10:20 Matrix: Water

Date Collected: 11/07/19 10:20 Matrix: Water Date Received: 11/07/19 21:15

Method: 300.0 - Anions, Ion Chr Analyte	***	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.058	<u> </u>	0.10	0.056		— <u>-</u>		11/08/19 18:11	1
Nitrite as N	0.076		0.12	0.076	-			11/08/19 18:11	1
Sulfate	22.5		0.60		mg/L			11/08/19 18:11	1
Method: 300.0 - Anions, Ion Chi	omatogra	iphy - DL							
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	59.0	D	2.76	0.32	mg/L			11/08/19 21:26	23
- Method: 200.8 - Metals (ICP/MS)	- Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	30700		250	66.8	ug/L		11/08/19 20:50	11/11/19 14:28	5
Magnesium	12600		250	24.8	ug/L		11/08/19 20:50	11/11/19 14:28	5
Potassium	3990		250	73.5	ug/L		11/08/19 20:50	11/11/19 14:28	5
Calcium	26400		250	233	ug/L		11/08/19 20:50	11/11/19 14:28	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	1.6		0.10	0.034	mg/L			11/13/19 11:13	1
Bicarbonate Alkalinity as CaCO3	84.0		5.0	5.0	mg/L			11/09/19 10:38	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			11/09/19 10:38	1
Sulfide	0.58	U	1.0		mg/L			11/10/19 10:30	1

Client Sample ID: AWC-E1 (156)

Lab Sample ID: 460-195926-2

Date Collected: 11/07/19 11:05 Matrix: Water

Method: 300.0 - Anions, Ion Chi Analyte	-	ıphy Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.060		0.10	0.056		<u>-</u>	- Toparoa	11/08/19 18:26	1
Nitrite as N	0.076	_	0.12	0.076	_			11/08/19 18:26	1
Sulfate	20.5	-	0.60		mg/L			11/08/19 18:26	1
- Method: 300.0 - Anions, Ion Chi	romatogra	iphy - DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61.5	D	2.88	0.34	mg/L			11/08/19 21:40	24
Method: 200.8 - Metals (ICP/MS Analyte	•	ecoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
•	•		RL 250 250 250 250	66.8 24.8 73.5	Unit ug/L ug/L ug/L ug/L	<u>D</u>	Prepared 11/08/19 20:50 11/08/19 20:50 11/08/19 20:50 11/08/19 20:50	11/11/19 14:30 11/11/19 14:30 11/11/19 14:30	5 5 5
Analyte Sodium Magnesium Potassium	Result 30900 12500 4000 26000		250 250 250	66.8 24.8 73.5	ug/L ug/L ug/L ug/L	<u>D</u>	11/08/19 20:50 11/08/19 20:50 11/08/19 20:50	11/11/19 14:30 11/11/19 14:30 11/11/19 14:30	5 5 5 5
Analyte Sodium Magnesium Potassium Calcium General Chemistry Analyte	Result 30900 12500 4000 26000	Qualifier	250 250 250 250 250	66.8 24.8 73.5 233	ug/L ug/L ug/L ug/L	=	11/08/19 20:50 11/08/19 20:50 11/08/19 20:50 11/08/19 20:50	11/11/19 14:30 11/11/19 14:30 11/11/19 14:30 11/11/19 14:30	5 5 5 5 Dil Fac
Analyte Sodium Magnesium Potassium Calcium General Chemistry Analyte	Result 30900 12500 4000 26000	Qualifier	250 250 250 250 250	66.8 24.8 73.5 233 MDL 0.034	ug/L ug/L ug/L ug/L	=	11/08/19 20:50 11/08/19 20:50 11/08/19 20:50 11/08/19 20:50	11/11/19 14:30 11/11/19 14:30 11/11/19 14:30 11/11/19 14:30 Analyzed	5 5 5 5 Dil Fac
Analyte Sodium Magnesium Potassium Calcium General Chemistry Analyte Ammonia (as N)	Result 30900 12500 4000 26000 Result 1.6	Qualifier Qualifier	250 250 250 250 250 RL 0.10	66.8 24.8 73.5 233 MDL 0.034 5.0	ug/L ug/L ug/L ug/L Unit mg/L	=	11/08/19 20:50 11/08/19 20:50 11/08/19 20:50 11/08/19 20:50	11/11/19 14:30 11/11/19 14:30 11/11/19 14:30 11/11/19 14:30 Malyzed 11/13/19 11:14	Dil Fac 5 5 5 5 5 6 7 7 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8

Eurofins TestAmerica, Edison 11/19/2019

Client: Golder Associates Inc. Job ID: 460-195926-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: AWC-E2 (140) Lab Sample ID: 460-195926-3

Date Collected: 11/07/19 12:00 Matrix: Water

Date Received: 11/07/19 21:15

Method: 300.0 - Anions, Ion Chr Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.056	U –	0.10	0.056	mg/L			11/08/19 18:41	1
Nitrite as N	0.076	U	0.12	0.076	_			11/08/19 18:41	1
Sulfate	11.0		0.60	0.35	mg/L			11/08/19 18:41	1
Method: 300.0 - Anions, Ion Ch	omatogra	phy - DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	28.0	D	1.20	0.14	mg/L			11/08/19 21:55	10
Sodium Magnesium Potassium	17300 7270 2090		250 250 250	24.8 73.5	ug/L		11/08/19 20:50 11/08/19 20:50 11/08/19 20:50	11/11/19 14:33 11/11/19 14:33 11/11/19 14:33	
Potassium Calcium	2090 18200		250 250		ug/L ug/L			11/11/19 14:33 11/11/19 14:33	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.034	U	0.10	0.034	mg/L			11/13/19 11:16	1
Bicarbonate Alkalinity as CaCO3	69.4		5.0	5.0	mg/L			11/09/19 10:23	1
	5.0	11	5.0	5.0	mg/L			11/09/19 10:23	1
Carbonate Alkalinity as CaCO3	5.0	0	0.0						

Client Sample ID: AWC-F2 (165)

Client Sample ID: AVVC-EZ (100)	Lad Sample ID: 400-130320-4
Date Collected: 11/07/19 13:10	Matrix: Water
Date Received: 11/07/19 21:15	

Pate Collected: 11/07/19 13:10 Pate Received: 11/07/19 21:15								Matrix	: Wate
- Method: 300.0 - Anions, Ion Chr Analyte		ıphy Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.056		0.10	0.056			Trepared	11/08/19 18:56	- Diri u
Nitrite as N	0.076	_	0.12	0.076	-			11/08/19 18:56	
Sulfate	17.6	-	0.60		mg/L			11/08/19 18:56	
_ Method: 300.0 - Anions, Ion Chr	omatogra	phy - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	41.9	D	1.92	0.22	mg/L			11/08/19 22:10	16
Method: 200.8 - Metals (ICP/MS) Analyte		ecoverable Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	27600		250	66.8	ug/L		11/08/19 20:50	11/11/19 14:35	
Magnesium	10900		250	24.8	ug/L		11/08/19 20:50	11/11/19 14:35	į
Potassium	2880		250	73.5	ug/L		11/08/19 20:50	11/11/19 14:35	į
Calcium	26600		250	233	ug/L		11/08/19 20:50	11/11/19 14:35	Ę
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.59		0.10	0.034	mg/L			11/13/19 11:22	
Bicarbonate Alkalinity as CaCO3	98.9		5.0	5.0	mg/L			11/09/19 10:52	
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			11/09/19 10:52	

Page 15 of 680

Eurofins TestAmerica, Edison

Client: Golder Associates Inc.

Project/Site: DS&G Semi-Annual Groundwater

Lab Sample ID: 460-195926-5 Client Sample ID: AWC-2

Date Collected: 11/07/19 13:40 Date Received: 11/07/19 21:15

Matrix: Water

Job ID: 460-195926-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	4.20		0.10	0.056	mg/L			11/08/19 19:11	1
Nitrite as N	0.076	U	0.12	0.076	mg/L			11/08/19 19:11	1
Sulfate	14.6		0.60	0.35	mg/L			11/08/19 19:11	1
Method: 300.0 - Anions, Ion Chr	omatogra	phy - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	28.5	Q Q	1.32	0.15	mg/L			11/08/19 22:24	11
- Method: 200.8 - Metals (ICP/MS)	- Total R	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sodium	13200		250	66.8	ug/L		11/08/19 20:50	11/11/19 14:43	5
Magnesium	5950		250	24.8	ug/L		11/08/19 20:50	11/11/19 14:43	5
Potassium	2040		250	73.5	ug/L		11/08/19 20:50	11/11/19 14:43	5
Calcium	11900		250	233	ug/L		11/08/19 20:50	11/11/19 14:43	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.034	U	0.10	0.034	mg/L			11/13/19 11:24	1
Bicarbonate Alkalinity as CaCO3	14.0		5.0	5.0	mg/L			11/09/19 11:00	1
Carbonate Alkalinity as CaCO3	5.0	U	5.0	5.0	mg/L			11/09/19 11:00	1
		U	1.0		mg/L			11/10/19 10:30	

Client Sample ID: AWC-6R Lab Sample ID: 460-195926-6

Date Collected: 11/07/19 14:00

Date Received: 11/07/19 21:15

Matrix: Water

Method: 8260C SIM - Volatile	Organic Co	mpounds ((GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.88		0.40	0.33	ug/L			11/09/19 03:04	1
Surrogate 4-Bromofluorobenzene	%Recovery	Qualifier	Limits 72 - 133			-	Prepared	Analyzed 11/09/19 03:04	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40	U	1.0	0.40	ug/L			11/12/19 05:29	1
Bromomethane	0.55	U	1.0	0.55	ug/L			11/12/19 05:29	1
Vinyl chloride	0.17	U	1.0	0.17	ug/L			11/12/19 05:29	1
Chloroethane	0.32	U	1.0	0.32	ug/L			11/12/19 05:29	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			11/12/19 05:29	1
Acetone	4.4	U	5.0	4.4	ug/L			11/12/19 05:29	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			11/12/19 05:29	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			11/12/19 05:29	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			11/12/19 05:29	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			11/12/19 05:29	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			11/12/19 05:29	1
Chloroform	0.43	J	1.0	0.33	ug/L			11/12/19 05:29	1
1,2-Dichloroethane	0.64	J	1.0	0.43	ug/L			11/12/19 05:29	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			11/12/19 05:29	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			11/12/19 05:29	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			11/12/19 05:29	1

Eurofins TestAmerica, Edison

11/19/2019

Client: Golder Associates Inc.

Job ID: 460-195926-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: AWC-6R Lab Sample ID: 460-195926-6

Date Collected: 11/07/19 14:00 Matrix: Water Date Received: 11/07/19 21:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			11/12/19 05:29	
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			11/12/19 05:29	
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			11/12/19 05:29	
Trichloroethene	0.31	U	1.0	0.31	ug/L			11/12/19 05:29	
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			11/12/19 05:29	
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			11/12/19 05:29	
Benzene	0.20	U	1.0	0.20	ug/L			11/12/19 05:29	
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			11/12/19 05:29	
Bromoform	0.54	U	1.0	0.54	ug/L			11/12/19 05:29	
4-Methyl-2-pentanone	1.3	U	5.0	1.3	ug/L			11/12/19 05:29	
2-Hexanone	1.1	U	5.0	1.1	ug/L			11/12/19 05:29	
Tetrachloroethene	0.62	J	1.0	0.25	ug/L			11/12/19 05:29	
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			11/12/19 05:29	
Toluene	0.38	U	1.0	0.38	ug/L			11/12/19 05:29	
Chlorobenzene	0.38	U	1.0	0.38	ug/L			11/12/19 05:29	
Ethylbenzene	0.30	U	1.0	0.30	ug/L			11/12/19 05:29	
Styrene	0.42	U	1.0	0.42	ug/L			11/12/19 05:29	
Xylenes, Total	0.65	U	2.0	0.65	ug/L			11/12/19 05:29	
Diethyl ether	0.21	U	1.0	0.21	ug/L			11/12/19 05:29	
MTBE	0.58	J	1.0	0.47	ug/L			11/12/19 05:29	
Tetrahydrofuran	1.0	U	2.0	1.0	ug/L			11/12/19 05:29	
Cyclohexane	0.32	U	1.0	0.32	ug/L			11/12/19 05:29	
1,2,4-Trimethylbenzene	0.37	U	1.0	0.37	ug/L			11/12/19 05:29	
1,3,5-Trimethylbenzene	0.33	U	1.0	0.33	ug/L			11/12/19 05:29	
Isopropylbenzene	0.34	U	1.0	0.34	ug/L			11/12/19 05:29	
N-Propylbenzene	0.32	U	1.0	0.32	ug/L			11/12/19 05:29	
Methylcyclohexane	0.26	U	1.0	0.26	ug/L			11/12/19 05:29	
Indane	0.35	U	1.0	0.35	ug/L			11/12/19 05:29	
Dichlorofluoromethane	0.34	U	1.0	0.34	ug/L			11/12/19 05:29	
1,2,3-Trimethylbenzene	0.36	U	1.0	0.36	ug/L			11/12/19 05:29	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Tentatively Identified Compound	None		ug/L					11/12/19 05:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	91		74 - 132			•		11/12/19 05:29	
Toluene-d8 (Surr)	90		80 - 120					11/12/19 05:29	
4-Bromofluorobenzene	91		77 - 124					11/12/19 05:29	
Dibromofluoromethane (Surr)	94		72 - 131					11/12/19 05:29	

Method: 8270D SIM - Semiv	olatile Organi	c Compour	ids (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	0.016	U	0.050	0.016	ug/L		11/09/19 07:46	11/10/19 06:59	1
Benzo[a]pyrene	0.022	U	0.050	0.022	ug/L		11/09/19 07:46	11/10/19 06:59	1
Benzo[b]fluoranthene	0.024	U	0.050	0.024	ug/L		11/09/19 07:46	11/10/19 06:59	1
Hexachlorobenzene	0.013	U	0.020	0.013	ug/L		11/09/19 07:46	11/10/19 06:59	1
Pentachlorophenol	0.16	J	0.20	0.15	ug/L		11/09/19 07:46	11/10/19 06:59	1
Bis(2-chloroethyl)ether	0.026	U	0.030	0.026	ug/L		11/09/19 07:46	11/10/19 06:59	1

Eurofins TestAmerica, Edison 11/19/2019

Client: Golder Associates Inc. Job ID: 460-195926-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: AWC-6R

Lab Sample ID: 460-195926-6

Matrix: Water

Date Collected: 11/07/19 14:00 Date Received: 11/07/19 21:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Phenol	0.29	U *	10	0.29	ug/L		11/09/19 07:46	11/10/19 02:28	
2-Chlorophenol	0.38	U	10	0.38	ug/L		11/09/19 07:46	11/10/19 02:28	
2-Methylphenol	0.67	U	10	0.67	ug/L		11/09/19 07:46	11/10/19 02:28	
I-Methylphenol	0.65	U	10	0.65	ug/L		11/09/19 07:46	11/10/19 02:28	
2-Nitrophenol	0.75	U	10	0.75	ug/L		11/09/19 07:46	11/10/19 02:28	
2,4-Dimethylphenol	0.62	U	10	0.62	ug/L		11/09/19 07:46	11/10/19 02:28	
2,4-Dichlorophenol	1.1	U	10	1.1	ug/L		11/09/19 07:46	11/10/19 02:28	
I-Chloro-3-methylphenol	0.58	U	10	0.58	ug/L		11/09/19 07:46	11/10/19 02:28	
2,4,6-Trichlorophenol	0.86	U	10	0.86	ug/L		11/09/19 07:46	11/10/19 02:28	
2,4,5-Trichlorophenol	0.88	U	10	0.88	ug/L		11/09/19 07:46	11/10/19 02:28	
2,4-Dinitrophenol	14	U *	20	14	ug/L		11/09/19 07:46	11/10/19 02:28	
1-Nitrophenol	4.0	U	20	4.0	ug/L		11/09/19 07:46	11/10/19 02:28	
1,6-Dinitro-2-methylphenol	13	U *	20	13	ug/L		11/09/19 07:46	11/10/19 02:28	
1,3-Dichlorobenzene	2.0	U	10		ug/L			11/10/19 02:28	
I,4-Dichlorobenzene	1.3		10		ug/L			11/10/19 02:28	
I,2-Dichlorobenzene	1.3		10		ug/L			11/10/19 02:28	
N-Nitrosodi-n-propylamine	0.43		1.0	0.43	-			11/10/19 02:28	
Hexachloroethane	0.80		2.0	0.80	-			11/10/19 02:28	
Vitrobenzene	0.57		1.0	0.57	-			11/10/19 02:28	
sophorone	0.80		10	0.80	-			11/10/19 02:28	
Bis(2-chloroethoxy)methane	0.59		10	0.59	-			11/10/19 02:28	
,2,4-Trichlorobenzene	0.64		2.0	0.64	-			11/10/19 02:28	
laphthalene	1.1		10		ug/L			11/10/19 02:28	
-Chloroaniline	1.9		10		ug/L			11/10/19 02:28	
lexachlorobutadiene	0.78		1.0	0.78				11/10/19 02:28	
:-Methylnaphthalene	1.1		10		ug/L			11/10/19 02:28	
Hexachlorocyclopentadiene	3.6		10		ug/L			11/10/19 02:28	
2-Chloronaphthalene	1.2		10		ug/L			11/10/19 02:28	
2-Nitroaniline	0.47		10	0.47	_			11/10/19 02:28	
Dimethyl phthalate	0.77		10	0.47	_			11/10/19 02:28	
Acenaphthylene	0.82		10	0.82	_			11/10/19 02:28	
2,6-Dinitrotoluene	0.83		2.0	0.83	-			11/10/19 02:28	
3-Nitroaniline	1.9		10		ug/L			11/10/19 02:28	
Acenaphthene	1.1		10		ug/L			11/10/19 02:28	
Dibenzofuran	1.1		10					11/10/19 02:28	
2,4-Dinitrotoluene	1.0		2.0		ug/L ug/L			11/10/19 02:28	
	0.98		10					11/10/19 02:28	
Diethyl phthalate				0.98					
1-Chlorophenyl phenyl ether	1.3		10		ug/L			11/10/19 02:28	
Fluorene	0.91		10	0.91	-			11/10/19 02:28	
l-Nitroaniline	1.2		10		ug/L			11/10/19 02:28	
N-Nitrosodiphenylamine	0.89		10	0.89	-			11/10/19 02:28	
l-Bromophenyl phenyl ether	0.75		10	0.75				11/10/19 02:28	
Phenanthrene	0.58		10	0.58				11/10/19 02:28	
Anthracene	0.63		10	0.63				11/10/19 02:28	
Carbazole	0.68		10	0.68				11/10/19 02:28	
Di-n-butyl phthalate	0.84		10	0.84				11/10/19 02:28	
Fluoranthene	0.84		10	0.84				11/10/19 02:28	
Pyrene Butyl benzyl phthalate	1.6 0.85		10 10	1.6 0.85	ug/L			11/10/19 02:28 11/10/19 02:28	

Eurofins TestAmerica, Edison

11/19/2019

Client: Golder Associates Inc. Job ID: 460-195926-1

Project/Site: DS&G Semi-Annual Groundwater

Date Received: 11/07/19 21:15

Client Sample ID: AWC-6R

Lab Sample ID: 460-195926-6 Date Collected: 11/07/19 14:00

Matrix: Water

Method: 8270D - Semivolatile ^{Analyte}		Qualifier	RL		رام - Unit	D	Prepared	Analyzed	Dil Fa
3.3'-Dichlorobenzidine	1.4		10	1.4			11/09/19 07:46	11/10/19 02:28	Diric
Chrysene	0.91		2.0	0.9	U		11/09/19 07:46	11/10/19 02:28	
Bis(2-ethylhexyl) phthalate	1.7		2.0	1.			11/09/19 07:46	11/10/19 02:28	
Di-n-octyl phthalate	4.8		10	4.8	•		11/09/19 07:46	11/10/19 02:28	
Benzo[k]fluoranthene	0.67		1.0		ug/L ug/L			11/10/19 02:28	
ndeno[1,2,3-cd]pyrene	0.94		2.0	0.94				11/10/19 02:28	
Dibenz(a,h)anthracene	0.72		1.0		ug/L			11/10/19 02:28	
Benzo[g,h,i]perylene	1.4		10		ug/L			11/10/19 02:28	
Diphenyl ether	1.2		10		ug/L			11/10/19 02:28	
i,n'-Dimethylaniline	0.91		1.0	0.9	•			11/10/19 02:28	
Caprolactam	0.68		10		ug/L			11/10/19 02:28	
ois (2-chloroisopropyl) ether	0.63		10	0.60				11/10/19 02:28	
Bisphenol-A	9.9		10	9.9	•			11/10/19 02:28	
N-Methylaniline		U.*	5.0		3 ug/L			11/10/19 02:28	
v-Meurylai IIIII le	1.5	0 ~	5.0	1.3	J ug/L		11/09/19 07.40	11/10/19 02.20	
entatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
entatively Identified Compound	None		ug/L				11/09/19 07:46	11/10/19 02:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
litrobenzene-d5 (Surr)	88		51 - 108				11/09/19 07:46	11/10/19 02:28	
Phenol-d5 (Surr)	27		14 - 39				11/09/19 07:46	11/10/19 02:28	
erphenyl-d14 (Surr)	95		40 - 148				11/09/19 07:46	11/10/19 02:28	
7,4,6-Tribromophenol (Surr)	96		26 - 139				11/09/19 07:46	11/10/19 02:28	
2-Fluorophenol (Surr)	43		25 ₋ 58				11/09/19 07:46	11/10/19 02:28	
?-Fluorobiphenyl (Surr)	77		45 _ 107				11/09/19 07:46	11/10/19 02:28	
Matheda 200 O Asiana Ian C	.								
Method: 300.0 - Anions, Ion C Analyte		pny Qualifier	RL	MD	_ Unit	D	Prepared	Analyzed	Dil Fa
litrate as N	4.26	Qualifier	0.10		mg/L	b		11/08/19 19:26	DITE
Vitrate as N	0.076	11	0.10		mg/L			11/08/19 19:26	
Sulfate	18.9	O	0.12		5 mg/L			11/08/19 19:26	
Surfate	16.9		0.60	0.50) IIIg/L			11/00/19 19.20	
Method: 300.0 - Anions, Ion C	hromatogra	phy - DL							
Analyte		Qualifier	RL	MDI	. Unit	D	Prepared	Analyzed	Dil F
Chloride	52.3	D	2.40	0.28	mg/L			11/08/19 22:39	- 2
			_						
Method: 200.8 - Metals (ICP/N				MAD	11	_	B	A 1	D: 1 E
Analyte		Qualifier	RL		_ Unit	D	Prepared	Analyzed	Dil F
Sodium	20600		250		3 ug/L		11/08/19 20:50	11/11/19 14:50	
Magnesium	7650		250		3 ug/L		11/08/19 20:50	11/11/19 14:50	
Potassium	2540		250		5 ug/L		11/08/19 20:50	11/11/19 14:50	
Calcium	16900		250	23.	3 ug/L		11/08/19 20:50	11/11/19 14:50	
Method: 6010D - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDI	_ Unit	D	Prepared	Analyzed	Dil F
Cobalt, Dissolved	3.5	J	50.0		7 ug/L		11/13/19 07:41	<u>-</u>	
ron, Dissolved	34.2		150		2 ug/L		11/13/19 07:41		
ion, Dissolved	07.2	_	100	U 1.1	- 49/1		11/10/10 07.71		

Eurofins TestAmerica, Edison

11/19/2019

Client Sample Results

Client: Golder Associates Inc.

Job ID: 460-195926-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: AWC-6R Lab Sample ID: 460-195926-6

Date Collected: 11/07/19 14:00 Matrix: Water Date Received: 11/07/19 21:15

General Chemistry Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.14		0.10	0.034	mg/L			11/13/19 11:25	1
Bicarbonate Alkalinity as CaCO3	18.3		5.0	5.0	mg/L			11/09/19 11:07	1
Carbonate Alkalinity as CaCO3	5.0 L	J	5.0	5.0	mg/L			11/09/19 11:07	1
Sulfide	0.58 L	J	1.0	0.58	mg/L			11/10/19 10:30	1

Client Sample ID: TBGW_11719 Lab Sample ID: 460-195926-7

Date Collected: 11/07/19 14:00

Date Received: 11/07/19 21:15

4-Bromofluorobenzene

Method: 8260C SIM - Volatile O	rganic Cor	mpounds (G	C/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.33	U	0.40	0.33	ug/L			11/09/19 02:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

72 - 133

95

Method: 8260C - Volatile Or						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloromethane	0.40		1.0	0.40	-			11/11/19 23:44	1
Bromomethane	0.55		1.0	0.55	ū			11/11/19 23:44	1
Vinyl chloride	0.17		1.0	0.17	-			11/11/19 23:44	1
Chloroethane	0.32		1.0	0.32	-			11/11/19 23:44	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			11/11/19 23:44	1
Acetone	18		5.0		ug/L			11/11/19 23:44	1
Carbon disulfide	0.82	U	1.0	0.82	ug/L			11/11/19 23:44	1
1,1-Dichloroethene	0.26	U	1.0	0.26	ug/L			11/11/19 23:44	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			11/11/19 23:44	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			11/11/19 23:44	1
cis-1,2-Dichloroethene	0.22	U	1.0	0.22	ug/L			11/11/19 23:44	1
Chloroform	0.33	U	1.0	0.33	ug/L			11/11/19 23:44	1
1,2-Dichloroethane	0.43	U	1.0	0.43	ug/L			11/11/19 23:44	1
2-Butanone (MEK)	1.9	U	5.0	1.9	ug/L			11/11/19 23:44	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			11/11/19 23:44	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			11/11/19 23:44	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			11/11/19 23:44	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			11/11/19 23:44	1
cis-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			11/11/19 23:44	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			11/11/19 23:44	1
Dibromochloromethane	0.28	U	1.0	0.28	ug/L			11/11/19 23:44	1
1,1,2-Trichloroethane	0.43	U	1.0	0.43	ug/L			11/11/19 23:44	1
Benzene	0.20	U	1.0	0.20	ug/L			11/11/19 23:44	1
trans-1,3-Dichloropropene	0.49	U	1.0	0.49	ug/L			11/11/19 23:44	1
Bromoform	0.54	U	1.0	0.54	ug/L			11/11/19 23:44	1
4-Methyl-2-pentanone	1.3	U	5.0		ug/L			11/11/19 23:44	1
2-Hexanone	1.1	U	5.0		ug/L			11/11/19 23:44	1
Tetrachloroethene	0.25	U	1.0	0.25	-			11/11/19 23:44	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	-			11/11/19 23:44	1
Toluene	0.38	U	1.0	0.38	-			11/11/19 23:44	1
Chlorobenzene	0.38	U	1.0	0.38	-			11/11/19 23:44	1
Ethylbenzene	0.30		1.0	0.30	-			11/11/19 23:44	

Eurofins TestAmerica, Edison

11/19/2019

Matrix: Water

11/09/19 02:41

Client Sample Results

Client: Golder Associates Inc. Job ID: 460-195926-1

Project/Site: DS&G Semi-Annual Groundwater

Client Sample ID: TBGW_11719

Date Received: 11/07/19 21:15

Lab Sample ID: 460-195926-7 Date Collected: 11/07/19 14:00

Matrix: Water

Analyte	Result	Qualifier	RL	ME	L	Jnit	D	Prepared	Analyzed	Dil Fac
Styrene	0.42	U	1.0	0.4	2 u	ıg/L			11/11/19 23:44	1
Xylenes, Total	0.65	U	2.0	0.6	35 u	ıg/L			11/11/19 23:44	1
Diethyl ether	0.21	U	1.0	0.2	21 u	ıg/L			11/11/19 23:44	1
MTBE	0.47	U	1.0	0.4	17 u	ıg/L			11/11/19 23:44	1
Tetrahydrofuran	1.0	U	2.0	1	0 u	ıg/L			11/11/19 23:44	1
Cyclohexane	0.32	U	1.0	0.3	32 u	ıg/L			11/11/19 23:44	1
1,2,4-Trimethylbenzene	0.37	U	1.0	0.3	37 u	ıg/L			11/11/19 23:44	1
1,3,5-Trimethylbenzene	0.33	U	1.0	0.3	3 u	ıg/L			11/11/19 23:44	1
Isopropylbenzene	0.34	U	1.0	0.3	34 u	ıg/L			11/11/19 23:44	1
N-Propylbenzene	0.32	U	1.0	0.3	32 u	ıg/L			11/11/19 23:44	1
Methylcyclohexane	0.26	U	1.0	0.2	26 u	ıg/L			11/11/19 23:44	1
Indane	0.35	U	1.0	0.3	35 u	ıg/L			11/11/19 23:44	1
Dichlorofluoromethane	0.34	U	1.0	0.3	34 u	ıg/L			11/11/19 23:44	1
1,2,3-Trimethylbenzene	0.36	U	1.0	0.3	36 U	ıg/L			11/11/19 23:44	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	R	Т	CAS No.	Prepared	Analyzed	Dil Fac
Isopropyl Alcohol	6.3	JN	ug/L		3.42	2	67-63-0		11/11/19 23:44	1
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		74 - 132						11/11/19 23:44	1
Toluene-d8 (Surr)	89		80 - 120						11/11/19 23:44	1
4-Bromofluorobenzene	90		77 - 124						11/11/19 23:44	1
Dibromofluoromethane (Surr)	94		72 - 131						11/11/19 23:44	1

APPENDIX B

Summary of Detected Compounds

APPENDIX B-1

October/November 2019 Groundwater

									New Castle	e County, Delaw	are									
						DDA Extraction	Monitoring Wells					DDA Moni	toring Wells				PW-1 (U) UPCU	ITZ Monitoring Wells		
		Sample ID Sample Date	B-4DR 10/24/2019	BG-1 10/25/2019	C-18D 10/25/2019	C-19D 10/25/2019	C-20D 10/25/2019	C-2D 10/25/2019	C-30 10/25/2019	C-4D 10/25/2019	GA-101 10/9/2019	PZ-5-EXT 10/24/2019	PZ-11-EXT 10/24/2019	DGC-7C 10/30/2019	DDA-05 10/28/2019	DDA-06 10/22/2019	DDA-18-TZ 10/25/2019	DDA-18-TZ 10/25/2019	DDA-19-TZ 10/24/2019	DDA-20-TZ 10/29/2019
	N=Normal, FD:		N	N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	FD	N N	N
Parameter	CAS Unit HQ=1.0	MCL	Result Qual F	DL Result Qual RD	L Result Qual RDL	Result Qual RDI	Result Qual RDI	Result Qual RDI	Result Qual RDI	Result Qual RDI	Result Qual RDI	Result Qual RDI	Result Qual RDI	Result Qual RDI	Result Qual RDI	Result Qual RDI	Result Qual RDI	L Result Qual RDL	Result Qual RDI	Result Qual RDI
Volatile Organic Compounds	8																			
1,1-Dichloroethane	75-34-3 ug/L 2.8 2.8 75-35-4 ug/L 28 280	NE NE	U	5 U 1	U 5 U 5	0.92 J 1 U 1	U 1 U 1	U 1 U 1	0.92 J 2 U 2	U 1		U 2	 	U 1		NA NA	U 1	U 1 U 1	0.39 J 1 U 1	0.29 J 1 U 1
1,2,3-Trimethylbenzene	526-73-8 ug/L 5.5 55	NE NE				U 1	2.2 1			2.1 1				U 1	NA NA	NA NA	U 1	U 1	U 1	2.7 1
1,2,4-Trimethylbenzene 1,2-Dichloroethane	95-63-6 ug/L 5.6 56 107-06-2 ug/L 0.17 0.17	NE 5.7 5 NE	2.4 J	5 U 1	U 5	U 1 U 1	0.87 J 1	U 1	2.7 2	0.37 J 1 U 1	U 2	U 2	U 20	U 1	NA NA	NA NA	U 1	U 1 U 1		U 1
1,3,5-Trimethylbenzene	108-67-8 ug/L 6 60	NE 6.1	2.1	4.7		U 1	U 1		-	U 1			3 23	U 1	NA NA	NA	U 1	U 1	U 1	
1,4-Dioxane 2-Butanone	123-91-1 ug/L 0.46 0.46 78-93-3 ug/L 560 5600		U	25 U 5	5 U 25	U 5	U 5	U 5	U 10	U 5	4.1 0.8 U 10		U 100	U 0.4 U 5	NA NA	NA NA	1.9 0.4 U 5	1 1.8 0.4 U 5	~ 000000000000000000000000000	U 5
Acetone	67-64-1 ug/L 1400 14000	NE NE	37	25 U 5		U 5	U 5	U 5	U 10	U 5	13 U 13	U 10	U 100	17 U 17	NA NA	NA	U 5	U 5	U 5	U 5
Benzene Bromodichloromethane	71-43-2 ug/L 0.46 0.46 75-27-4 ug/L 0.13 0.13	5 4.6 80 NE	U	5 4.2 1 5 U 1	U 5	U 1	2.2 1 U 1	U 1	111 2	111 1	1.6 J 2 U 2	0.43 J 2 U 2	U 20	U 1	NA NA	NA NA	U 1		U 1	11 1
Carbon Disulfide	75-15-0 ug/L 81 810	NE NE	U	5 U 1	U 5	U 1	U 1	U 1	U 2	U 1	U 2	U 2	U 20	U 1	NA NA	NA	U 1	U 1	U 1	U 1
Chlorobenzene Chloroethane	108-90-7 ug/L 7.8 78 75-00-3 ug/L 2100 21000	100 NE NE NE	1400 U	0.99 J 1	U 5	5.9 1 U 1	2.1 1 U 1	U 1	U 2	U 1	2.8 2 U 2	2.4 2 U 2	92 20 U 20	0.53 J 1 U 1	NA NA	NA NA	1.1 1 1 U 1	1.1 1 1 U 1	0.93 J 1	0.58 J 1
Chloroform	67-66-3 ug/L 0.22 0.22	80 NE	U	5 U 1	U 5	U 1	U 1	U 1	U 2	U 1	U 2	U 2	U 20	U 1	NA NA	NA	U 1	U 1	U 1	U 1
Chloromethane cis-1,2-Dichloroethene	74-87-3 ug/L 19 190 156-59-2 ug/L 3.6 36	70 NE	U		U 5	0.4 J 1 U 1	U 1	0.29 J 1	U 2	U 1			U 20	U 1	NA NA	NA NA	U 1	U 1 U 1	1.1 U 1	U 1 U 1
Cyclohexane	110-82-7 ug/L 1300 13000	NE NE	U	5 2.7 1	U 5	U 1	0.72 J 1	5.4 1	1.4 J 2	U 1	2.8 2	8.9 2	21 20	U 1	NA NA	NA	U 1	U 1	0.47 J 1	U 1
Dibromochloromethane Dichlorofluoromethane	124-48-1 ug/L 0.87 0.87 75-43-4 ug/L NE NE	NE NE	3.6 J	5 U 1 5 0.75 J 1	U 5 U 5	1.1 1 1	U 1 U 1	U 1 U 1	U 2	U 1			U 20 U 20	U 1	NA NA	NA NA	U 1	U 1 U 1	5 1	3.7 U 1
Diethyl Ether	60-29-7 ug/L 390 3900	NE NE	U	5 U 1	U 5	2.9 1	1.6 1	U 1		U 1			U 20	U 1	NA NA	NA	U 1	U 1	1.3 1	0.76 J 1
Ethylbenzene Indane	100-41-4 ug/L 1.5 1.5 496-11-7 ug/L NE NE	700 15 NE NE	12 69	5 U 1	18 5	1.1 U 1	4.1 U 1	0.36 J 1	6.6 2	0.87 J 1	57 2	64 2	8.7 J 20 320 20	U 1	NA NA	NA NA	U 1	U 1 U 1		4.6 1
Isopropylbenzene	98-82-8 ug/L 45 450	NE NE	4.8 J	5 4.1 1	3.2 J 5	0.45 J 1	1.7 1	13 1	1.7 J 2	18 1	43 2	31 2	120 20	U 1	NA	NA	U 1	U 1	1.5 1	4.5 1
Methyl Cyclohexane Methyl tert-Butyl Ether	108-87-2 ug/L NE NE 1634-04-4 ug/L 14 14	NE NE	U		2.9 J 5 U 5	U 1 U 1	U 1 U 1	7.4 1 U 1	2.1 2 U 2	U 1				1.7 U 1	NA NA	NA NA	U 1			2.8 1 U 1
Methylene Chloride	75-09-2 ug/L 11 11	5 NE	U	5 U 1	U 5	U 1	U 1	U 1	U 2	U 1	U 2	U 2	U 20	U 1	NA NA	NA	U 1	U 1	U 1	U 1
n-Propylbenzene Tetrachloroethene	103-65-1 ug/L 66 660 127-18-4 ug/L 4.1 11	NE NE	2.2 J	5 3.4 1 5 U 1	5.8 5 U 5	0.32 J 1 U 1	1.7 1 U 1	15 1 U 1	2.9 2 U 2	1.4 1 U 1	1.2 J 2		U 20	U 1	NA NA	NA NA	U 1	U 1 U 1		4.5 1 U 1
Tetrahydrofuran	109-99-9 ug/L 340 3400	NE NE	U	10 U 2	2 7.8 J 10	3.7 2	1.7 J 2	3 2	U 4	U 2	U 4	U 4	U 40	U 2	NA	NA NA	U 2	U 2	U 2	15 2
Toluene trans-1,2-Dichloroethene	108-88-3 ug/L 110 1100 156-60-5 ug/L 36 360	1000 NE 100 NE	3.6 J		1100 5 U 5	0.64 J 1 U 1	U 1 U 1	0.59 J 1 U 1	U 2	1.7 1 U 1	U 2		U 20 U 20	1.5 1	NA NA	NA NA	U 1 U 1			0.55 J 1 U 1
Trichloroethene	79-01-6 ug/L 0.28 0.49	5 NE	Ü	5 1.1 1	U 5	U 1	U 1	U 1	U 2	U 1	1 J 2	U 2	U 20	U 1	NA NA	NA	U 1	U 1	U 1	U 1
Vinyl Chloride Xvlenes, Total	75-01-4 ug/L 0.019 0.019 1330-20-7 ug/L 19 190		U	5 U 1	U 5	U 1 U 2	U 1 U 2	U 1	U 2	U 1		0.74 J 2	U 20	U 1 U 2	1171	NA NA	U 1 U 2	U 1 U 2	U 1 U 2	U 1
Semivolatile Organic Compo	ounds																			
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	120-82-1 ug/L 0.4 1.2 95-50-1 ug/L 30 300		29 U	2 U 2 10 U 1		U 2 U 10	U 2 U 10	U 2 U 10	U 2 U 10	2.9 J 10			U 2 U 10	U 10		NA NA	U 2			U 2 U 10
1,3-Dichlorobenzene	541-73-1 ug/L NE NE	NE NE	8.7 J	10 U 1	0 U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 10	NA NA	NA	U 10	U 10	U 10	U 10
1,4-Dichlorobenzene 2,4-Dimethylphenol	106-46-7 ug/L 0.48 0.48 105-67-9 ug/L 36 360	75 NE NE NE	35 U	10 U 1		U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	4.5 J 10 U 10	1.9 J 10			U 10		NA NA	U 10			U 10 U 10
2-Chlorophenol	95-57-8 ug/L 9.1 91	NE NE	0.97 J	10 U 1	0 U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 10	NA NA	NA	U 10	U 10	U 10	U 10
2-Methylnaphthalene 2-Methylphenol	91-57-6 ug/L 3.6 36 95-48-7 ug/L 93 930	NE NE	1.5 J	10 U 1		U 10 U 10	U 10 U 10		4.1 J 10	U 10		U 10 U 10	**************************************	U 10	NA NA	NA NA	U 10			U 10 U 10
4-Methylphenol	106-44-5 ug/L 190 1900	NE NE	1.3 J	10 U 1	0 5.9 J 10	U 10	U 10	U 10	2.5 J 10	U 10	1.3 J 10	0.89 J 10	U 10	U 10	NA	NA	U 10	U 10	U 10	U 10
Benzo[a]anthracene Benzo[a]pyrene	56-55-3 ug/L 0.03 0.03 50-32-8 ug/L 0.025 0.025		2.1 J+			0.5 J+ 0.25 0.37 0.25	U 0.05			1.1 J+ 0.5 0.78 0.5			0.019 J 0.05 U 0.05	U 0.0 U 0.0		NA NA	U 0.0		0.13 0.1 0.07 J 0.1	U 0.05
Benzo[b]fluoranthene	205-99-2 ug/L 0.25 0.25	NE NE	1.4 J+	1 U 0.1		0.28 J+ 0.25	U 0.05			0.6 J+ 0.5	U 0.05			U 0.0		NA NA	U 0.0	5 U 0.05	0.052 J 0.1	
Bis(2-chloroethyl) Ether Bis(2-ethylhexyl) Phthalate	111-44-4 ug/L 0.014 0.014 117-81-7 ug/L 5.6 5.6	NE 0.14 6 NE	U	2 U 2	2 U 2	U 2	U 2	U 2	U 2	U 2	U 0.00		*************	U 0.0 U 2		NA NA	U 0.0			U 2
Bisphenol A	80-05-7 ug/L 77 770	NE NE			0	42 10	17 10			46 10			Account to the second s	U 10		NA NA	U 10	U 10		U 10
Diethyl Phthalate Di-n-Butyl Phthalate	84-66-2 ug/L 1500 15000 84-74-2 ug/L 90 900	NE NE	U			U 10 U 10	U 10 U 10	1.1 J 10 U 10		U 10 U 10			6.2 J 10 2.9 J 10	U 10	NA NA	NA NA	U 10			U 10 U 10
Diphenyl Ether	101-84-8 ug/L NE NE	NE NE	34	10 1.3 J 1	0 9.1 J 10	2.3 J 10	1.5 J 10	14 10	U 10	9.5 J 10	67 10			U 10	NA	NA NA	U 10	U 10	U 10	U 10
N,N-Dimethylaniline	118-74-1 ug/L 0.0098 0.0098 121-69-7 ug/L 2.5 2.5		3.9 U			U 0.1	U 0.02	U 0.02	U 0.02		U 0.02		1.4 U 0.02	U 0.0 U 1		NA NA	U 0.0 U 1			
Naphthalene	91-20-3 ug/L 0.17 0.17	NE 0.63		U 1	0	U 10	U 10		U 10	U 10			10 15	U 10	NA	NA NA	U 10	U 10	U 10	U 10
N-Methylaniline Pentachlorophenol	100-61-8 ug/L NE 38 87-86-5 ug/L 0.041 0.041		U	4 U 0.	2 U 1	U 5	U 5 UJ 0.2			2 J 5 U 2			1.9 J 5 UJ 0.2			NA NA	UJ 0.2		UJ 0.4	U 0.2
Phenol Total Metals	108-95-2 ug/L 580 5800				0 1.7 J 10	U 10			0.68 J 10			1 J 10				NA NA	U 10			
Calcium	7440-70-2 ug/L NE NE	NE NE	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	10500 250	13200 250	17900 25	0 18800 250	17200 250	12300 250
Cobalt Iron	7440-48-4 ug/L 0.6 6 7439-89-6 ug/L 1400 14000	NE 6	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Magnesium	7439-95-4 ug/L NE NE	NE NE	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						7700 250
Manganese Potassium	7439-96-5 ug/L 43 430 7440-09-7 ug/L NE NE	NE 260		NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA 2630 250
Sodium	7440-09-7 ug/L NE NE 7440-23-5 ug/L NE NE			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						31200 250
Dissolved Metals											111160	1015								
Cobalt Iron	7440-48-4 ug/L 0.6 6 7439-89-6 ug/L 1400 14000	NE 13939									U 50				NA NA	NA NA				
Manganese	7439-96-5 ug/L 43 430	NE 260													NA	NA .				
Wet Chemistry Parameters Alkalinity, Bicarbonate as CaC		NE NE	NA	NA I	NA I	NA NA	NA I	NA I	NA NA	NA NA	NA NA	NA I	NA	NA NA	90.6 5	119 5	228 5	223 5	63.6 5	49.4 5
Alkalinity, Total	ALK mg/L NE NE	NE NE	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	63.6 5	NA
Ammonia Chloride	7664-41-7 mg/L NE NE 16887-00-6 mg/L NE NE	NE NE		0.1 0.58 0. NA	1 2 0.1 NA	1.1 0.1 NA	0.54 0.1 NA	0.95 0.1 NA	0.94 0.1 NA	2.2 0.1 NA	0.45 0.1 NA	0.36 0.1 NA	3.1 0.1 NA	2.2 0.1 NA						2.2 0.1 69.7 3.12
Nitrate as N	14797-55-8-N mg/L 3.2 32	10 NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U 0.1	0.2 0.1	U 0.1	1 U 0.1	U 0.1	U 0.1
Sulfate	14808-79-8 mg/L NE NE	NE NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.2 0.6	5.65 0.6	17.5 0.6	6 17.6 0.6	8.63 0.6	1.96 0.6

Page 1 of 7

<u> </u>						PW-1 (U) UPO	CUTZ Mon	nitoring \	Wells										P'	W-1 (U) Up	per Sand Me	onitoring Well	s							
					Sample Sample Da	1 /		GC-5 (5 0/24/20		DA-01 28/2019		0A-02 1/2019	DDA-03 10/22/2019		DA-10-US 0/30/2019	DDA-12-US 10/21/2019	l l	DDA-18-U	s	DDA-19-U 10/24/201	JS D	DA-20-US 0/29/2019	DD/	A-20-US 29/2019	DGC-2S 10/23/2019		DGC-2S 0/24/2019	DGC-7S 10/30/2019	MHW-1D 10/28/2019	PW-1(U) 10/22/2019
	Γ	1888	N=Norm		ield Duplica			N		N		N	N		N	N		N		N		N		FD	N		N	N	N	N
Parameter	CAS			HQ=1.0	MCL III	Result Qual R	DL Resu	ılt Qual	RDL Result	Qual RDL	Result (Qual RDL	Result Qual RDL	Resul	t Qual RDI	Result Qual RD	DL Resu	ult Qual F	RDL R	esult Qual	RDL Resu	ılt Qual RDL	Result	Qual RD	L Result Qual RDL	Resul	lt Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL
Volatile Organic Compounds 1,1-Dichloroethane	75-34-3	ug/L	2.8	2.8	NE NE	. U	1	U	1 NA			U 1	NA	0.86	J 1	U !	5	U	1	1.1	1	U 1	0.26	J 1	NA NA	NA	Т	NA	U 1	U 1
1,1-Dichloroethene 1,2,3-Trimethylbenzene	75-35-4 526-73-8	ug/L ug/L	28 5.5	280 55	7 NE			U				U 1	NA NA	2.2	U 1	260 U		U	1	U	1	U 1 U 1	2.8	U 1	NA NA	NA NA		NA NA	U 1	U 1 2.1 1
1,2,4-Trimethylbenzene	95-63-6	ug/L	5.6	56	NE 5.7	7 U		U	1 NA			U 1	NA	2.2		200		UJ	1	Ü		2 J 1	2.6		NA	NA		NA NA	U 1	2.1
1,2-Dichloroethane 1,3,5-Trimethylbenzene	107-06-2 108-67-8	ug/L ug/L	0.17	0.17 60	5 NE NE 6.1			U	1 NA 1 NA		-	U 1	NA NA	2	U 1		5	UJ		3.5 U	1 1.4	U 1	2.2	U 1	NA NA	NA NA		NA NA	U 1	U 1 2 1
1,4-Dioxane	123-91-1	ug/L	0.46	0.46	NE 4.6	â			NA NA				NA					4	0.4						NA	NA		NA		
2-Butanone Acetone	78-93-3 67-64-1		560 1400	5600 14000	NE NE		5	U			-	U 5	NA NA	5.8	U 5.8			U		U		U 5		U 5		NA NA		NA NA	U 5	U 5 U 5
Benzene	71-43-2	ug/L	0.46	0.46	5 4.6	6 0.2 J	1 0.23				0.7		NA NA				1.8		1		0.63	3 J 1			NA NA	NA		NA	U 1	
Bromodichloromethane Carbon Disulfide	75-27-4 75-15-0	ug/L ug/L	0.13 81	0.13 810	80 NE NE NE		1	U				U 1	NA NA		U 1			U		U	1	U 1		U 1	NA NA	NA NA		NA NA	U 1	U 1 U 1
Chlorobenzene Chloroethane	108-90-7 75-00-3	ug/L ug/L	7.8 2100	78 21000	100 NE NE NE			U	1 NA 1 NA			U 1	NA NA	2.5	U 1			U		3.2 U	1	U 1 U 1	0.6	J 1	NA NA	NA NA		NA NA	U 1 U 1	1.9 1 U 1
Chloroform	67-66-3		0.22	0.22	80 NE	U	1	U	1 NA			U 1	NA		U 1	$\overline{}$		U	1	U	1	U 1		U 1	NA NA	NA		NA	U 1	U 1
Chloromethane cis-1,2-Dichloroethene	74-87-3 156-59-2	ug/L ug/L	19 3.6	190 36	NE NE			U				U 1	NA NA	0.88	U 1			U		2.8 U	1	U 1 U 1		U 1	NA NA	NA NA		NA NA	U 1	U 1 U 1
Cyclohexane	110-82-7	ug/L	1300	13000	NE NE	U	1	U	1 NA			U 1	NA	21	1	56 5	5	U	1	3.6	1	U 1		U 1	NA	NA		NA	U 1	0.75 J 1
Dibromochloromethane Dichlorofluoromethane	124-48-1 75-43-4	ug/L ug/L	0.87 NE	0.87 NE	80 NE			U				U 1	NA NA	17	U 1			U		13 U	1	U 1 U 1	3.5	U 1	NA NA	NA NA		NA NA	U 1 U 1	0.4 J 1
Diethyl Ether	60-29-7	ug/L	390	3900	NE NE	U	1	U	1 NA			U 1	NA	3.7		U (5	U	1	3.9	1	U 1		J 1	NA NA	NA		NA	U 1	0.56 J 1
Ethylbenzene Indane	100-41-4 496-11-7	ug/L ug/L	1.5 NE	1.5 NE	700 15 NE NE			U			0.42	J 1 U 1	NA NA	5.9	1	-	5	UJ		2.6 3.7	1 1	U 1 U 1	4.7	1	NA NA	NA NA		NA NA	U 1	3 1 2.8 1
Isopropylbenzene Methyl Cyclohexane	98-82-8 108-87-2	ug/L	45	450 NE	NE NE	U	1	U	1 NA			U 1	NA NA	8.1		68		U	1	3.8 5.1	1	U 1 U 1	4.6	1		NA NA		NA NA	U 1	1.5 1
Methyl tert-Butyl Ether	1634-04-4	ug/L ug/L	NE 14	14	NE NE			Ü			0.87	U 1 J 1	NA NA	41	U 1			U		3.1 U	1 0.85		3	U 1	NA NA	NA NA		NA NA	U 1	1.3 1 U 1
Methylene Chloride n-Propylbenzene	75-09-2 103-65-1	ug/L ug/L	11 66	11 660	5 NE			U				U 1	NA NA	0.41 7.7	J 1	U S		U	1 1	3.6 U	1	U 1 U 1	4.7	U 1	NA NA	NA NA		NA NA	U 1	1.7 U 1
Tetrachloroethene	127-18-4		4.1	11	5 NE	U	1	U	1 NA			U 1	NA	1.7	U 1	U S	5	U	1	U U	1	U 1	4.7	U 1	NA	NA		NA	U 1	3 1
Tetrahydrofuran Toluene	109-99-9 108-88-3	ug/L ug/L	340 110	3400 1100	NE NE 1000 NE			U				U 2 U 1	NA NA	0.52	U 2			U		U		U 2	14 0.52	1 1	NA NA	NA NA		NA NA	U 2	U 2 U 1
trans-1,2-Dichloroethene	156-60-5	ug/L	36	360	100 NE	. U	1	U	1 NA			U 1	NA	0.02	U 1	U (5	U	1	U	1	U 1	0.02	U 1	NA NA	NA		NA	U 1	U 1
Trichloroethene Vinyl Chloride	79-01-6 75-01-4		0.28	0.49	5 NE 2 NE			U				U 1 U 1	NA NA	0.61	U 1	U 5		U		U		U 1	-	U 1	NA NA	NA NA		NA NA	U 1 U 1	U 1 U 1
Xylenes, Total	1330-20-7	ug/L	19	190	10000 21		2	U	2 NA			U 2	NA	11				U		U		U 2			NA NA	NA		NA	U 2	17 2
Semivolatile Organic Compoun 1,2,4-Trichlorobenzene	ds 120-82-1	ug/L	0.4	1.2	70 NE	U	2	U	2 NA			U 2	NA		U 2	U	2	U		U	2	U 2		U 2	NA NA	NA	П	NA NA	U 2	U 2
1,2-Dichlorobenzene 1,3-Dichlorobenzene	95-50-1 541-73-1	ug/L ug/L	30 NE	300 NE	600 NE			U				U 10 U 10	NA NA		U 10		0	U		U		U 10 U 10		U 1		NA NA		NA NA	U 10 U 10	U 10 U 10
1,4-Dichlorobenzene	106-46-7		0.48	0.48	75 NE	U	10	U				U 10	NA		U 10) 1.7 J 1		U	10	U	10	U 10		U 1	0 NA	NA		NA	U 10	U 10
2,4-Dimethylphenol 2-Chlorophenol	105-67-9 95-57-8	ug/L ug/L	36 9.1	360 91	NE NE			U				U 10	NA NA		U 10		0	U		U		UJ 10 UJ 10	-	U 1		NA NA		NA NA	U 10 U 10	U 10 U 10
2-Methylnaphthalene	91-57-6	ug/L	3.6	36	NE NE	U	10	U	10 NA			U 10	NA		U 10) 2 J 1	0	U	10	U	10	U 10		U 1	0 NA	NA		NA	U 10	U 10
2-Methylphenol 4-Methylphenol	95-48-7 106-44-5	ug/L ug/L	93	930 1900	NE NE			U				U 10 U 10	NA NA		U 10		0	U		U	10	UJ 10	-	U 1		NA NA		NA NA	U 10 U 10	U 10 U 10
Benzo[a]anthracene	56-55-3	ug/L	0.03	0.03	NE NE	U_0	.05	U	0.05 NA			U 0.05	NA	0.28	J 0.	5 0.024 J 0.	05	U	0.05	0.46	0.25	UJ 0.05		U 0.0	05 NA	NA		NA	U 0.05	U 0.05
Benzo[a]pyrene Benzo[b]fluoranthene	50-32-8 205-99-2		0.025	0.025	0.2 NE				0.05 NA 0.05 NA			U 0.05	NA NA		U 0.5				0.05		0.25	UJ 0.05 UJ 0.05		U 0.0		NA NA		NA NA	U 0.05 U 0.05	
Bis(2-chloroethyl) Ether Bis(2-ethylhexyl) Phthalate	111-44-4 117-81-7	ug/L	0.014 5.6	0.014 5.6	NE 0.1		_		NA 2 NA			U 2	NA NA		U 2	111	2	U	2	U	2	U 2		11 2	NA P NA	NA NA		NA NA	0.13 0.03 U 2	U 2
Bisphenol A	80-05-7	ug/L ug/L	77	770	NE NE			U				U 2 U 10	NA NA		U 2		0	U		10	10	R 10		U 2		NA NA		NA NA	U 10	U 10
Diethyl Phthalate Di-n-Butyl Phthalate	84-66-2 84-74-2	ug/L ug/L	1500 90	15000 900	NE NE			U				U 10	NA NA		U 10		0	U		U		U 10 U 10	-	U 1		NA NA		NA NA	U 10 U 10	U 10 U 10
Diphenyl Ether	101-84-8	ug/L	NE	NE	NE NE	U	10	U	10 NA			U 10	NA		U 10) 14 1	0	U	10	U	10	U 10		U 1	0 NA	NA		NA	U 10	U 10
N,N-Dimethylaniline	118-74-1 121-69-7		2.5	0.0098 2.5	1 NE NE 25		1	U	0.02 NA 1 NA		0.014	J 0.02	NA NA		U 0.2		02	U		1.6	0.1	U 0.02		U 0.0		NA NA		NA NA	U 0.02	U 0.02
Naphthalene	91-20-3	ug/L	0.17	0.17	NE 0.6	i3 U			10 NA			U 10	NA		U 10)		U	10	U		U 10			0 NA	NA		NA	U 10	U 10
N-Methylaniline Pentachlorophenol	100-61-8 87-86-5		NE 0.041	38 0.041	NE NE				5 NA 0.2 NA			U 5 U 0.2			U 2	2.5 J 5		UJ		UJ		UJ 5 UJ 0.2			NA 2 NA	NA NA		NA NA	U 5 U 0.2	U 5 U 0.2
Phenol Total Metals	108-95-2		580	5800	NE NE	U	10	U	10 NA			U 10	NA		U 10) U 1	0	U	10 (0.64 J	10	R 10		U 1	0 NA	NA		NA NA	U 10	U 10
Calcium	7440-70-2		NE	NE	NE NE	E 20000 2	250 NA		14400	250	10500	250	16700 250	33100	25	0 7420 25	50 1310	00	250 2	2400	250 1710	00 250	12400	25	0 14900 250) NA		19500 250	2710 50	15600 250
Cobalt Iron	7440-48-4 7439-89-6		0.6		NE 6	NA NA	NA NA		NA NA		NA NA		NA NA	NA NA		NA NA	NA NA			NA NA	NA NA		NA NA		NA NA	NA NA		NA NA	NA NA	NA NA
Magnesium	7439-95-4	ug/L	NE	NE	NE NE	11600 2	250 NA		5630	250	5420	250	8740 250	7610	25	0 2200 25	50 697	0	250 9	300	250 6440	0 250	8280	25	60 6980 250) NA		10600 250	1390 50	9710 250
Manganese Potassium	7439-96-5 7440-09-7		43 NE		NE 260 NE NE		NA SO NA		NA 2490	250	NA 2680	250	NA 250	NA 5070		NA 25	NA 50 286		250 2	NA 290	250 1940		NA 2710	25	NA 50 3070 250	AN C		NA 2600 250	NA 50	NA 250
Sodium	7440-23-5	ug/L	NE		NE NE		50 NA		19500		19400			33200			50 1740		250 4		250 2420		33100) NA				29300 250
Dissolved Metals Cobalt	7440-48-4	ug/L	0.6	6	NE 6				NA NA				NA												NA I	NA	1 1	NA		
Iron	7439-89-6	ug/L	1400	14000	NE 139	39			NA				NA												NA	NA		NA		
Manganese Wet Chemistry Parameters	7439-96-5	ug/L	43	430	NE 26	U			NA				NA NA												NA	NA		NA		
Alkalinity, Bicarbonate as CaCO3			NE				5 NA		54.8	5	49.4	5	56.5 5	97	5		5 46.		5		5 25.2			5		814				81.7 5
Alkalinity, Total Ammonia	ALK 7664-41-7		NE NE		NE NE		5 NA 0.1 0.55		0.1 0.15	0.1	NA 0.77	0.1	NA 0.079 J 0.1	0.69		NA 0.	.1 0.3		0.1 (103 0.15	5 NA 0.1	U 0.1	NA 2.2	0.	NA 0.13 0.1	NA.		NA 0.39 J+ 0.1	NA 0.21 0.1	NA 0.38 0.1
Chloride	16887-00-6	mg/L	NE	NE	NE NE	61.2 2	.76 NA		39.1	1.8	30.3	1.44	71.5 3.24 U 0.1	86.4	3.8	4 38.7 1.	.8 30.	2 J-	1.32	45.3	2.04 63.9	9 R 3	68.3	3.2	24 22.5 1.0	8 22.5		29.1 1.33	2 36.5 1.68	50 2.28
Nitrate as N Sulfate	14797-55-8-N 14808-79-8		3.2 NE		10 NE NE NE		0.1 NA 0.6 NA		20.2	U 0.1 0.6	17.2	U 0.1 0.6		7.48	U 0.			5 J-			0.1 0.37 0.6 17.8	7 0.1 8 J- 0.6			1 0.062 J 0.1 6 21 0.6	17.3				0.91 0.1 15.5 0.6
L									***************************************					·																

Page 2 of 7

							New Castle C	County, Delaware										
	Samp	X	gradient Columbia Monitoring Wells CA-103 CA-10	UPA-102-TZ	UPA-103-TZ	Downgrad UPA-104-TZ	ient UPCUTZ Monit	toring Wells UPA-105B-TZ	UPA-107-TZ	UPA-108B-TZ	DGC-8S	DGC-10S	DGC-11S	Downgradient Upper RT-1-UP	Sand Monitoring We	ells UPA-02S	UPA-102-US	UPA-103-US
	Sample N=Normal, FD=Field Dup	Date 10/9/2019	10/9/2019 10/8/20 N N		10/4/2019 N	10/2/2019 N	10/1/2019 N	10/1/2019 N	10/2/2019 N	10/10/2019 N	10/14/2019 N	10/7/2019 N	10/7/2019 N	10/21/2019	10/21/2019	10/14/2019 N	10/14/2019 N	10/7/2019 N
	RSL HOW RSL								ii		<u> </u>		İ	IN.	IN IN	<u> </u>		
Parameter Volatile Organic Compounds	CAS Unit HQ=1.0 MCL	Result Qual RI	DL Result Qual RDL Result Qua	RDL Result Qual RD	L Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	. Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL
1,1-Dichloroethane	75-34-3 ug/L 2.8 2.8 NE	NE U		1 2.9 1	800	U 1	U 1	U 1	U 1	U 1	NA NA	U 1	U 1	U 1	1.3 1		0.84 J 1	U 1
1,1-Dichloroethene 1,2,3-Trimethylbenzene	10 00 1 og. 2 20 1	NE U		1 0.43 J 1 1 U 1		U 1	U 1	U 1	U 1 U 1	U 1 U 1	NA NA	U 1	U 1		U 1		U 1	U 1
1,2,4-Trimethylbenzene 1,2-Dichloroethane	95-63-6 ug/L 5.6 56 NE	5.7 U		1 U 1			U 1	U 1	U 1	U 1	NA NA	U 1	U 1	U 1	U 1		U 1	U 1
1,3,5-Trimethylbenzene		NE U 6.1 U		1 23 U 1		1.2 1 U 1	U 1 U 1	U 1 U 1	3 1 U 1	U 1 U 1	NA NA	U 1 U 1	U 1		0.74 J 1 U 1		1.6 1 U 1	
1,4-Dioxane 2-Butanone		4.6 U C		5 U 5	2.8 0.4 U 5		U 0.4 U 5	U 0.4 U 5	U 5	U 5	NA NA	U 5	U 0.4 U 5		U 5		U 5	1.6 0.4 U 5
Acetone	67-64-1 ug/L 1400 14000 NE	NE U	5 U 5 U	5 U 5	U 5	U 5	U 5	U 5	U 5	U 5	NA	U 5	U 5	U 5			U 5	U 5
Benzene Bromodichloromethane	71-43-2 ug/L 0.46 0.46 5 75-27-4 ug/L 0.13 0.13 80	4.6 U		1 U 1	U 1	U 1	U 1 U 1	U 1	0.88 J 1 U 1	0.58 J 1	NA NA	U 1 U 1	U 1	U 1 U 1	U 1	-	U 1	U 1 U 1
Carbon Disulfide	75-15-0 ug/L 81 810 NE	NE U	1 U 1 U	1 3.4 1	U 1	U 1	U 1	U 1	U 1	U 1	NA	U 1	U 1	U 1	U 1		2.9 1	U 1
Chlorobenzene Chloroethane	108-90-7 ug/L 7.8 78 100	NE U		1 U 1		U 1 U 1	U 1 U 1	U 1 U 1	0.98 J 1 U 1	6.1 1 U 1	NA NA	U 1 U 1	U 1	U 1	4.3 1 0.52 J 1		U 1	1.1 1 U 1
Chloroform Chloromethane		NE U		1 U 1		U 1	U 1 U 1	U 1	U 1 U 1	U 1	NA NA	U 1 U 1	U 1	U 1	U 1		U 1 U 1	U 1 U 1
cis-1,2-Dichloroethene	74-87-3 ug/L 19 190 NE 156-59-2 ug/L 3.6 36 70	NE U	1 0 1 0		U 1	0.24 J 1	U 1	U 1	U 1	U 1	NA NA	U 1	U 1	U 1	0.68 J 1		2.1 1	U 1
Cyclohexane Dibromochloromethane	110-82-7 ug/L 1300 13000 NE 124-48-1 ug/L 0.87 0.87 80	NE U		1 3.3 1 1 U 1		0.46 J 1 U 1	U 1	U 1	U 1 U 1	U 1	NA NA	U 1 UJ 1	U 1	U 1	U 1		0.52 J 1 U 1	U 1 UJ 1
Dichlorofluoromethane	75-43-4 ug/L NE NE NE	NE U	1 U 1 0.93 J	1 33 1	U 1	4.3 1	U 1	U 1	1.3 1	U 1	NA	0.35 J 1	U 1	U 1	8.5 1		6.3 1	U 1
Diethyl Ether Ethylbenzene	60-29-7 ug/L 390 3900 NE 100-41-4 ug/L 1.5 1.5 700	NE U 15 U	1 U 1 U	1 6.4 1 1 0.55 J 1	U 1 U 1	0.92 J 1 U 1	U 1	U 1 U 1	U 1	46 1 U 1	NA NA	U 1 U 1	U 1	U 1	2.7 1		3.4 1 U 1	0.98 J 1 U 1
Indane	496-11-7 ug/L NE NE NE	NE U	1 U 1 U	1 2.1 1	U 1	U 1	U 1	U 1	U 1	0.55 J 1	NA	U 1	U 1	U 1	10 1		2.7 1	U 1
Isopropylbenzene Methyl Cyclohexane	98-82-8 ug/L 45 450 NE 108-87-2 ug/L NE NE NE	NE U		1 4.8 1 1 0.99 J 1		0.64 J 1 U 1	U 1 U 1	U 1 U 1	U 1 U 1	U 1 U 1	NA NA	U 1 U 1	U 1	U 1	11 1 U 1		0.39 J 1 0.31 J 1	U 1 U 1
Methyl tert-Butyl Ether Methylene Chloride	1634-04-4 ug/L 14 14 NE 75-09-2 ug/L 11 11 5	NE U		1 U 1 1 0.77 J 1	U 1	U 1	U 1 U 1	U 1 U 1	U 1 U 1	U 1	NA NA	U 1 U 1	U 1	U 1	U 1		0.88 J 1	U 1 U 1
n-Propylbenzene	103-65-1 ug/L 66 660 NE	NE U	1 U 1 U	1 U 1	U 1	U 1	U 1	U 1	U 1	U 1	NA	U 1	U 1	U 1	12 1		Ū 1	U 1
Tetrachloroethene Tetrahydrofuran	127-18-4 ug/L 4.1 11 5 109-99-9 ug/L 340 3400 NE	NE U	_	1 U 1	U 1	U 1	U 1 U 2	U 1	4.7 U 1	U 1 U 2	NA NA	U 1 U 2	U 1		1.5 1 U 2		16 U 1	U 1 U 2
Toluene	108-88-3 ug/L 110 1100 1000	NE U	1 U 1 U	1 0.69 J 1	U 1	U 1	U 1	U 1	U 1	U 1	NA	U 1	U 1	U 1	U 1		U 1	U 1
trans-1,2-Dichloroethene Trichloroethene	156-60-5 ug/L 36 360 100 79-01-6 ug/L 0.28 0.49 5	NE U		1 0.49 J 1 1 4.9 1	 	U 1	U 1	U 1	U 1 U 1	U 1 U 1	NA NA	U 1 0.86 J 1	U 1	U 1	U 1		0.69 J 1	U 1
Vinyl Chloride	75-01-4 ug/L 0.019 0.019 2	NE U	1 U 1 U	1 3	0004	U 1	U 1	U 1	U 1	U 1		U 1		U 1	U 1		0.62 J 1	
Xylenes, Total Semivolatile Organic Compo	1330-20-7 ug/L 19 190 10000 runds	21 U	2 U 2 U	2 U 2	U 2	U 2	U 2	U 2	U 2	U 2	NA	U 2	U 2	U 2	U 2		U 2	U 2
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	120-82-1 ug/L 0.4 1.2 70 95-50-1 ug/L 30 300 600	NE U		2 U 2 10 U 1		U 2 U 10	U 2 U 10	U 2 U 10	U 2 U 10	U 2 U 10		U 2 U 10	U 2 U 10		U 2 U 10		U 2 U 10	
1,3-Dichlorobenzene	541-73-1 ug/L NE NE NE	NE U 1	10 U 10 U	10 U 1	U 10	U 10	U 10	U 10	U 10	U 10	NA	U 10	U 10	U 10	U 10		U 10	U 10
1,4-Dichlorobenzene 2,4-Dimethylphenol	106-46-7 ug/L 0.48 0.48 75 105-67-9 ug/L 36 360 NE	NE U 1		10 1.3 J 1 10 U 1					U 10 U 10	U 10 U 10		U 10 U 10	U 10 U 10		U 10 U 10	 	1.8 J 10 U 10	
2-Chlorophenol	95-57-8 ug/L 9.1 91 NE	NE U	10 U 10 U	10 U 1	U 10	U 10	U 10	U 10	U 10	U 10	NA	U 10	U 10	U 10	U 10		U 10	U 10
2-Methylnaphthalene 2-Methylphenol		NE U		10 U 1			U 10 U 10		U 10 U 10	U 10 U 10		U 10 U 10			U 10 U 10		U 10 U 10	
4-Methylphenol	106-44-5 ug/L 190 1900 NE	NE U O		10 U 1 0.05 U 0.			U 10 U 0.05		U 10 U 0.05	U 10 U 0.05		U 10 U 0.05			U 10 U 0.05		U 10 U 0.05	
Benzo[a]anthracene Benzo[a]pyrene	50-32-8 ug/L 0.025 0.025 0.2	NE U 0.	0.05 U 0.05 U	0.05 U 0.	5 U 0.05	UJ 0.1	U 0.05	U 0.05	UJ 0.05			U 0.05	U 0.05	5 U 0.05	U 0.05		U 0.05	U 0.05
Benzo[b]fluoranthene Bis(2-chloroethyl) Ether	205-99-2 ug/L 0.25 0.25 NE	NE U 0. 0.14 U 0.		0.05 U 0. 0.03	5 U 0.05		U 0.05 U 0.03		U 0.05	U 0.05	NA NA	U 0.05	U 0.00		5 U 0.05		U 0.05	U 0.05 0.056 0.03
Bis(2-ethylhexyl) Phthalate	117-81-7 ug/L 5.6 5.6 6	NE U	2 U 2 U	2 U 2	U 2	U 2	U 2	U 2	U 2	U 2	NA NA	U 2	U 2	U 2	U 2		U 2	U 2
Bisphenol A Diethyl Phthalate	80-05-7 ug/L 77 770 NE 84-66-2 ug/L 1500 15000 NE	NE U		10 U 1			U 10		U 10	U 10	10.7	UJ 10 U 10	UJ 10 U 10		U 10 U 10		31 10 U 10	
Di-n-Butyl Phthalate	84-74-2 ug/L 90 900 NE	NE U		 					U 10	U 10		U 10	U 10		1.6 J 10		U 10	U 10 U 10
Diphenyl Ether Hexachlorobenzene	118-74-1 ug/L 0.0098 0.0098 1	NE U 0.	0.02 U 0.02 U	0.02 U 0.						- 10		U 0.02		2 U 0.02			U 0.02	-
N,N-Dimethylaniline Naphthalene	121-69-7 ug/L 2.5 2.5 NE 91-20-3 ug/L 0.17 0.17 NE	25 U 0.63 U 1	1 U 1 U 10 U 10 U	1 U 1	U 1 U 10	U 1 U 10	U 1 U 10	U 1 U 10	U 1 U 10	U 1 U 10	NA NA	U 1 U 10	U 1 U 10	U 1 U 10	5.8 1 U 10		0.95 J 1 U 10	U 1 U 10
N-Methylaniline	100-61-8 ug/L NE 38 NE	NE U	5 U 5 U	5 1.6 J 5	U 5	U 5	U 5	U 5	U 5	U 5	NA	U 5	U 5	U 5	3.2 J 5		U 5	U 5
Pentachlorophenol Phenol	87-86-5 ug/L 0.041 0.041 1 108-95-2 ug/L 580 5800 NE			0.2 U 2 10 1.2 J 1								U 0.2			0.56 J 10		U 0.2	
Total Metals									· · · · ·			· · · · · ·						
Calcium Cobalt	7440-70-2 ug/L NE NE NE NE 7440-48-4 ug/L 0.6 6 NE		250 11700 250 46200 NA NA	250 77500 25 NA	0 14000 250 NA	12000 250 NA	14800 250 NA	24000 250 NA	27100 250 NA	29200 250 NA	40000 250 NA	13700 250 NA	6950 250 NA	NA 250	18000 250 NA	13400 250 NA	51200 250 NA	20900 250 NA
Iron	7439-89-6 ug/L 1400 14000 NE 1	3939 NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium Manganese	7439-95-4 ug/L NE NE NE NE 7439-96-5 ug/L 43 430 NE	260 NA	250 9170 250 14000 NA NA	NA NA		NA	NA		3240 250 NA	NA	NA	3630 250 NA	NA	NA	NA	NA	NA	15200 250 NA
Potassium Sodium	7440-09-7 ug/L NE NE NE NE 7440-23-5 ug/L NE NE NE NE	NE 4510 2	250 11200 250 5120 250 16800 250 133000				3950 250 10100 250	4580 250 21300 250										5250 250 32500 250
Dissolved Metals		<u> </u>	200 100001 200 1000001	200 / 3400	0 +1300 230	13000 230			21500 Z30	J3000 Z30		14300] [Z30	7730 230	3900 200	22400 250		20200 200	32300] [230]
Cobalt Iron	7440-48-4 ug/L 0.6 6 NE 7439-89-6 ug/L 1400 14000 NE 1		76.3 J 150				U 50		754 150		NA NA	728 150	U 50)		NA NA		
Manganese	7439-96-5 ug/L 43 430 NE		70.0 3 100 1000								NA NA		8 J 15			NA NA		
Wet Chemistry Parameters Alkalinity, Bicarbonate as CaC	CO3 ALKB-C mg/L NE NE NE	NE 247	5 29.4 5 127	5 312 5	68.4 5	44.1 5	55 5	102 5	57.6 5	132 5	387 5	27.2 5	27 5	15.2 5	58.1 5	21.5 5	246 5	131 5
Alkalinity, Total	ALK mg/L NE NE NE	NE NA	NA NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA .	NA	NA
Ammonia Chloride	7664-41-7 mg/L NE NE NE NE 16887-00-6 mg/L NE NE NE		0.1 0.2 0.1 0.2 7.44 32.5 1.44 197			U 0.1 1 21.2 0.96		17.6 U 0.1	0.075 J 0.1 34.8 1.56				2.93 U 0.1	U 0.1 2 26.6 1.2		50.4 U 0.1		2.3 0.1 40 1.8
Nitrate as N	14797-55-8-N mg/L 3.2 32 10	NE U C	0.1 U	0.1 U 0.	1 U 0.1	U 0.1	U 0.1	U 0.1	U 0.1	U 0.1	0.097 J 0.1	0.25 0.1	U 0.1	U 0.1	U 0.1	0.64 0.1	U 0.1	U 0.1
Sulfate	14808-79-8 mg/L NE NE NE	NE 22.8 0	0.6 24 7.2 70.4	45 28.8 22	.8 24 0.6	6.87 0.6	15.1 0.6	U 0.6	19.4 0.6	U.58 J J 0.6	4.29 0.6	3.67 0.6	8.41 0.6	0.86 0.6	7.11 0.6	26.7 12	19.4 0.6	19.2 0.6

Page 3 of 7

		Sample ID	UPA-104-US	UPA-105A-US	UPA-105B-US	Downgradie UPA-106-USA	nt Upper Sand Mon UPA-106-USB	itoring Wells UPA-107-US	UPA-107-US	UPA-108B-US	UPA-108C-US	UPA-101-LSA	UPA-101-LSB	UPA-103-LS	Downgradie UPA-105A-LS	ent Lower Sand Mon UPA-105B-LS	itoring Wells UPA-106-LS	UPA-107-LS	UPA-108B-LS	DGC-8D
	N=Normal, FD=	Sample Date	10/2/2019 N	10/18/2019 N	9/30/2019 N	10/4/2019 N	10/8/2019 N	10/2/2019 N	10/2/2019 FD	10/10/2019 N	10/16/2019 N	10/18/2019 N	10/18/2019 N	10/4/2019 N	10/18/2019 N	10/1/2019 N	10/8/2019 N	10/3/2019 N	10/10/2019 N	10/14/2019 N
	RSL HOW RSL									.,	1									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Parameter Volatile Organic Compounds	CAS Unit B HQ=1.0	MUL	Result Qual RDL R	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RD	L Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL
1,1-Dichloroethane	75-34-3 ug/L 2.8 2.8 75-35-4 ug/L 28 280	NE NE	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1		U 1	U 1 U 1	U 1		U 1	U 1	NA NA
1,1-Dichloroethene 1,2,3-Trimethylbenzene	75-35-4 ug/L 28 280 526-73-8 ug/L 5.5 55	NE NE	U 1 U 1	U 1 U 1	U 1 U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	NA NA
1,2,4-Trimethylbenzene	95-63-6 ug/L 5.6 56	NE 5.7	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1		 	U 1	U 1	NA
1,2-Dichloroethane 1,3,5-Trimethylbenzene	107-06-2 ug/L 0.17 0.17 108-67-8 ug/L 6 60	5 NE NE 6.1	U 1	0.83 J 1 U 1	U 1	U 1	U 1 U 1	U 1	U 1	U 1 U 1	U 1	U 1	U 1 U 1	U 1	U 1 U 1	U 1	U 1	U 1	U 1	NA NA
1,4-Dioxane	123-91-1 ug/L 0.46 0.46	NE 4.6			3 0.4	3.7 0.4		4.4 0.4						U 0.4	1.6 0.4	1.4 0.4				NA
2-Butanone Acetone	78-93-3 ug/L 560 5600 67-64-1 ug/L 1400 14000	NE NE	5.1 U 5.1	U 5	U 5 U 5	U 5	U 5	U 5		U 5	U 5	5.8 U 5.		5.5 U 5.5	U 5	U 5		16 5 U 5	U 5	NA NA
Benzene	67-64-1 ug/L 1400 14000 71-43-2 ug/L 0.46 0.46	5 4.6		1.2 1	U 1	0 3	U 1	U 1	U 5	U 1		0.93 J		3.5 U 1	U 1	U 1	U 1	U 1	U 1	NA NA
Bromodichloromethane	75-27-4 ug/L 0.13 0.13	80 NE	U 1	U 1	U 1	0.56 J 1	U 1	U 1	U 1	U 1	U 1	U 1		U 1	U 1			U 1	U 1	NA NA
Carbon Disulfide Chlorobenzene	75-15-0 ug/L 81 810 108-90-7 ug/L 7.8 78	NE NE 100 NE	3.4 1 1	U 1 1 U 1	U 1 1 U 1	0.49 J 1	U 1	6.6 U 1	7.1 U 1	5.4 U 1		U 1	U 1	3.5 1	U 1 U 1	6.4 1 U 1		2.6 1 3.7 1	5.3 1	NA NA
Chloroethane	75-00-3 ug/L 2100 21000		U 1	U 1	U 1	U 1	U 1	U 1		U 1	U 1	U 1			U 1			U 1	U 1	NA
Chloroform Chloromethane	67-66-3 ug/L 0.22 0.22 74-87-3 ug/L 19 190	80 NE NE NE	U 1 U 1	U 1 1 U 1	U 1 U 1	2.1 1 U 1	U 1	U 1	U 1 U 1	U 1 U 1	U 1 U 1	U 1		U 1 U 1	U 1 U 1	U 1 U 1	U 1 U 1	U 1	U 1	NA NA
cis-1,2-Dichloroethene	156-59-2 ug/L 3.6 36	70 NE	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1	NA
Cyclohexane Dibromochloromethane	110-82-7 ug/L 1300 13000 124-48-1 ug/L 0.87 0.87	NE NE	U 1 U 1	U 1 U 1	U 1	U 1 U 1	U 1	U 1	U 1 U 1	U 1 U 1	U 1	U 1		U 1	U 1	U 1	U 1	U 1	U 1	NA NA
Dichlorofluoromethane	75-43-4 ug/L NE NE	NE NE	1.7 1		U 1	U 1	U 1	U 1	U 1	U 1	U 1	1 1		U 1	U 1	U 1	U 1	U 1	U 1	NA
Diethyl Ether	60-29-7 ug/L 390 3900 100-41-4 ug/L 1.5 1.5	+	2 1		U 1	0.56 J 1	13 1	11 1 II 1		24 1	 	3.1 1		U 1	U 1	U 1	 	3 1	21 1	NA NA
Ethylbenzene Indane	100-41-4 ug/L 1.5 1.5 496-11-7 ug/L NE NE	700 15 NE NE	0.46 J 1	U 1 1 U 1	U 1 1 U 1	U 1 U 1	0.45 J 1	U 1 U 1	U 1 U 1	0.69 J 1	0.62 J 1	0.58 J 1		U 1	U 1 U 1	U 1 U 1	U 1 U 1	U 1	0.38 J 1	NA NA
Isopropylbenzene	98-82-8 ug/L 45 450	NE NE	1.5 1	U 1	U 1	U 1	U 1	U 1		U 1	U 1	U 1		U 1	U 1	U 1	 	U 1	U 1	NA NA
Methyl Cyclohexane Methyl tert-Butyl Ether	108-87-2 ug/L NE NE 1634-04-4 ug/L 14 14	NE NE	0.62 J 1	U 1 1 U 1	U 1 1 U 1	U 1	U 1	U 1 U 1	U 1 U 1	U 1 U 1	U 1	2.3 U 1	U 1 1.8 1	U 1 U 1	U 1	U 1 U 1	U 1 U 1	1.6 1	0.51 J 1	NA NA
Methylene Chloride	75-09-2 ug/L 11 11	5 NE	U 1	U 1	U 1	0.59 J 1	U 1	U 1		U 1		U 1		U 1	U 1			U 1	U 1	NA
n-Propylbenzene Tetrachloroethene	103-65-1 ug/L 66 660 127-18-4 ug/L 4.1 11		0.52 J 1 0.62 J 1	U 1 1 U 1	0 1 62 1	U 1	U 1 U 1	U 1	U 1 U 1	U 1 U 1	U 1 U 1	U 1		U 1 U 1	U 1	33 U 1	0.27 J 1	0.34 J 1	U 1	NA NA
Tetrahydrofuran	109-99-9 ug/L 340 3400	NE NE	1.3 J 2	U 2	U 2	U 2	U 2	U 2	U 2	U 2		2.8 2	2 7 2	U 2	U 2	U 2	U 2	2.1 2	U 2	NA
Toluene trans-1.2-Dichloroethene	108-88-3 ug/L 110 1100 156-60-5 ug/L 36 360	1000 NE	U 1 U 1	U 1 1 U 1	U 1 U 1	U 1	U 1	U 1	U 1 U 1	U 1 U 1	U 1 U 1	U 1		U 1	U 1 U 1	U 1 U 1	U 1 U 1	U 1	U 1	NA NA
Trichloroethene	79-01-6 ug/L 0.28 0.49	5 NE	U 1		U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1		U 1	U 1	U 1	U 1	U 1	U 1	NA NA
Vinyl Chloride Xylenes, Total	75-01-4 ug/L 0.019 0.019 1330-20-7 ug/L 19 190		U 1 U 2	U 1 U 2	U 1 U 2	U 1 U 2	U 1 U 2	U 1		U 1 U 2	U 1 U 2	U 1		U 1	U 1 U 2	U 1 U 2	 	U 1 U 2	U 1 U 2	NA NA
Semivolatile Organic Compou		10000 21	1012	0 2	0 2	0 2	1012	1012	1012	0 2	1012	1014	1 0 2	0 2	1012	0 2	0 2	1012	1012	INA
1,2,4-Trichlorobenzene	120-82-1 ug/L 0.4 1.2	70 NE	U 2	U 2	U 2	U 2	U 2	U 2	U 2	U 2	U 2	U 2		U 2	U 2	U 2	U 2	U 2	U 2	NA NA
1,2-Dichlorobenzene 1,3-Dichlorobenzene	95-50-1 ug/L 30 300 541-73-1 ug/L NE NE	NE NE	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10		U 10 U 10	U 10 U 10	U 1		U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	NA NA
1,4-Dichlorobenzene	106-46-7 ug/L 0.48 0.48		U 10	U 10	U 10	U 10	U 10	U 10		U 10					U 10	U 10	U 10	U 10	U 10	
2,4-Dimethylphenol 2-Chlorophenol	105-67-9 ug/L 36 360 95-57-8 ug/L 9.1 91	NE NE	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10		U 10 U 10	U 10 U 10	U 1		U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	NA NA
2-Methylnaphthalene	91-57-6 ug/L 3.6 36	NE NE	U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 1	0 U 10		U 10	U 10	U 10	U 10	U 10	NA
2-Methylphenol 4-Methylphenol	95-48-7 ug/L 93 930 106-44-5 ug/L 190 1900	NE NE	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10		U 10 U 10	U 10 U 10	U 1			U 10 U 10	U 10 U 10	U 10 U 10	4.5 J 10	U 10	NA NA
Benzo[a]anthracene	56-55-3 ug/L 0.03 0.03	NE NE	0.11 J 0.25	U 0.05	U 0.05	U 0.05	U 0.05	U 0.05	U 0.05	U 0.05	U 0.05	U 0.0	05 U 0.25	U 0.05	U 0.05	U 0.05	U 0.05	U 0.05	U 0.05	NA
Benzo[a]pyrene Benzo[b]fluoranthene	50-32-8 ug/L 0.025 0.025 205-99-2 ug/L 0.25 0.25	0.2 NE NE NE	UJ 0.25 U 0.25	U 0.05	UJ 0.05	U 0.05 U 0.05	U 0.05	UJ 0.08		U 0.05 U 0.05								U 0.05	U 0.05	
Bis(2-chloroethyl) Ether	111-44-4 ug/L 0.014 0.014		0 9.20	0 0.00	08 0.00	U 0.03	0.00	0.091 0.03		U 0.03		0.00	30 0.20	U 0.03	8.00	0.11 0.03	***************************************	8 0.00	U 0.03	
Bis(2-ethylhexyl) Phthalate Bisphenol A	117-81-7 ug/L 5.6 5.6 80-05-7 ug/L 77 770	6 NE NE NE	U 2 U 10	U 2 U 10	U 2 U 10	U 2 U 10	U 2 U 10	U 2 U 10		U 2 U 10	U 2 U 10	U 2		U 2 U 10	U 2 U 10	20 2 U 10	U 2 U 10	U 2 U 10	U 2 U 10	NA NA
Diethyl Phthalate	84-66-2 ug/L 1500 15000		U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 1	0 U 10		U 10	U 10	U 10	U 10	U 10	NA NA
Di-n-Butyl Phthalate Diphenyl Ether	84-74-2 ug/L 90 900 101-84-8 ug/L NE NE	NE NE	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10		U 10 U 10	U 10 U 10	U 1 2.4 J 1		U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	U 10 U 10	
Hexachlorobenzene	101-84-8 ug/L NE NE 118-74-1 ug/L 0.0098 0.0098		U 0.1	U 0.02	U 0.02	U 0.02	U 0.02	U 0.02		U 0.02								U 0.02	U 0.02	
N,N-Dimethylaniline	121-69-7 ug/L 2.5 2.5	NE 25	UJ 1	U 1 U 10	U 1	U 1	U 1	U 1	U 1	U 1	U 1	U 1		U 1	U 1			U 1	U 1	NA NA
Naphthalene N-Methylaniline	100-61-8 ug/L NE 38	NE NE	U 10 UJ 5	U 10	U 10 U 5	U 10 U 5	U 10 U 5	U 10 U 5		U 10 U 5	U 10 U 5							U 10 U 5	U 10 U 5	
Pentachlorophenol	87-86-5 ug/L 0.041 0.041	1 NE	U 1	U 0.2	U 0.2	U 0.2	U 0.2	U 0.2	U 0.2	U 0.2	U 0.2	U 0.	2 U 1	U 0.2	U 0.2	U 0.2	U 0.2	U 0.2	U 0.2	NA
Phenol Total Metals	108-95-2 ug/L 580 5800	NE NE	2.0 J 10	U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 10	U 1	0 U 10	U 10	U 10	U 10	U 10	U 10	U 10	NA
Calcium	7440-70-2 ug/L NE NE								28100 250		13600 250									17200 250
Cobalt	7440-48-4 ug/L 0.6 6 7439-89-6 ug/L 1400 14000	NE 6	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Magnesium	7439-95-4 ug/L NE NE	NE NE I	7380 250	4300 250	5270 250	9370 250	10500 250	12300 250	13200 250	7710 250	9710 250	11200 25	0 10200 250	6850 250	5280 250	3380 250	8490 250	10400 250	7710 250	3250 250
Manganese Potassium	7439-96-5 ug/L 43 430 7440-09-7 ug/L NE NE			NA 250	NA 2890 250	NA 250	NA 250	NA 250	NA 250	NA 250	NA 250	NA 25	NA 50 5380 250	NA 4160 250	NA 2790 250	NA 4220 250	NA 250	NA 250	NA 250	NA 2940 250
Sodium	7440-23-5 ug/L NE NE					43300 250														13200 250
Dissolved Metals	7440 40 4 1127 0 0	NE 2		,							· · · · · · · · · · · · · · · · · · ·									
Cobalt	7440-48-4 ug/L 0.6 6 7439-89-6 ug/L 1400 14000			U 50	44.7 J 150										147 J 150	926 U 50		U 50		NA NA
Manganese	7439-96-5 ug/L 43 430				5 1,30											320 100				NA NA
Wet Chemistry Parameters Alkalinity, Bicarbonate as CaCC	O3 ALKB-C mg/L NE NE	NE NE	79.9 5	39.4	16.7 5	80.9 5	102	149 5	149 5	128 5	155 5	153 5	5 148 5	58.3 5	38.9 5	74.1 5	133 5	127 5	135 5	31.6 5
Alkalinity, Total	ALK mg/L NE NE	NE NE	NA	NA 5	NA 5	NA	NA	NA	NA NA	NA	NA NA	NA .	NA NA	NA	NA 5	NA 5	NA 5	NA NA	NA	NA 5
Ammonia	7664-41-7 mg/L NE NE	NE NE	0.31 0.1				27.4 0.5		10.4 0.1		9 0.1	0.94 0.	1 0.81 0.1	0.72 0.1			17.3 0.1			0.81 0.1
Chloride Nitrate as N	16887-00-6 mg/L NE NE 14797-55-8-N mg/L 3.2 32							49.5 2.52 U 0.1								42.5 1.92 1.37 0.1		40.5 1.8 U 0.1		33.3 1.56 0.56 0.1
Sulfate	14808-79-8 mg/L NE NE								16.6 0.6				6 9.34 0.6		11.8 0.6			2.29 0.6		

Page 4 of 7

				Sample	e ID D	GC-10D	Down	gradient Lower	Sand Mor A-02D	nitoring Wells UPA-03D	UPA-10	4-IS A	WC-2 A	VC-E1 (132)	AWC-E1 (156)	AWC-E1 (132)	AWC-E1 (156)	AWC Monitoring W AWC-E2 (140)		AWC-E2 (140) AWC-E2 (1	65) AWC-	-K1	AWC-6R		CC UPA Mo 2 (128)	nitoring Wells BW-2 (138)		nity N-18
				Sample D	Date 10	0/7/2019	10/7/201	9 10/1	4/2019	10/14/2019	9 10/1/2	019 11/	7/2019	10/29/2019	10/29/2019	11/7/2019	11/7/2019	10/29/2019	10/29/2019	11/7/2019	11/7/201	9 10/29/2		11/7/2019	10/11	1/2019	10/11/2019	10/1:	5/2019
		N=N	RSL	Field Duplic	cate	N	l N		N	N	N		N	N	N N	N N	N N	N N	N N	N N	N N	N N		N		N	N		N
Parameter Volatile Organic Compounds	CAS	Unit u.t.	HQ=1.0	MCL M	Result	t Qual RDL	Result Qual	RDL Result (Qual RDL	Result Qual F	RDL Result Qua	al RDL Result	Qual RDL Res	ult Qual RDI	Result Qual RD	L Result Qual RDL	Result Qual RDL	Result Qual RD	L Result Qual RD	L Result Qual RI	OL Result Qual	RDL Result Qu	al RDL Resu	ilt Qual RD	DL Result C	ual RDL R	esult Qual R	DL Result C	Qual RDL
1,1-Dichloroethane	75-34-3	ug/L 2.8	2.8	NE N	VE	U 1	U	1	U 1	U	1 U	1 NA	N.	Α	NA	NA	NA I	NA	NA	NA NA	NA	1 0	1	U 1	1	U 1	U	1	U 1
1,1-Dichloroethene	75-35-4	ug/L 28			VE.	U 1	U		U 1	U			N.		NA NA	NA NA	NA NA	NA	NA NA	NA	NA		1	U 1		U 1	U	_	U 1
1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene	526-73-8 95-63-6	ug/L 5.5 ug/L 5.6		NE 5	NE 5.7	U 1 U 1	U		U 1 U 1	U		1 NA 1 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1 1	U 1		U 1 1 U 1	U		U 1 1 U 1
1,2-Dichloroethane	107-06-2	ug/L 0.17		5 N	NE	U 1	U	1	U 1	U	1 U	1 NA	N.	4	NA	NA NA	NA	NA	NA NA	NA	NA	U	1 0.6	4 J 1	1	U 1	U	1	U 1
1,3,5-Trimethylbenzene 1,4-Dioxane	108-67-8 123-91-1	ug/L 6 ug/L 0.46	0.46		6.1 1.6 0.67	U 1 0.4	U		U 1	U	1 U	1 NA NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.94	0.4 0.8	U 1		U 1	U	1 4.4	U 1 0.4
2-Butanone	78-93-3	ug/L 560			VE S.G.	U 5	Ü		U 5	U	5 17	5 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		5	U S		U 5	U		U 5
Acetone	67-64-1	ug/L 1400			VE VE	U 5			U 5	U		5 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		5	U S		U 5	U		U 5
Benzene Bromodichloromethane	71-43-2 75-27-4	ug/L 0.46 ug/L 0.13		5 4 80 N	VE	U 1 U 1	U		U 1 U 1	1 1 0	1 0.4 J	1 NA 1 NA	N. N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1 1	U 1		U 1 U 1	U		J 1 1 U 1
Carbon Disulfide	75-15-0	ug/L 81		NE N		U 1			U 1	U	1 1.2	1 NA	N.		NA	NA	NA	NA	NA	NA	NA		1	U 1		U 1			U 1
Chlorobenzene Chloroethane	108-90-7 75-00-3	ug/L 7.8 ug/L 2100			NE	U 1 U 1	U	1 5.5	U 1	2 U	1 1	NA 1 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1 1	U 1		U 1	3 U		U 1
Chloroform	67-66-3	ug/L 0.22			VE VE	U 1		-	U 1	Ü		-	N.		NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA		1 0.4			U 1	Ü		U 1
Chloromethane	74-87-3 156-59-2	ug/L 19			NE NE	U 1	U		U 1	U		1 NA 1 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1 1	U 1		U 1 U 1	U		U 1
cis-1,2-Dichloroethene Cyclohexane	110-82-7	ug/L 3.6 ug/L 1300			NE NE	U 1	U		U 1	U		1 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1	U 1		U 1	U		U 1
Dibromochloromethane	124-48-1	ug/L 0.87	0.87		NE .	UJ 1	UJ	1	U 1	U	1 U		N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	U	1	U 1		U 1	U		U 1
Dichlorofluoromethane Diethyl Ether	75-43-4 60-29-7	ug/L NE ug/L 390	NE 3900		NE NE	U 1	U	1 3.1	U 1	0.53 J 0.59 J	1 0.39 J	1 NA 1 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1 1	U 1		U 1 1	7.9 U	1 13	U 1
Ethylbenzene	100-41-4	ug/L 1.5	1.5	700 1	15	U 1	U	1	U 1	U	1 U	1 NA	N.	4	NA	NA	NA	NA NA	NA	NA	NA	U	1	U 1	1	U 1	U	1	U 1
Indane	496-11-7 98-82-8	ug/L NE ug/L 45	NE 450		NE NE	U 1	U	-	U 1	U		1 NA 1 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1 1	U 1		U 1	U		U 1
Isopropylbenzene Methyl Cyclohexane	108-87-2	ug/L NE	NE NE		VE	U 1	U		U 1	U			N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1	U 1		U 1	U		U 1
Methyl tert-Butyl Ether		ug/L 14			NE 0.48			1 2.5		0.75		1 NA	N.		NA NA	NA NA	NA	NA	NA NA	NA	NA		1 0.5			U 1	U		U 1
Methylene Chloride n-Propylbenzene	75-09-2 103-65-1	ug/L 11 ug/L 66	660		NE	U 1	U		U 1 U 1	U			N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1 1	U 1		U 1 1 U 1	U		U 1 U 1
Tetrachloroethene	127-18-4	ug/L 4.1	11	5 N	NE 1.5	1	U	1 0.26	J 1	U	1 U	1 NA	N.	4	NA	NA	NA	NA	NA NA	NA NA	NA	U	1 0.6	2 J 1	1	U 1	U	1	U 1
Tetrahydrofuran Toluene	109-99-9	ug/L 340 ug/L 110			VE	U 2	U	2 2.7	U 1	U	2 3.3	2 NA 1 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1	U 2		U 2 U 1	U		U 2
trans-1,2-Dichloroethene	156-60-5	ug/L 36			VE	U 1	U		U 1	T U			N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1	U 1		U 1	Ü		U 1
Trichloroethene	79-01-6	ug/L 0.28					U		U 1	U			N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1	U 1		U 1	U		U 1
Vinyl Chloride Xvlenes, Total	75-01-4 1330-20-7	ug/L 0.019 ug/L 19			NE 21	U 1 U 2	U		U 1 U 2	U		1 NA 2 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		1 2	U 1		U 1 U 2	U		U 1 U 2
Semivolatile Organic Compo	ounds																												
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	120-82-1 95-50-1	ug/L 0.4 ug/L 30		70 N 600 N	NE	U 2 U 10	U		U 2 U 10	U		2 NA 10 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		10	U 1		U 2 U 10	U 1		U 2 U 10
1,3-Dichlorobenzene	541-73-1	ug/L NE	NE		VE	U 10			U 10			10 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		10	U 1		U 10	Ŭ 1	0	U 10
1,4-Dichlorobenzene	106-46-7 105-67-9	ug/L 0.48 ug/L 36	0.48 360		NE NE	U 10			U 10			10 NA 10 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		10	U 1		U 10 U 10	U 1		U 10
2,4-Dimethylphenol 2-Chlorophenol	95-57-8	ug/L 36 ug/L 9.1			VE	U 10			U 10			10 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		10	U 1		U 10	U 1		U 10
2-Methylnaphthalene	91-57-6	ug/L 3.6			VE.	U 10			U 10			10 NA	N.		NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA		10	U 1		U 10	U 1		U 10
2-Methylphenol 4-Methylphenol	95-48-7 106-44-5	ug/L 93 ug/L 190			NE	U 10 U 10			U 10 U 10			10 NA 10 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		10	U 1		U 10 U 10	U 1		U 10 U 10
Benzo[a]anthracene	56-55-3	ug/L 0.03	0.03	NE N	NE	U 0.05	5 U	0.05	U 0.05			0.05 NA	N.		NA	NA NA	NA	NA	NA NA	NA	NA NA		0.05	U 0.0	05	U 0.05	U 0.		U 0.05
Benzo[a]pyrene Benzo[b]fluoranthene	50-32-8 205-99-2	ug/L 0.025 ug/L 0.25			NE	U 0.05			U 0.05 U 0.05			0.05 NA 0.05 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		0.05	U 0.0		U 0.05 U 0.05	U 0.		U 0.05
Bis(2-chloroethyl) Ether	111-44-4	ug/L 0.014			.14	U 0.03		100000000000000000000000000000000000000	0.00		5.00	NA NA	N.	4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		0.03		03 0.1	0.03	0.12 0.		
Bis(2-ethylhexyl) Phthalate Bisphenol A	117-81-7 80-05-7	ug/L 5.6 ug/L 77	5.6 770		VE	U 2 UJ 10	UJ		U 2 U 10	U		2 NA 10 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		10	U 2		U 2 U 10	U 1		U 2 U 10
Diethyl Phthalate	84-66-2	ug/L 1500			NE NE	U 10			U 10			10 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		10	U 1		U 10	U 1		U 10
Di-n-Butyl Phthalate	84-74-2	ug/L 90	900 NE		NE NE	U 10		10	U 10	U		10 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		10	U 1		U 10	U 1	0	U 10 U 10
Diphenyl Ether Hexachlorobenzene	101-84-8 118-74-1	ug/L NE ug/L 0.009			NE	U 10 U 0.02		10 2.4 0.02	U 0.02			10 NA 0.02 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		0.02	U 0.0	-	U 0.02	U 1		U 0.02
N,N-Dimethylaniline	121-69-7	ug/L 2.5	2.5	NE 2	25	U 1	U	1	U 1	U	1 U	1 NA	N.	4	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	U	1	U 1	1	U 1	U	1	U 1
Naphthalene N-Methylaniline	91-20-3	ug/L 0.17 ug/L NE	38	NE 0.		U 10 U 5			U 10 U 5			10 NA 5 NA	N.		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		10 5	U 1		U 10 U 5	U 1		U 10 U 5
Pentachlorophenol	87-86-5	ug/L 0.041	0.041	1 N	NE	U 0.2	U	0.2	U 0.2	U	0.2 U	0.2 NA	N.	4	NA	NA	NA	NA	NA NA	NA NA	NA	U	0.2 0.1	5 J 0	2	U 0.2	U 0	.2	U 0.2
Phenol Total Metals	108-95-2	ug/L 580	5800	NE N	NE	U 10	U	10	U 10	U	10 U	10 NA	N.	4	NA	NA	NA	NA	NA NA	NA	NA	l l u	10	U 1	0	U 10	U 1	0	U 10
Calcium		ug/L NE		NE N	NE 13700	0 250	15800	250 24200	250	12700		250 11900	250 N	4	NA NA	26400 250	26000 250	0		18200 25	50 26600	250 NA	1690	0 25	50 25400	250 2	1400 2	50 23500	250
Cobalt	7440-48-4	ug/L 0.6	6	NE (NA	NA		2.5	NA NA	NA NA				NA	NA			NA	NA	NA	NA NA		NA		NA NA	NA NA	\blacksquare
Iron Magnesium		ug/L 1400 ug/L NE		NE 139			NA 10200	NA 250 12700	250	5070	150 NA 250 10200	250 5950	250 N	4	NA I	NA 12600 250	NA 12500 250) NA	NA NA	NA 7270 25	NA 50 10900	250 NA	NA 765		NA 50 10200	250 9	NA 2	NA 50 11800	250
Manganese	7439-96-5	ug/L 43	430	NE 26	60 NA		NA	NA		7.1 J	15 NA	NA				NA	NA			NA	NA	NA	N/A		NA		NA	NA	
Potassium Sodium		ug/L NE ug/L NE		NE N		250	7570	250 5250 250 23800		2200 17200		250 2040 250 13200			NA NA		4000 250 30900 250	NA C	NA NA			250 NA 250 NA	254 2060		50 8890 50 25200	250 7 250 2		50 15400 50 31200	250 250
Dissolved Metals							· · · · · · · · · · · · · · · · · · ·						1 -55 14	- 1 - 1	1	'		1	1							1 -00 2	1		
Cobalt		ug/L 0.6 ug/L 1400				11 150		50 150		- 11		NA NA				NA NA	NA NA			NA NA	NA NA		50						
Iron Manganese	7439-96-5						4.4 J			7.9 J		NA NA				NA NA	NA NA			NA NA	NA NA	- 12	15 30.						
Wet Chemistry Parameters																													
Alkalinity, Bicarbonate as CaC Alkalinity, Total		mg/L NE mg/L NE		NE N		5	29.9 NA	5 110 NA	5	24.6 NA	5 140 NA	5 14 NA	5 N.		NA NA	84 5 NA	84.4 5 NA	NA NA	NA NA	69.4 5	5 98.9 NA	5 NA NA	18.3 NA		5 121 NA	5	112 :	5 178 NA	5
Ammonia	7664-41-7	mg/L NE	NE	NE N	ΝE	U 0.1	0.11	0.1 1.6		U	0.1 0.76		U 0.1 N	4	NA	1.6 0.1	1.6 0.1	I NA	NA	U 0.	.1 0.59	0.1 0.068 U	0.1 0.14	4 0.	.1 7.4	0.1	7.6 0	.1 22.2	
Chloride Nitrate as N		mg/L NE mg/L 3.2				1.8	7.97	0.48 37.9	1.68	33.7	1.56 38.8	1.8 28.5	1.32 N	4	NA NA			8 NA	NA NA	28 1. U 0.		1.92 NA	52.		.4 40.8	1.8 4 U 0.1		92 49.1	
Sulfate		mg/L 3.2		10 N					U 0.1		0.1 U 0.6 8.54				NA NA	22.5 J 0.1	0.06 J 0.1 20.5 0.6	NA NA	NA NA		.1 U	0.1 NA 0.6 NA	18.		.6 7.3			.6 7.13	
L				-4																									

								T									k!	CC LIDA	Monit	oring 3	Wells and	1 D G	/icinity								
I							mple ID	MW	-26N	M	N-26N	(128)	MW-	26N (1	38)	MW-34		MW	/-34 (8	0)	MW-3) M\	V-34 (*		P-	5L	Т	P-5U	P-	'-6
						Samp	ole Date	10/9	2019		0/17/2			17/201		10/15/2			15/201		10/15	5/2019)/16/20		10/3/		10	0/3/2019	10/8/2	
	Т			N=Nor	rmal, FD=l RSL	Field Du	uplicate		N	-	N			N		N			FD			N		N		<u> </u>	<u> </u>	┼	NN	N	N
Parameter		CAS	Unit		HQ=1.0	MCL		Result C	ual RD	L Res	ılt Qua	al RDI	Result	Qual	RDL	Result Qu	al RDL	Result	Qual	RDL	Result C	Qual F	DL Resul	t Qual	RDL	Result Qu	ual RDL	Resul	t Qual RDL	Result Qu	ual_RDL
Volatile Organic Comp	ounds											Ψ.																			
1,1-Dichloroethane 1,1-Dichloroethene		75-34-3 75-35-4	ug/L ug/L	2.8	2.8	NE 7	NE NE	J	J 1 U 1	+	U			J	1	- U			U	1		U	1	U			U 1 U 1	NA NA	+	1	J 1 U 1
1,2,3-Trimethylbenzene	,	526-73-8	ug/L	5.5	55	NE	NE		U 1		U			U	1	Ü			U	1		U	1	U	1		J 1	NA	++-	42	
1,2,4-Trimethylbenzene	,	95-63-6	ug/L	5.6	56	NE	5.7	 	U 1		U			U	1	U			U	1		U	1	U	1		J 1	NA			
1,2-Dichloroethane 1,3,5-Trimethylbenzene		107-06-2 108-67-8	ug/L ug/L	0.17	0.17	5 NE	NE 6.1		U 1	+	U			J U	1	U			U	1		U	1	UJ	1 1		J 1 J 1	NA NA			U 1
1,4-Dioxane		123-91-1	ug/L		0.46	NE	4.6									3.8	0.4	4.4		0.4	4.3		0.4	103				NA	+	-	
2-Butanone		78-93-3	ug/L	560	5600	NE	NE		U 5		U			U	5	U	5		U	5		U	5	U			J 5	NA			U 5
Acetone Benzene		67-64-1 71-43-2	ug/L	1400 0.46	14000 0.46	NE 5	NE 4.6		U 5		U			U	5	U			U	5		U	5	U	5		J 5 J 1	NA NA		6.2 L	U 6.2
Bromodichloromethane		75-27-4	ug/L ug/L	0.46	0.46	80	4.6 NE		U 1		1 0		pooooooooo	U	1				Ü	1		바	1	10	1		J 1	NA NA	+		U 1
Carbon Disulfide		75-15-0	ug/L	81	810	NE	NE		U 1		U	1		U	1	U			Ü	1		Ü	1	Ü	1		J 1	NA		l	U 1
Chlorobenzene		108-90-7	ug/L	7.8 2100	78	100	NE	2.1	1 1	-	U		3.8		1	2	1 1	1.9		1	2.9		1 2.1	U	1 1		U 1 U 1	NA NA		2.4	
Chloroethane Chloroform		75-00-3 67-66-3	ug/L ug/L	0.22	21000	NE 80	NE NE		U 1	+	U		-	U	1	U			U	1		U	1	U	1		J 1 J 1	NA NA	+	3.1	U 1
Chloromethane		74-87-3	ug/L	19	190	NE	NE		U 1		Ū			Ū	1	Ū			Ū	1		Ū	1	Ū		 	U 1	NA			U 1
cis-1,2-Dichloroethene		156-59-2	ug/L	3.6	36	70	NE		J 1	_	U	_		J	1	U			U	1		U	1	U	1		J 1	NA			J 1
Cyclohexane Dibromochloromethane		110-82-7 124-48-1	ug/L ug/L	1300 0.87	13000	NE 80	NE NE		U 1	+	U			U	1 1	U			U	1		U	1	U	1 1		U 1 U 1	NA NA	+	15	U 1
Dichlorofluoromethane		75-43-4	ug/L	NE	NE	NE	NE	2.7	1	1.6	i	<u> </u>	6.3		1	U			ŭ	1		Ü	1	ΙŪ	1		U 1	NA		23	1
Diethyl Ether		60-29-7	ug/L		3900	NE 700	NE 16	1.8	1 1					\vdash \vdash	1	3.1	1	3.2	-,,	1	4.6	Ţ,	1 3.8	H	1		J 1	NA NA		8.3	1
Ethylbenzene Indane		100-41-4 496-11-7	ug/L ug/L	1.5 NE	1.5 NE	700 NE	15 NE		U 1	+-	U		0.67	U	1 1	U			U	1		U	1	U	1 1		J 1 J 1	NA NA	+	20	1
Isopropylbenzene		98-82-8	ug/L	45	450	NE	NE	0.75	J 1		Ü	1		Ľ	1	U	1		U	1		U	1	U	<u> </u>		J 1	NA		17	1
Methyl Cyclohexane		108-87-2	ug/L	NE	NE	NE	NE		U 1		U			U	1	U			U	1		U	1	U	1		J 1	NA		18	. 1
Methyl tert-Butyl Ether Methylene Chloride		1634-04-4 75-09-2	ug/L ug/L	14	14	NE 5	NE NE		U 1	+	U		-	U	1	U		\vdash	U	1		U	1	U	1		J 1 J 1	NA NA	+		U 1
n-Propylbenzene		103-65-1	ug/L ug/L	66	660	NE	NE		U 1	+	- U		1.4	 	1	- Ü			Ü	1		Ü	1	U	1		J 1	NA NA	+	31	1
Tetrachloroethene		127-18-4	ug/L	4.1	11	5	NE		U 1		U			U	1	0.92 J		0.89	J	1	0.91	J	1 1.2	I	1		J 1	NA			U 1
Tetrahydrofuran Toluene		109-99-9 108-88-3	ug/L ug/L	340 110	3400 1100	NE 1000	NE NE	4.4	U 1	4.	U	1		U	2	1.6 J			U	2		U	1	U	1		J 2 J 1	NA NA	+	2.3	1
trans-1,2-Dichloroethen	ie l	156-60-5	ug/L ug/L		360	1000	NE		U 1	+	- U		+	Ü	1				Ü	1		u	1	U			U 1	NA NA	+		u †
Trichloroethene		79-01-6	ug/L	0.28	0.49	5	NE		U 1	1	U	1	1	U	1	U	1		U	1		U	1	U	1		U 1	NA		l	U 1
Vinyl Chloride Xylenes, Total		75-01-4 1330-20-7	ug/L ug/L	0.019	190	10000	NE 21	 	U 1 U 2	+-	U		+	U	1 2	U			U	1 2		U	2	U	1 2		U 1 U 2	NA NA	+		U 1
Semivolatile Organic (Compound		ug/L	10	1 30	10000	21		<u> </u>		l o	12		ایا	-	1 0	1 4		ا ت	-		ا د	-	1 0	1 4		<u> </u>	INA			
1,2,4-Trichlorobenzene		120-82-1	ug/L	0.4	1.2	70	NE		U 2		U			U	2	U			U	2		U	2	U			J 2	NA			U 2
1,2-Dichlorobenzene 1,3-Dichlorobenzene		95-50-1 541-73-1	ug/L	30 NE	300 NE	600 NE	NE NE		U 1		U			U	10 10	U			U	10		U	10	U			U 10 U 10	NA NA	+		J 10 U 10
1,4-Dichlorobenzene		106-46-7	ug/L ug/L	0.48	0.48	75	NE NE		U 1		U			U	10	U		\vdash	U	10		U	10	U			J 10	NA NA	+-		U 10
2,4-Dimethylphenol		105-67-9	ug/L	36	360	NE	NE		U 1		Ū	10		U	10	U	10		U	10		U	10	U	10		J 10	NA			U 10
2-Chlorophenol		95-57-8	ug/L	9.1	91	NE.	NE		U 10		U			U	10	U			U	10		U	10	U	10		J 10	NA NA			U 10
2-Methylnaphthalene 2-Methylphenol		91-57-6 95-48-7	ug/L ug/L		930	NE NE	NE NE		U 1		U			U	10	U			U	10		U	10	U	10		J 10 J 10	NA NA	+		U 10 U 10
4-Methylphenol		106-44-5	ug/L	190	1900	NE	NE		U 1)	U	10		U	10	- l	10		U	10		U	10	U	10		J 10	NA		1 1	U 10
Benzo[a]anthracene		56-55-3	ug/L	0.03	0.03	NE	NE		U 0.0		U			U	0.5	U				0.05			.05	U	0.05		J 0.05				U 0.05
Benzo[a]pyrene Benzo[b]fluoranthene		50-32-8 205-99-2	ug/L ug/L	0.025	0.025	0.2 NE	NE NE		U 0.0		U			U	0.5	U				0.05			.05 .05	U			U 0.05 U 0.05		+		U 0.05
Bis(2-chloroethyl) Ether	.	111-44-4	ug/L	0.014	0.014		0.14								J. J		0.00					Ď.		L		0.037	0.03	NA			
Bis(2-ethylhexyl) Phthal	ate	117-81-7	ug/L	5.6	5.6	6	NE		U 2		U			U	2	U			U	2		U	2	U			J 2	NA			U 2
Bisphenol A Diethyl Phthalate		80-05-7 84-66-2	ug/L ug/L	77 1500	770 15000	NE NE	NE NE		U 10		U	_		U	10	U			U	10 10		U	10 10	U			J 10 J 10	NA NA	+		U 10
Di-n-Butyl Phthalate		84-74-2	ug/L	90	900	NE	NE		U 1		Ü			Ü	10	T U			Ü	10		Ü	10	Ü	10		J 10	NA			U 10
Diphenyl Ether		101-84-8	ug/L	NE	NE	NE	NE		U 1		U	_		U	10	U			U	10		U	10	U	10		J 10	NA			J 10
Hexachlorobenzene N,N-Dimethylaniline		118-74-1 121-69-7	ug/L ug/L	0.0098	0.0098	NE	NE 25		U 0.0		U		4	U	0.2	- U			U	0.02		U	1.02	U	0.02		U 0.02 U 1	NA NA	+	21	U 0.02
Naphthalene		91-20-3	ug/L		0.17		0.63		U 10			10	1		10	Ü			Ü	10			10	Ü	10		J 10				
N-Methylaniline		100-61-8	ug/L	NE	38	NE	NE		U 5		U			U	5	U			U	5		U	5	U			J 5	NA		12	5
Pentachlorophenol Phenol		87-86-5 108-95-2	ug/L ug/L		0.041 5800	NE	NE NE		U 0.		U			U	10	U			U	10			0.2 10	U			J 0.2 J 10		+		U 0.2
Total Metals		100-33-2	ug/L	550	3300	141	INL		<u> </u>		10	1 10		ايرا	10	1 0	1 10		ایا	10	1	۰		10	1 10		S 10	INA		—	S 10
Calcium		7440-70-2			NE	NE		20400	25	0 199		25	0 22500		recessooote	16100	250	16900		250	17500		250 1600		250	15500	250			29100	250
Cobalt		7440-48-4			6	NE	6	NA	<u> </u>	N/		4			150	NA	-	NA	I		NA NA		NA NA	-	-	NA NA		NA		NA NA	
Iron Magnesium	+	7439-89-6 7439-95-4			14000 NE	NE NE	13939 NE	NA 11800	25	0 105		25	0 12300		150 250	NA 8310	250	NA 8180		250	NA 9140	+	NA 250 8350		250	NA 4830	250	NA 8770		NA 15400	250
Manganese		7439-96-5	ug/L	43	430	NE	260	NA		N/						NA		NA			NA		NA			NA		NA		NA	
Potassium		7440-09-7			NE	NE	NE	2280	25				0 2420			4110	250				4530		250 4150			3240	250				250
Sodium Dissolved Metals		7440-23-5	ug/L	NE	NE	NE	NE	26400	25	0 217	וטו	25	0 23800	1	250	21100	250	21000		250	22500		250 2100	ار	J 250	20700	250	32200	д [250	58100	250
Cobalt		7440-48-4	ug/L	0.6	6	NE	6	1000			U	50	4.9													10	11.00	NA	TTT	AP II	1 1 80
Iron		7439-89-6	ug/L	1400	14000	NE	13939		U 15	0	U	15	0													138	J 150	NA			
Manganasa		7439-96-5	ug/L	43	430	NE	260	170		10	ш															90.6	1 15	NA			
		ALKB-C	mg/L	NE	NE	NE	NE	61.9	5	35.	9	5	74.4	 	5	54.1	5	54.8	T	5	66.5		5 61.6	T	5	52.4	5	39.4	5	155	5
	as CaCC3	ALND-C																													
Wet Chemistry Param Alkalinity, Bicarbonate a Alkalinity, Total	as CaCO3	ALK	mg/L	NE	NE	NE	NE	NA		N/	_		NA			NA		NA			NA		NA			NA		NA		NA	
Wet Chemistry Param Alkalinity, Bicarbonate a Alkalinity, Total Ammonia	as CaCO3	ALK 7664-41-7	mg/L mg/L	NE NE	NE NE	NE NE	NE NE	NA 0.28	0.	1	U	0.1	0.099		0.1	NA 0.62	0.1	0.63		0.1	NA 0.95		NA 0.1 0.8		0.1	NA	J 0.1		U 0.1	NA 0.16	0.1
Wet Chemistry Param Alkalinity, Bicarbonate a Alkalinity, Total		ALK	mg/L mg/L mg/L	NE NE NE	NE	NE	NE	NA	0.	1 !8 35.	0 6	0.1 1.6	0.099 8 48		0.1	NA	0.1				NA		NA			NA 27.4	U 0.1 1.2 0.1	58.1	2.76	NA 0.16 74.6	0.1 3.48 U 0.1

Page 6 of 7

Notes:

Concentration exceeds PRG
Orange highlight = Concentration exceeds MCL
Yellow highlight = Concentration exceeds RSL HQ=1.0
Green highlight = Concentration exceeds RSL HQ=0.1

Abbreviations:

HQ = Hazard Quotient

MCL = USEPA Maximum Contaminant Level, updated June 2017

mg/L = milligrams per liter

NA = Not Applicable / Not Analyzed

ND = Not Detected

NE = Standard does not exist

PRG = Site Specific Preliminary Remediation Goals for Delaware Sand & Gravel Landfill, provided to the United States Environmental Protection Agency (USEPA) by the Trust in October 2017.

QC - Quality Control

Qual = interpreted qualifier

RDL = reporting detection limit

RSL = Regional Screening Level for tapwater, updated June 2017

SVOC = Semi-Volitale Organic Compounds

ug/L = micrograms per liter

VOC = Volitale Organic Compounds

Qualifiers:

- J estimated result
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- R The sample result is rejected due to serious deficiencies in meeting QC criteria.
- U not detected above RDL
- UJ not detected above RDL, RDL is estimated

APPENDIX B-2

Summary of PRG/MCL/RSL Screening - October/ November 2019

	Г				ν.	OCs					I	SVO	Cs			Total Metals				Dissolved Metals	
	Compound PRG	1,2,4-Trimethylb 5.7	enzene	1,3,5-Trimethylbenzend		Benze 4.6		Ethylbenzene 15	Xylenes 2	s, Total 1		oroethyl) Ether 0.14	Naphthalene 0.63	C	obalt 6	Iron 13939	Manganese 260		Cobalt 6	Iron 13939	Manganese 260
All results in ug/L	Depth (ft bgs)	Maximum Result Ex	PRG ceedance	Maximum PRG Result Exceedan	Maximum PRG	Maximum	PRG Exceedance	Maximum PRG Result Exceedance	Maximum Result	PRG Exceedance	Maximum		Maximum PRG Result Exceedance	Maximum Result	PRG Exceedance	Maximum PRG	Maximum F	PRG edance	Maximum PRG Result Exceedance	Maximum PRG Result Exceedance	Maximum PRG
DDA Extraction Monitoring Wells B-4DR	NA I	29	Yos	120 Yes	77 Yes	< 5	(ND)	12 No.	120	Yes	85	Yes	15 Yes	NA NA	I NA	NA NA		NA I	44.8 Yes	81900 Yes	5460 Yes
BG-1	NA	8	Yes	4.7 No	35 Yes	4.2	No	< 1 (ND)	6.8	No	4.3	Yes	< 10 (ND)	NA	NA	NA NA	NA	NA	37.6 Yes	47100 Yes	5020 Yes
C-18D C-19D	NA NA	32 < 1	Yes (ND)	9.1 Yes (ND)	130 Yes 190 Yes	150 11	Yes Yes	67 Yes < 1 (ND)	230 < 2	Yes (ND)	19 17	Yes Yes	1.8 Yes < 10 (ND)	NA NA	NA NA	NA NA	NA NA	NA NA	44.3 Yes 83.3 Yes	37300 Yes 33100 Yes	3680 Yes 6610 Yes
C-20D C-2D	NA NA	< 1 70	(ND) Yes	< 1 (ND) 32 Yes	140 Yes 18 Yes	2.2	No Yes	< 1 (ND) 0.36 Nie	< 2 130	(ND) Yes	5.1 1.2	Yes Yes	< 10 (ND) 4.6 Yes	NA NA	NA NA	NA NA	NA NA	NA NA	45.8 Yes 11.4 Yes	25900 Yes 31100 Yes	8000 Yes 2170 Yes
C-30 C-4D	NA NA	23 0.37	Yes No	7.1 Yes < 1 (ND)	68 Yes 31 Yes	83 7.1	Yes Yes	27 Yes < 1 (ND)	130 < 2	Yes (ND)	2.2 59	Yes Yes	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA		NA NA	97 Yes 14.8 Yes	25600 Yes 29700 Yes	3880 Yes 1560 Yes
DDA Monitoring Wells DGC-7C	l NA	<1	(ND)	< 1 (ND)	< 0.4 (ND)		(ND)	< 1 (ND)	< 2	(ND)	< 0.03	(ND)	< 10 (ND)	NA NA	I NA	T NA NA		NA I	22.1 Yes	91800 Yes	1020 Yes
GA-101	NA	600	Yes	180 Yes	4.1 No.	1.6	No	240 Yes	820	Yes	< 0.03	(ND)	28 Yes	NA	NA	NA NA	NA	NA	< 50 (ND)	7230 No.	563 Yes
PZ-11-EXT PZ-5-EXT	NA NA	2100 600	Yes Yes	550 Yes 78 Yes	44 Yes < 2 (ND)	300 0.43	Yes No	8.7 No. 310 Yes	5400 700	Yes Yes	4.6 < 0.03	Yes (ND)	56 Yes 6.5 Yes	NA NA	NA NA	NA NA		NA NA	21.3 Yes < 50 (ND)	39600 Yes 31500 Yes	135 No. 688 Yes
PW-1(U) UPCUTZ Monitoring Well DDA-18-TZ	s NA	<1	(ND)	< 1 (ND)	1.9 No	<1	(ND)	< 1 (ND)	< 2	(ND)	< 0.03	(ND)	< 10 (ND)	NA NA	NA NA	NA NA	NA NA	NA	429 Yes	8460 No	37500 Yes
DDA-18-TZ (Field duplicate) DDA-19-TZ	NA NA	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	1.8 No. 43 Yes	< 1 33	(ND) Yes	< 1 (ND) 0.42 No	< 2 < 2	(ND) (ND)	< 0.03 13	(ND) Yes	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA		NA NA	459 Yes 11.2 Yes	8970 No. 26400 Yes	38200 Yes 554 Yes
DDA-20-TZ DGC-5	NA 40	21 < 1	Yes (ND)	2 No < 1 (ND)	50 Yes 11 Yes	30 0.2	Yes No	17 Yes < 1 (ND)	30 < 2	Yes (ND)	8.7 0.96	Yes Yes	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA		NA NA	35.1 Yes 31.6 Yes	44600 Yes 24600 Yes	424 Yes 1990 Yes
DGC-5	50		(ND)	< 1 (ND)	9 Yes	0.23	No	< 1 (ND)	< 2	(ND)	0.81	Yes	< 10 (ND)	NA NA	NA NA	NA NA		NA .	34.3 Yes	26900 Yes	2040 Yes
PW-1(U) Upper Sand Monitoring V DDA-02	NA		(ND)	< 1 (ND)	4.8 Yes	0.7	No	0.42 No	< 2	(ND)	0.15	Yes	< 10 (ND)	NA	NA	NA NA		NA	18.8 Yes	19100 Yes	1520 Yes
DDA-10-US DDA-12-US	NA NA	11 1200	Yes Yes	2 No 280 Yes	160 Yes 75 Yes	150 38	Yes Yes	19 Yes 12 No	11 1600	No Yes	36 2.8	Yes Yes	<10 (ND) 14 Yes	NA NA	NA NA	NA NA	NA NA	NA NA	60 Yes 15.4 Yes	53100 Yes 46100 Yes	4500 Yes 330 Yes
DDA-18-US DDA-19-US	NA NA	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	2.4 No 190 Yes	1.8 91	No Yes	< 1 (ND) 2.6 No	< 2 < 2	(ND) (ND)	0.4 21	Yes Yes	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA NA NA		NA NA	1.7 No 6.5 Yes	37800 Yes 21100 Yes	783 Yes 1430 Yes
DDA-20-US DDA-20-US (Field duplicate)	NA NA	0.52 22	No Yes	< 1 (ND) 2.2 No	5.8 Yes 39 Yes	0.63	No Yes	< 1 (ND) 17 Yes	< 2 32	(ND) Yes	0.83	Yes Yes	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA	NA	NA NA	17.3 Yes 33.5 Yes	7810 Na 44400 Yes	309 Yes 426 Yes
MHW-1D	NA	< 1	(ND)	< 1 (ND)	8.1 Yes	< 1	(ND)	< 1 (ND)	< 2	(ND)	0.13	No	< 10 (ND)	NA	NA	NA NA	NA	NA	79.4 Yes	20100 Yes	3210 Yes
PW-1(U) Downgradient Columbia Monitoria		8.4	Yes	2 No	47 Yes	15	Yes	3 No	17	No	5.6	Yes	< 10 (ND)	NA NA	NA NA	NA NA	1	NA	23.9 Yes	25800 Yes	1910 Yes
CA-102 CA-103	NA NA	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 0.4 (ND) 1.4 No	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	< 0.03 < 0.03	(ND) (ND)	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA	NA	NA NA	45.6 Yes 7.6 Yes	87400 Yes 76.3 No	5230 Yes 1920 Yes
CA-106 Downgradient UPCUTZ Monitoring	NA NA	< 1	(ND)	< 1 (ND)	29 Yes	<1	(ND)	< 1 (ND)	< 2	(ND)	< 0.03	(ND)	< 10 (ND)	NA NA	NA NA	NA NA	NA NA	NA	247 Yes	11600 No	5890 Yes
UPA-102-TZ UPA-103-TZ	NA NA	<1	(ND)	< 1 (ND) < 1 (ND)	270 Yes 2.8 No	180	Yes (ND)	0.55 Ne (ND)	< 2 < 2	(ND) (ND)	35 < 0.03	Yes (ND)	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA	NA NA	NA NA	100 Yes 31.7 Yes	26100 Yes 8750 No	5580 Yes 807 Yes
UPA-104-TZ	NA	< 1	(ND)	< 1 (ND)	69 Yes	36	Yes.	< 1 (ND)	< 2	(ND)	12	Yes	< 10 (ND)	NA	NA	NA NA	NA	NA	16.5 Yes	6650 No	352 Yes
UPA-105A-TZ UPA-105B-TZ	NA NA	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 0.4 (ND) < 0.4 (ND)	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	< 0.03 < 0.03	(ND) (ND)	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA	NA	NA NA	< 50 (ND) < 50 (ND)	3200 No 14200 Yes	93.6 No 221 No
UPA-107-TZ UPA-108B-TZ	NA NA	< 1	(ND)	< 1 (ND) < 1 (ND)	25 Yes 46 Yas	0.88 0.58	No No	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	2.8 0.61	Yes Yes	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA		NA NA	6.7 Yes 189 Yes	754 No 60400 Yes	533 Yes 2210 Yes
Downgradient Upper Sand Monito DGC-10S	ring Wells	<1	(ND)	< 1 (ND)	4.7 Yes	<1	(ND)	<1 (ND)	< 2	(ND)	0.3	Yes	< 10 (ND)	NA NA	l NA	T NA I NA	NA I	NA	2.5 No	728 Ng	80 No
DGC-11S RT-1-UP	NA NA	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 0.4 (ND) 78 Yes	<1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	< 0.03 < 0.03	(ND) (ND)	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA	NA NA	NA NA	< 50 (ND) 18.5 Yes	< 150 (ND) 4670 Na	8 No 167 No
UPA-01	NA	< 1	(ND)	< 1 (ND)	130 Yes	110	Yes	12 No.	< 2	(ND)	55	Yes	< 10 (ND)	NA	NA	NA NA	NA	NA	20.3 Yes	20500 Yes	2880 Yes
UPA-102-US UPA-103-US	NA NA	< 1 < 1	(ND) (ND)	< 1 (ND) < 1 (ND)	170 Yes 1.6 No	31 < 1	Yes (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	21 0.056	Yes No	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA NA NA		NA NA	10.8 Yes 57.6 Yes	42400 Yes 57400 Yes	3020 Yes 4530 Yes
UPA-104-US UPA-105A-US	NA NA	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	170 Yes 6.3 Yes	67 1.2	Yes No	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	1.3	Yes Yes	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA		NA NA	32.8 Yes < 50 (ND)	14300 Yes 6520 No	4510 Yes 276 Yes
UPA-105B-US UPA-106-USA	NA NA	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	3 No 3.7 No	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	0.53	Yes (ND)	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA		NA NA	64.8 Yes 8.9 Yes	44.7 No 1430 No	1310 Yes 1750 Yes
UPA-106-USB UPA-107-US (Field duplicate)	NA NA	<1	(ND)	< 1 (ND) < 1 (ND)	5.1 Yes 6.2 Yes	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	0.2 0.092	Yes No	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA	NA NA	NA NA	85.8 Yes 18.9 Yes	38900 Yes 7630 No	2150 Yes 3310 Yes
UPA-107-US	NA	< 1	(ND)	< 1 (ND)	4.4 No	< 1	(ND)	< 1 (ND)	< 2	(ND)	0.091	No	< 10 (ND)	NA	NA	NA NA	NA	NA	20.9 Yes	9150 Na	3400 Yes
UPA-108B-US UPA-108C-US	NA NA	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	210 Yes 600 Yes	< 1 0.57	(ND) No	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	< 0.03 0.34	(ND) Yes	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA	NA NA	NA NA	13.6 Yes 3.2 No	32300 Yes 66900 Yes	397 Yes 238 No.
Downgradient Lower Sand Monito DGC-10D	ring Wells NA	< 1	(ND)	< 1 (ND)	0.67 No	< 1	(ND)	< 1 (ND)	< 2	(ND)	< 0.03	(ND)	< 10 (ND)	NA NA	NA NA	NA NA	NA .	NA	3.5 No.	< 150 (ND)	180 No.
DGC-11D UPA-02D	NA NA	< 1 < 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 0.4 (ND) 28 Yes	< 1 < 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	< 0.03 4.6	(ND) Yes	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA	NA NA	NA NA	< 50 (ND) 24.2 Yes	< 150 (ND) 10200 Ke	4.4 No 2010 Yes
UPA-03D UPA-101-LSA	NA NA		(ND)	< 1 (ND) < 1 (ND)	39 Yes 50 Yes	< 1 0.93	(ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	6.6 7.5	Yes Yes	< 10 (ND) < 10 (ND)	2.5 NA	No NA	< 150 (ND) NA NA	7.1	No NA	2.7 No 9.2 Yes	< 150 (ND) 44300 Yes	7.9 No 1440 Yes
UPA-101-LSB UPA-103-LS	NA NA	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	120 Yes < 0.4 (ND)	12	Yes (ND)	< 1 (ND) < 1 (ND)	< 2	(ND) (ND)	20 < 0.03	Yes (ND)	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA	NA	NA NA	38.2 Yes 38.8 Yes	24200 Yes 13600 No	1610 Yes 573 Yes
UPA-104-LS	NA	< 1	(ND)	< 1 (ND)	40 Yes	0.4	No	< 1 (ND)	< 2	(ND)	7.5	Yes	< 10 (ND)	NA	NA	NA NA	NA	NA	13.4 Yes	39200 Yes	2840 Yes
UPA-105A-LS UPA-105B-LS	NA NA	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	1.6 No 1.4 No	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	0.17 0.11	Yes No	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA	NA	NA NA	14.9 Yes < 50 (ND)	147 No 926 No	1220 Yes 145 No
UPA-106-LS UPA-107-LS	NA NA		(ND) (ND)	< 1 (ND) < 1 (ND)	4.9 Yes 18 Yes	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	0.68 1.2	Yes Yes	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA		NA NA	16.6 Yes < 50 (ND)	35400 Yes 21800 Yes	1190 Yes 1790 Yes
UPA-108B-LS AWC Monitoring Wells	NA		(ND)	< 1 (ND)	110 Yes	<1	(ND)	< 1 (ND)	< 2	(ND)	< 0.03	(ND)	< 10 (ND)	NA NA	NA NA	NA NA		NA .	2.1 No	55500 Yes	1660 Yes
AWC-6R	NA 132		(ND) NA	< 1 (ND) NA NA	0.88 No.	< 1 NA	(ND)	< 1 (ND) NA NA	< 2	(ND) NA	< 0.03 NA	(ND)	< 10 (ND) NA NA	NA 10.6	NA Var	NA NA 16200 Yes		NA Vae	3.5 No. 9.7 Yes	< 150 (ND)	30.1 No 1090 Yes
AWC-E1 AWC-E1	156	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	10.6	Yes Yes	33400 Yes	1120	Yes Yes	9.1 Yes	7760 NB 9150 No	1080 Yes
AWC-E2 AWC-E2	140 165	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	9.7	Yes Yes	8420 No 4710 No	550	Yes Yes	6.6 Yes 7.5 Yes	8110 No 3630 No	882 Yes 523 Yes
AWC-K1 NCC UPA Monitoring Wells and P	NA 6 Vicinity	< 1	(ND)	< 1 (ND)	0.94 No	< 1	(ND)	< 1 (ND)	< 2	(ND)	< 0.03	(ND)	< 10 (ND)	NA	NA NA	NA NA	NA	NA	< 50 (ND)	7830 Ne	120 No
BW-2 BW-2	128 138		(ND) (ND)	< 1 (ND) < 1 (ND)	47 Yes 47 Yes	<1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	0.1 0.12	No No	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA		NA NA	18.6 Yes 21.7 Yes	3040 No 4550 No	1870 Yes 1940 Yes
MW-18 MW-26N	NA NA	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	4.4 No. 150 Yes	0.24 0.82	No No	< 1 (ND) < 1 (ND)	< 2	(ND) (ND)	0.19	Yes	< 10 (ND) < 10 (ND)	NA	NA NA	NA NA	NA	NA NA	27 Yes 3.3 No.	33100 Yes < 150 (ND)	2670 Yes 170 No.
MW-26N	128	< 1	(ND)	< 1 (ND)	37 Yes	< 1	(ND)	< 1 (ND)	< 2	(ND)	11	Yes Yes	< 10 (ND)	NA NA	NA	NA NA	NA NA	NA	< 50 (ND)	< 150 (ND)	100 No
MW-26N MW-34 (Field duplicate)	138 80	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	260 Yes 4.4 No	9.5 < 1	Yes (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	55 0.58	Yes Yes	< 10 (ND) < 10 (ND)	3.8 NA	No NA	< 150 (ND) NA NA	NA	Yes NA	4.1 No 13 Yes	< 150 (ND) 2480 No	346 Yes 1190 Yes
MW-34 MW-34	110 80	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	4.3 No 3.8 No	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	0.56 0.62	Yes Yes	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA NA NA		NA NA	13.9 Yes 12.9 Yes	6280 No 2450 No	1300 Yes 1200 Yes
MW-34 P-5L	124 NA	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	6.1 Yes 14 Yes	< 1	(ND) (ND)	< 1 (ND) < 1 (ND)	< 2 < 2	(ND) (ND)	0.42	Yes No	< 10 (ND) < 10 (ND)	NA NA	NA NA	NA NA	NA NA	NA NA	13.1 Yes 1.9 No	8690 No 138 No	1080 Yes 96.8 Np
P-6	NA NA	37	Yes	21 Yes	370 Yes	420	Yes	140 Yes	61	Yes	120	Yes	1.9 Yes	NA NA	NA NA	NA NA		NA NA	4.7 No	5070 No	391 Yes

Prepared by: KMS 1/28/2020 Checked by: ERW 1/29/2020 Approved by: TAM 2/28/2020

January 2020

Column C		Compound	1	loroethane	В	enzene		VC benzene	Tetrachi	oroethene		uene		Chloride		SVO [a]pyrene		xyl) Phthalate
Part				<u>- </u>	Maximum	-											Maximum	3 MCL
ACT - A. S			1								i		1					
CHAPTER 1987 1987 1987 1987 1987 1988 1989 1989	B-4DR	NA	2.4	No	< 5	(ND)	1400	Yes	< 5	(ND)	3.6	No	< 5	(ND)	1.6	Yes	< 2	(ND)
Series	BG-1																	
Color	C-19D																	
Selection 1. 2.7																		
The Action (1985) The Company of																		
THE COLOR OF THE C	C-4D	NA	<1	(ND)	7.1	Yes	11	No	< 1	(ND)	1.7	No	< 1	(ND)	0.78	Yes	< 2	(ND)
## 14 Per 19 Per	DGC-7C	NA	<1	(ND)	< 1	(ND)	0.53	No	< 1	(ND)	1.5	No	< 1	(ND)	< 0.05	(ND)	< 2	(ND)
A	GA-101																	
Education Max. 11 May. 11 May. 11 May. 11 May. 11 May. 11 May. 12 May. 13 May.	PZ-5-EXT																	
Main Main				(15)		(1.5)			- 4	4.5		(A)(B)		(ND)		1 (415)		4.5
March 12 May 13 May 13 May 14 May 14 May 14 May 14 May 15 May 15 May 16 May 16 May 17 May 17 May 17 May 17 May 17 May 18 May 1																		
Fig. 1	DDA-19-TZ																	
Fig. 19 1	DGC-5																	
Color	DGC-5	50	<1				< 1		< 1		< 1		< 1					
Case-Coling Na. C. C. C. C. C. C. C.	PW-1(U) Upper Sand Monitoring V DDA-02		<1	(ND)	0.7	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 0.05	(ND)	< 2	(ND)
MATERIAL MATERIAL	DDA-10-US	NA	< 1	(ND)	150	Yes	2.5	No	< 1	(ND)	0.52	No	0.61	No	< 0.5	(ND)	< 2	(ND)
200-19-19-19-19-19-19-19-19-19-19-19-19-19-	DDA-12-US DDA-18-US																	
Control Cont	DDA-19-US	NA	3.5	No	91	Yes	3.2	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.34	Yes	< 2	(ND)
Miles Mile	DDA-20-US DDA-20-US (Field duplicate)																	
Second Common Number Com	MHW-1D	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 0.05	(ND)	< 2	(ND)
A. D. D. C. D. D. C. D. D.			<1	[(ND)	15	YBS	1.9	l No	3	l wa	<u> </u>	T (ND)	< 1	(ND)	< 0.05	(ND)	< 2	(ND)
CALIFE TABLE TAB	CA-102	NA																
State	CA-103 CA-106																	
PASSUTZ NA < 1		Wells			400						0.00				-0.5		-10	4.0
	UPA-102-1Z UPA-103-TZ																	
PR-105B-72	UPA-104-TZ																	
Decomposite of the Monitor Profession Section Control Cont	UPA-105B-TZ																	
Discription of the property	UPA-107-TZ																	
Sec. 15				[(ND)	0.36	1 100	0.1	1 100	- 1] (ND)		(ND)		(ND)	< 0.05	(ND)	~2	(ND)
RT-LUP NA < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 2 (ND) < 2 (ND) < 1 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) < 2 (ND) <	DGC-10S																	
	RT-1-UP		< 1	(ND)	< 1	(ND)	< 1	(ND)		(ND)	< 1		< 1	(ND)	< 0.05	(ND)	< 2	(ND)
UPA-1694.US	UPA-01																	
UPA-1056-US	UPA-103-US	NA			< 1		1.1		< 1				< 1		< 0.05		< 2	
UPA-1056U-S	UPA-104-US																	
UPA-105U-SB	UPA-105B-US	NA	< 1	(ND)	< 1	(ND)	<1	(ND)	6.2	Yes	< 1	(ND)	< 1	(ND)	< 0.05	(ND)	< 2	(ND)
UPA-107-US Find duplicate) NA																		
UPA-109B-US	UPA-107-US (Field duplicate)	NA	< 1	(ND)	< 1	(ND)	7.1	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 0.05	(ND)	< 2	(ND)
UPA-106-U-S	UPA-107-US UPA-108B-US										h							
DGC-110 NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) DGC-110 NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) DGC-110 NA <1 (ND) <0.05 (ND) <2 (ND) DGC-110 NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) DGC-110 NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) <1 (ND) DGC-110 NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (UPA-108C-US	NA																
DOC-110 NA			<1	(ND)	<1	(ND)	< 1	(ND)	1.5	No	<1	(ND)	< 1	[(ND)]	< 0.05	(ND)	< 2	(ND)
UPA-030 NA	DGC-11D	NA	<1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 0.05	(ND)	< 2	(ND)
UPA-101-LSA	UPA-02D UPA-03D																	
UPA-103-LS	UPA-101-LSA	NA	< 1	(ND)	0.93	No	7.8	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 0.05	(ND)	< 2	(ND)
UPA-10Fal-LS	UPA-101-LSB UPA-103-LS																	
UPA-105B-LS NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <3.3 N6 <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) 20 Y86 UPA-106LS NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <3.3 N6 0.27 N6 <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) UPA-107LS NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) UPA-107LS NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) UPA-108LLS NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) UPA-108LLS NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) <0.05 (ND) <2 (ND) <0.05 (ND) <2 (ND) <0.05 (ND) <2 (ND) <0.05 (ND) <2 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0.05 (ND) <0	UPA-104-LS	NA	< 1	(ND)	0.4	No	8.4	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 0.05	(ND)	< 2	(ND)
UPA-107-LS	UPA-105A-LS UPA-105B-LS																	
UPA-108B-LS	UPA-106-LS	NA	< 1	(ND)	< 1	(ND)	3	No	0.27	No	< 1	(ND)	< 1	(ND)	< 0.05	(ND)	< 2	(ND)
AWC-6R NA 0.64 No < 1 (ND) < 1 (ND) 0.62 No < 1 (ND) < 1 (ND) < 1 (ND) < 2 (ND) < 1 (ND) < 1 (ND) < 2 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 2 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 2 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 2 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 2 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 2 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 2 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 2 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1 (ND) < 1	UPA-107-LS UPA-108B-LS																	
AWC-K1 NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) **RCC UPA Monitoring Wells and P-6 Vicinity** BW-2 128 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) BW-2 138 <1 (ND) <1 (ND) <1 (ND) <2 (ND) BW-2 138 <1 (ND) <1 (ND) <2 (ND) BW-2 138 <1 (ND) <2 (ND) BW-2 138 <1 (ND) <2 (ND) BW-2 138 <1 (ND) <2 (ND) BW-2 138 <1 (ND) <2 (ND) BW-2 138 <1 (ND) <2 (ND) BW-2 138 <1 (ND) <2 (ND) BW-2 138 <1 (ND) <2 (ND) BW-2 138 <1 (ND) <2 (ND) BW-2 138 <1 (ND) <2 (ND) BW-2 138 <1 (ND) <2 (ND) BW-2 138 <1 (ND) <2 (ND) BW-2 138 <1 (ND) <2 (ND) BW-2 138 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-2 138 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-2 138 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-2 138 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-2 138 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-2 138 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-3 4 [Field duplicate] 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-3 4 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-3 4 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-3 4 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-3 4 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-3 4 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-3 4 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-3 4 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-3 4 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-3 4 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-3 4 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <	AWC Monitoring Wells																	
NCC UPA Monitoring Wells and P-6 Vicinity BW-2 128 <1 (ND) <1 (ND) <1 (ND) <2 (ND) BW-2 138 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) BW-2 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-2 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-2 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-2 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-2 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-26N (NA) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-26N (ND) <128 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-26N (ND) <138 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-36N (ND) <138 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-36N (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-36N (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-36N (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-36N (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-36N (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-36N (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-36N (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-36N (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-36N (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) BW-36N (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND)	AWC-6R AWC-K1																	
BW-2 138 <1 (ND) <1 (ND) 3 No <1 (ND) 3 No <1 (ND) <1 (ND) <2 (ND) MW-18 NA <1 (ND) 0.24 No 6.9 No <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-26N NA <1 (ND) 0.82 No 2.1 No <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-26N 128 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-26N 128 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-26N 138 0.6 No 9.5 You 3.8 No <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-26N 138 0.6 No 9.5 You 3.8 No <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 110 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 124 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 124 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) P-5L NA <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) V	NCC UPA Monitoring Wells and P	-6 Vicinity						•										
MW-18 NA <1 (ND) 0.24 N8 6.9 N8 <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-26N NA <1 (ND) 0.82 N8 2.1 N8 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-28N 128 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-28N 138 0.6 N8 9.5 N8 3.8 N8 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 110 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 124 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 124 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 124 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND)	BW-2 BW-2																	
MW-26N 128 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-28N 138 0.6 N6 9.5 Yes 3.8 No <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.5 (ND) <2 (ND) MW-34 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 110 <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 80 <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 124 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 124 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 124 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 124 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 124 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <	MW-18	NA	< 1	(ND)	0.24	No	6.9	No	< 1	(ND)	<1	(ND)	< 1	(ND)	< 0.05	(ND)	< 2	(ND)
MW-26N 138 0.6 N6 9.5 Yes 3.8 N6 <1 (ND) <1 (ND) <1 (ND) <0.5 (ND) <2 (ND) MW-34 (Field duplicate) 80 <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) N8 0.89 N6 <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <2 (ND) 2 N8 0.91 N8 <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) 2 N8 0.92 N8 <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1	MW-26N MW-26N																	
MW-34 110 <1 (ND) <1 (ND) <2.9 No 0.91 No <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 80 <1 (ND) <1 (ND) <1 (ND) 2 No 0.92 No <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 124 <1 (ND) <1 (ND) <1 (ND) 2.1 No 1.2 No <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) P-5L NA <1 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND)	MW-26N	138	0.6	No	9.5	Yes	3.8	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 0.5	(ND)	< 2	(ND)
MW-34 80 <1 (ND) <1 (ND) 2 86 0.92 88 <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 124 <1 (ND) <1 (ND) <1 (ND) 2.1 86 1.2 86 <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) MW-34 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) <1 (ND) <1 (ND) <1 (ND) <0.05 (ND) <2 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (ND) <1 (MW-34 (Field duplicate) MW-34							***************************************										
P-5L NA <1 (ND) <1 (ND) <1 (ND) 0.68 N6 <1 (ND) <1 (ND) <0.05 (ND) <2 (ND)	MW-34	80	< 1	(ND)	< 1	(ND)	2	No	0.92	No	< 1	(ND)	< 1	(ND)	< 0.05	(ND)	< 2	(ND)
	MW-34 P-5L																	
	P-6																	

January 2020

		·							New Cas	itle County, I											
	C	4.4 Diah		4 2 2 Tuiss	-46	4.0.4 Tuins	-discolle a series a T	1.0 Diala		4.0 F Tuine	VC	·	Diamana	D.		Duamandiah		Ohlana	h	Chlan	
R	Compound RSL THQ=0.1		lloroethane 2.8	1	ethylbenzene 5.5		ethylbenzene 5.6		loroethane .17	1,3,5-11lm	ethylbenzene 6	i '	Dioxane 0.46	1	nzene 0.46		loromethane .13		benzene 7.8		roform .22
	Depth (ft	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL
All results in ug/L	bgs)	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance
DDA Extraction Monitoring We				,											-,						
B-4DR	NA NA	< 5	(ND)	120	Yes	29	Yes	2.4	Yes	120	Yes	77	Yes	< 5	(ND)	< 5	(ND)	1400	Yes	< 5	(ND)
BG-1 C-18D	NA NA	< 1 < 5	(ND) (ND)	6.5 10	Yes Yes	8 32	Yes Yes	< 1 < 5	(ND)	4.7 9.1	No Yes	35 130	Yes Yes	4.2 150	Yes Yes	< 1 < 5	(ND)	0.99 21	No Yes	< 1 < 5	(ND)
C-19D	NA NA	0.92	No.	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	190	Yes	11	Yes	<1	(ND)	5.9	No.	< 1	(ND)
C-20D	NA NA	< 1	(ND)	2.2	No No	< 1	(ND)	0.87	Yes	< 1	(ND)	140	Yes	2.2	Yes	< 1	(ND)	2.1	No.	< 1	(ND)
C-2D	NA	< 1	(ND)	29	Yes	70	Yes	< 1	(ND)	32	Yes	18	Yes	22	Yes	< 1	(ND)	18	Yes	< 1	(ND)
C-30	NA	0.92	No	9	Yes	23	Yes	2.7	Yes	7.1	Yes	68	Yes	83	Yes	< 2	(ND)	14	Yes	< 2	(ND)
C-4D	NA	< 1	(ND)	2.1	No	0.37	No	< 1	(ND)	< 1	(ND)	31	Yes	7.1	Yes	< 1	(ND)	11	Yes	< 1	(ND)
DDA Monitoring Wells	T	· · · · · ·	1 (15)	T	T (AUE)		315		(also)	· · ·	3.15		415)	T	1 (10)		415			·	T (15)
DGC-7C GA-101	NA NA	< 1	(ND) (ND)	< 1 190	(ND) Yes	< 1 600	(ND) Yes	< 1	(ND) (ND)	< 1 180	(ND) Yes	< 0.4 4.1	(ND) Yes	< 1 1.6	(ND) Yes	< 1	(ND)	0.53 2.8	No No	< 1 < 2	(ND) (ND)
PZ-11-EXT	NA NA	< 20	(ND)	590	Yes	2100	Yes	< 20	(ND)	550	Yes	4.1	Yes	300	Yes	< 20	(ND)	92	Yes	< 20	(ND)
PZ-5-EXT	NA NA	< 2	(ND)	150	Yes	600	Yes	< 2	(ND)	78	Yes	< 2	(ND)	0.43	No.	< 2	(ND)	2.4	No	< 2	(ND)
PW-1(U) UPCUTZ Monitoring W	 		1 \ \ \ /	1	1 1						-		1 \		-						1 \ \ /
DDA-05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DDA-06	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DDA-18-TZ	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	1.9	Yes	< 1	(ND)	< 1	(ND)	1.1	No	< 1	(ND)
DDA 10 TZ	NA NA	< 1 0.39	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	1.8	Yes	< 1	(ND)	< 1	(ND)	1.1	No.	< 1	(ND)
DDA-19-TZ DDA-20-TZ	NA NA	0.39	No No	< 1 2.7	(ND) No	< 1 21	(ND) Yes	1.2 < 1	Yes (ND)	< 1 2	(ND) No	43 50	Yes Yes	33	Yes Yes	< 1 < 1	(ND) (ND)	0.93	No No	< 1 < 1	(ND) (ND)
DGC-5	40	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	11	Yes	0.2	No.	<1	(ND)	< 1	(ND)	< 1	(ND)
DGC-5	50	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	9	Yes	0.23	No	< 1	(ND)	< 1	(ND)	< 1	(ND)
PW-1(U) Upper Sand Monitorin	ng Wells		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		<u> </u>						······································		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
DDA-01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DDA-02	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	4.8	Yes	0.7	Yes	< 1	(ND)	< 1	(ND)	< 1	(ND)
DDA-03	NA NA	NA	NA	NA 0.0	NA	NA	NA	NA	NA (NA	NA	NA	NA 188	NA	NA	NA	NA	NA (NE)	NA	NA	NA	NA
DDA-10-US DDA-12-US	NA NA	0.86 < 5	No (ND)	2.2 260	No Yes	11 1200	Yes Yes	< 1 < 5	(ND)	2 280	No Yes	160 75	Yes Yes	150 38	Yes Yes	< 1 < 5	(ND)	2.5 4	No No	< 1 < 5	(ND)
DDA-18-US	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	2.4	Yes	1.8	Yes	<1	(ND)	4	(ND)	< 1	(ND)
DDA-19-US	NA NA	1.1	No.	< 1	(ND)	< 1	(ND)	3.5	Yes	< 1	(ND)	190	Yes	91	Yes	< 1	(ND)	3.2	No.	< 1	(ND)
DDA-20-US	NA	< 1	(ND)	< 1	(ND)	0.52	No	1.4	Yes	< 1	(ND)	5.8	Yes	0.63	Yes	< 1	(ND)	< 1	(ND)	< 1	(ND)
DDA-20-US (Field duplicate)	NA	0.26	No	2.8	No	22	Yes	< 1	(ND)	2.2	No	39	Yes	30	Yes	< 1	(ND)	0.6	No	< 1	(ND)
DGC-2S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DGC-2S	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA
DGC-7S MHW-1D	NA NA	NA < 1	NA (ND)	NA < 1	(ND)	NA < 1	NA (ND)	NA < 1	NA (ND)	NA < 1	(ND)	NA 8.1	NA Yes	NA < 1	(ND)	NA < 1	NA (ND)	NA < 1	NA (ND)	NA < 1	(ND)
PW-1(U)	NA NA	< 1	(ND) (ND)	2.1	No (ND)	8.4	Yes	< 1	(ND)	2	No (ND)	47	Yes	15	Yes	<1	(ND)	1.9	No No	< 1	(ND)
Downgradient Columbia Monit			1 (145)		1 110 1	0.4	100		(110)		110	1 11	1.00	1 10	1 .00	1	(145)	1.0	1 110 1		1 (45)
CA-102	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 0.4	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)
CA-103	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	1.4	Yes	< 1	(ND)	2.2	Yes	< 1	(ND)	2.8	Yes
CA-106	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	29	Yes	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)
Downgradient UPCUTZ Monito			1		(415)		(415)				I AID	070		1 400	1		(415)	<u> </u>	1 57 1		415)
UPA-102-TZ UPA-103-TZ	NA NA	2.9	Yes (ND)	< 1	(ND)	< 1 < 1	(ND)	23 < 1	Yes (ND)	< 1 < 1	(ND)	270 2.8	Yes Yes	180	Yes (ND)	< 1	(ND)	51 0.43	Yes	< 1 < 1	(ND) (ND)
UPA-103-1Z UPA-104-TZ	NA NA	<1	(ND)	< 1	(ND)	< 1	(ND)	1.2	Yes	< 1	(ND)	69	Yes	36	(ND) Yes	< 1	(ND)	<u> </u>	No (ND)	< 1	(ND)
UPA-105A-TZ	NA NA	<1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	<1	(ND)	< 0.4	(ND)	< 1	(ND)	<1	(ND)	<1	(ND)	< 1	(ND)
UPA-105B-TZ	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 0.4	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)
UPA-107-TZ	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	3	Yes	< 1	(ND)	25	Yes	0.88	Yes	< 1	(ND)	0.98	No	< 1	(ND)
UPA-108B-TZ	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	46	Yes	0.58	Yes	< 1	(ND)	6.1	No	< 1	(ND)
Downgradient Upper Sand Mor		***********	(AIP)		(AIP)	- 4	(AID)		1 /AID)	- 4	(4.05)	1 4 -	N/-	1 -2	(AID)	-4	(AID)	- 4	(AID)	- 4	(AID)
DGC-10S DGC-11S	NA NA	< 1	(ND) (ND)	< 1	(ND)	< 1 < 1	(ND) (ND)	< 1 < 1	(ND)	< 1 < 1	(ND)	4.7 < 0.4	Yes (ND)	< 1	(ND) (ND)	< 1 < 1	(ND)	< 1 < 1	(ND) (ND)	< 1 < 1	(ND)
DGC-118	NA NA	NA NA	(ND) NA	NA	(ND) NA	NA NA	(ND) NA	NA	(ND) NA	NA NA	(ND) NA	< 0.4 NA	(ND) NA	NA NA	(ND) NA	NA NA	(ND) NA	NA NA	(ND) NA	NA	(ND) NA
RT-1-UP	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	78	Yes	< 1	(ND)	<1	(ND)	< 1	(ND)	< 1	(ND)
UPA-01	NA NA	1.3	No	< 1	(ND)	< 1	(ND)	0.74	Yes	< 1	(ND)	130	Yes	110	Yes	< 1	(ND)	4.3	No	< 1	(ND)
UPA-02S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	`NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	`NA
UPA-102-US	NA	0.84	No	< 1	(ND)	< 1	(ND)	1.6	Yes	< 1	(ND)	170	Yes	31	Yes	< 1	(ND)	65	Yes	< 1	(ND)
UPA-103-US	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	1.6	Yes	<1	(ND)	< 1	(ND)	1.1	No	< 1	(ND)
UPA-104-US	NA NA	<1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	170	Yes	67	Yes	<1	(ND)	3.4	No (ND)	< 1	(ND)
UPA-105A-US UPA-105B-US	NA NA	< 1	(ND)	< 1	(ND)	< 1 < 1	(ND) (ND)	0.83 < 1	Yes (ND)	< 1 < 1	(ND)	6.3	Yes Yes	1.2	Yes (ND)	< 1 < 1	(ND) (ND)	<u>< 1</u> < 1	(ND)	< 1 < 1	(ND) (ND)
UPA-106-USA	NA NA	< 1	(ND) (ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	3.7	Yes	<1	(ND)	0.56	Yes	0.49	No (ND)	2.1	Yes
UPA-106-USB	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	5.1	Yes	<1	(ND)	< 1	(ND)	9.3	Yes	< 1	(ND)
UPA-107-US (Field duplicate)	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	6.2	Yes	< 1	(ND)	< 1	(ND)	7.1	No	< 1	(ND)
UPA-107-US	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	4.4	Yes	< 1	(ND)	< 1	(ND)	6.6	No	< 1	(ND)
UPA-108B-US	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	210	Yes	< 1	(ND)	< 1	(ND)	5.4	Na	< 1	(ND)
UPA-108C-US	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	600	Yes	0.57	Yes	< 1	(ND)	6.7	No	< 1	(ND)

									New Ca:	stle County, D	relaware										
											VC	OCs									
	Compound	1,1-Dich	loroethane	1,2,3-Trime	ethylbenzene	1,2,4-Trim	ethylbenzene	1,2-Dich	loroethane	1,3,5-Trime	ethylbenzene	1,4-	Dioxane	Bei	nzene	Bromodich	loromethane	Chloro	benzene	Chlo	oroform
	RSL THQ=0.1	:	2.8		5.5		5.6	0	.17		6	1	0.46	c).46	0	.13		7.8	0	0.22
	Depth (ft	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL
All results in ug/L	bgs)	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance
Downgradient Lower Sand	Monitoring Well:	5																			
DGC-10D	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.67	Yes	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)
DGC-11D	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 0.4	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)
DGC-8D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
UPA-02D	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	28	Yes	< 1	(ND)	< 1	(ND)	5.5	No	< 1	(ND)
UPA-03D	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	39	Yes	< 1	(ND)	< 1	(ND)	2	No	< 1	(ND)
UPA-101-LSA	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	50	Yes	0.93	Yes	< 1	(ND)	7.8	Yes	< 1	(ND)
UPA-101-LSB	NA NA	0.3	No No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	120	Yes	12	Yes	< 1	(ND)	14	Yes	< 1	(ND)
UPA-103-LS	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 0.4	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)
UPA-104-LS	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	40	Yes	0.4	No	< 1	(ND)	8.4	Yes	< 1	(ND)
UPA-105A-LS	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	1.6	Yes	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)
UPA-105B-LS	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	1.4	Yes	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)
UPA-106-LS	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	4.9	Yes	< 1	(ND)	< 1	(ND)	3	No	< 1	(ND)
UPA-107-LS	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	18	Yes	< 1	(ND)	< 1	(ND)	3.7	No	< 1	(ND)
UPA-108B-LS	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	110	Yes	< 1	(ND)	< 1	(ND)	5.3	No	< 1	(ND)
AWC Monitoring Wells	I IVA	- 1	1 (140)		(ND)		(ND)		I (ND)		1 (110)	110	103		(140)	- 1] ((45)	0.0	1 100 1	- 1	(ND)
AWC-2	NA I	NA	l NA	NA	NA I	NA	NA NA	NA	l NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA I	NA	T NA
AWC-6R	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.64	Yes	< 1	(ND)	0.88	Yes	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.43	Yes
AWC-E1	132	NA	NA NA	NA	NA I	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA
AWC-E1	156	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AWC-E1	132	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AWC-E1	156	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AWC-E2	140	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AWC-E2			NA NA		NA NA					NA NA					NA NA	NA NA					NA NA
	165	NA NA		NA NA		NA NA	NA NA	NA	NA NA		NA NA	NA	NA NA	NA NA			NA NA	NA NA	NA NA	NA NA	
AWC-E2	140	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AWC-E2	165	NA NA	NA (NB)	NA	NA (NE)	NA NA	NA (NB)	NA	NA (NE)	NA	NA (NB)	NA	NA	NA	NA (NB)	NA	NA (NB)	NA	NA (NE)	NA NA	NA (NE)
AWC-K1	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.94	Yes	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)
NCC UPA Monitoring Wells	******************************		415				4.15				415)				4.5		0.15				1 (15)
BW-2	128	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	47	Yes	< 1	(ND)	< 1	(ND)	2.2	Ng	< 1	(ND)
BW-2	138	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	47	Yes	< 1	(ND)	< 1	(ND)	3	No	< 1	(ND)
MW-18	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	4.4	Yes	0.24	No	< 1	(ND)	6.9	No	< 1	(ND)
MW-26N	NA NA	0.47	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	150	Yes	0.82	Yes	< 1	(ND)	2.1	No	< 1	(ND)
MW-26N	128	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	37	Yes	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)
MW-26N	138	0.89	No	< 1	(ND)	< 1	(ND)	0.6	Yes	< 1	(ND)	260	Yes	9.5	Yes	< 1	(ND)	3.8	No	< 1	(ND)
MW-34 (Field duplicate)	80	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	4.4	Yes	< 1	(ND)	< 1	(ND)	1.9	No	< 1	(ND)
MW-34	110	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	4.3	Yes	< 1	(ND)	< 1	(ND)	2.9	No	< 1	(ND)
MW-34	80	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	3.8	Yes	< 1	(ND)	< 1	(ND)	2	No	< 1	(ND)
MW-34	124	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	6.1	Yes	< 1	(ND)	< 1	(ND)	2.1	No	< 1	(ND)
P-5L	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	14	Yes	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)
P-5U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-6	NA	0.75	No	43	Yes	37	Yes	< 1	(ND)	21	Yes	370	Yes	420	Yes	< 1	(ND)	12	Yes	< 1	(ND)
<u> </u>									·	·				a							

	ı										astie County, De												
				B.0	T	54 11	(1			VO			-	T	T.C. 1.1.		V P 1	Obl. data	V. d	7.4.1		OCs
	Compound		ichloroethene		nloromethane	,	benzene		/lbenzene		ylbenzene 66		oroethene		luene		proethene		Chloride	•	es, Total		orobenzene
	RSL THQ=0.1		3.6		0.87		1.5		45				I.1		110		0.28		0.019		,,,		.4
All results in ug/L	Depth (ft	Maximum Result	RSL Exceedance	Maximum Result	RSL Exceedance	Maximum Result	RSL Exceedance	Maximum Result	RSL Exceedance	Maximum Result	RSL Exceedance	Maximum Result	RSL Exceedance	Maximum Result	RSL Exceedance	Maximum Result	RSL Exceedance	Maximum Result	RSL Exceedance	Maximum Result	RSL Exceedance	Maximum Result	RSL Exceedance
DDA Extraction Monitoring V	bgs)	Result	Exceedance	Resuit	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Resuit	Exceedance	Result	Exceedance	Result	Exceedance
B-4DR	NA I	< 5	(ND)	< 5	(ND)	12	Yes	4.8	No	2.2	No I	< 5	(ND)	3.6	No I	< 5	(ND)	< 5	(ND)	120	Yes	< 2	(ND)
BG-1	NA NA	0.47	No No	< 1	(ND)	< 1	(ND)	4.1	No No	3.4	No No	< 1	(ND)	< 1	(ND)	1.1	Yes	< 1	(ND)	6.8	No.	< 2	(ND)
C-18D	NA NA	14	Yes	< 5	(ND)	67	Yes	3.2	No	5.8	No.	< 5	(ND)	1100	Yes	< 5	(ND)	< 5	(ND)	230	Yes	< 2	(ND)
C-19D	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.45	No	0.32	No No	< 1	(ND)	0.64	No	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
C-20D	NA NA	<1	(ND)	<1	(ND)	<1	(ND)	1.7	No	1.7	No.	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
C-2D	NA NA	0.29	No No	< 1	(ND)	0.36	No.	13	No	15	No	< 1	(ND)	0.59	No No	< 1	(ND)	< 1	(ND)	130	Yes	< 2	(ND)
C-30	NA NA	22	Yes	< 2	(ND)	27	Yes	1.7	No	2.9	No	< 2	(ND)	440	Yes	< 2	(ND)	< 2	(ND)	130	Yes	< 2	(ND)
C-4D	NA NA	<u></u>	(ND)	<1	(ND)	< 1	(ND)	18	No	1.4	No	< 1	(ND)	1.7	No	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
DDA Monitoring Wells	100		1 (110)		1 (145)		(110)	10	1.00	1.4	1 140	- '	(ND)	1.1	1 140		(140)		1 (110)	- 2	1 (140)		(110)
DGC-7C	NA I	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	1.5	No	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
GA-101	NA NA	1.9	No	< 2	(ND)	240	Yes	43	No	120	Yes	1.2	No	120	Yes	1	Yes	< 2	(ND)	820	Yes	6.2	Yes
PZ-11-EXT	NA NA	< 20	(ND)	< 20	(ND)	8.7	Yes	120	Yes	330	Yes	< 20	(ND)	< 20	(ND)	< 20	(ND)	< 20	(ND)	5400	Yes	< 2	(ND)
PZ-5-EXT	NA NA	13	Yes	< 2	(ND)	310	Yes	51	Yes	74	Yes	< 2	(ND)	110	Yes	< 2	(ND)	0.74	Yes	700	Yes	1.2	Yes
PW-1(U) UPCUTZ Monitoring			1		1 (1.12)		1		1		1 29 1		()		1 29 1		()	5	1 29 1				1 24 1
DDA-05	NA I	NA	NA I	NA	NA I	NA	NA	NA	NA NA	NA	NA I	NA	I NA I	NA	NA I	NA	NA I	NA	NA I	NA	NA I	NA	NA I
DDA-06	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DDA-18-TZ	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
DDA-18-TZ (Field duplicate)	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
DDA-19-TZ	NA NA	1.1	No	< 1	(ND)	0.42	No	1.5	No	2.1	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
DDA-20-TZ	NA NA	< 1	(ND)	< 1	(ND)	17	Yes	4.5	No	4.5	No	< 1	(ND)	0.55	No	< 1	(ND)	< 1	(ND)	30	Yes	< 2	(ND)
DGC-5	40	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
DGC-5	50	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
PW-1(U) Upper Sand Monito) /		, \ \ /				/				· · · · · · · · · · · · · · · · · · ·						
DDA-01	NA I	NA	NA I	NA	NA I	NA	NA	NA	NA	NA	NA I	NA	NA I	NA	NA	NA	NA I	NA	NA	NA	NA	NA	NA
DDA-02	NA NA	< 1	(ND)	< 1	(ND)	0.42	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
DDA-03	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	`NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA
DDA-10-US	NA	0.88	No	< 1	(ND)	19	Yes	8.1	No	7.7	No	< 1	(ND)	0.52	No	< 1	(ND)	0.61	Yes	11	No	< 2	(ND)
DDA-12-US	NA	< 5	(ND)	< 5	(ND)	12	Yes	88	Yes	160	Yes	< 5	(ND)	3.3	No	< 5	(ND)	< 5	(ND)	1600	Yes	< 2	(ND)
DDA-18-US	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
DDA-19-US	NA	2.8	No	< 1	(ND)	2.6	Yes	3.8	No	3.6	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
DDA-20-US	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
DDA-20-US (Field duplicate)	NA	< 1	(ND)	< 1	(ND)	17	Yes	4.6	No	4.7	No	< 1	(ND)	0.52	No	< 1	(ND)	< 1	(ND)	32	Yes	< 2	(ND)
DGC-2S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DGC-2S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DGC-7S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MHW-1D	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
PW-1(U)	NA	< 1	(ND)	< 1	(ND)	3	Yes	1.5	No	1.7	No	3	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	17	No	< 2	(ND)
Downgradient Columbia Mo					,				,		, , , , , , , , , , , , , , , , , , , 		,						-,				,
CA-102	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
CA-103	NA NA	< 1	(ND)	1.5	Yes	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
CA-106	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
Downgradient UPCUTZ Mon									I s		(1.15×										0.15		
UPA-102-TZ	NA NA	9.6	Yes	< 1	(ND)	0.55	No	4.8	No	< 1	(ND)	< 1	(ND)	0.69	No	4.9	Yes	3	Yes	< 2	(ND)	< 2	(ND)
UPA-103-TZ	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	<1	(ND)	< 1	(ND)	0.43	Yes	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-104-TZ	NA NA	0.24	No (ND)	<1	(ND)	< 1	(ND)	0.64	No	< 1	(ND)	<1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-105A-TZ	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	<1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-105B-TZ	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	<1	(ND)	< 1	(ND)	<1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-107-TZ	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	<1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	<1	(ND)	< 2	(ND)	< 2	(ND)
UPA-108B-TZ	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
Downgradient Upper Sand N			(ND)		(ND)		/ND)		(NID)		(NID)	1	(NID)	<i>-</i> 1	(ND)	0 00	Voc I		(NID)		(NID)		(ND)
DGC-10S	NA NA	<1	(ND)	<1	(ND)	<1	(ND)	<1	(ND)	< 1	(ND)	<1	(ND)	< 1	(ND)	0.86	Yes (ND)	<1	(ND)	< 2	(ND)	< 2	(ND)
DGC-11S	NA NA	< 1 NA	(ND)	< 1 NA	(ND)	< 1 NA	(ND)	< 1 NA	(ND)	< 1 NA	(ND)	< 1 NA	(ND)	< 1 NA	(ND)	< 1 NA	(ND)	< 1 NA	(ND)	< 2 NA	(ND)	< 2	(ND)
DGC-8S	NA NA	NA < 1	NA (ND)	NA 1	NA (ND)	NA 1	NA (ND)	NA 1	NA (ND)	NA < 1	NA (ND)	NA 21	NA (ND)	NA < 1	NA (ND)	NA 1	NA (ND)	NA 1	NA (ND)	NA	NA (ND)	NA	NA (ND)
RT-1-UP	NA NA		(ND)	< 1	(ND)	< 1	(ND)	< 1 11	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-01	NA NA	0.68	No No	< 1 NA	(ND)	12 NA	Yes	NA	NA NA	12 NA	No No	1.5 NA	No NA	< 1 NA	(ND) NA	< 1 NA	(ND)	< 1 NA	(ND)	< 2 NA	(ND)	< 2 NA	(ND)
UPA-02S		NA 2.1	NA No		NA (ND)	NA < 1	NA (ND)		·····	NA < 1	NA (ND)		NA (ND)				NA Vae	NA 0.62	NA Voc		NA (ND)		NA (ND)
UPA-102-US	NA NA	2.1		< 1	(ND)	< 1	(ND)	0.39	No (ND)	< 1	(ND)	< 1 < 1	(ND)	< 1	(ND)	0.69	Yes	0.62	Yes	< 2	(ND)	< 2	(ND)
UPA-103-US	NA NA	< 1	(ND)	< 1 < 1	(ND)	< 1	(ND)	< 1 1.5	(ND) No	0.52	(ND)	0.62	(ND) No	< 1	(ND)	< 1	(ND)	< 1 < 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-104-US		< 1	(ND)		(ND)	< 1 < 1	(ND)			0.52 < 1				< 1	(ND)	< 1	(ND)		(ND)		(ND)		(ND)
UPA-105A-US	NA NA	< 1	(ND)	< 1	(ND)		(ND)	< 1	(ND)		(ND)	< 1	(ND)	< 1	(ND)	0.66	Yes	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-105B-US UPA-106-USA	NA NA	< 1	(ND)	<u>< 1</u> < 1	(ND)	< 1 < 1	(ND)	< 1 < 1	(ND)	< 1 < 1	(ND)	6.2	Yes	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-106-USA UPA-106-USB	NA NA	< 1 < 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	<1	(ND)	< 1 < 1	(ND)	< 1 < 1	(ND)	< 1 < 1	(ND)	< 1 < 1	(ND)	< 2	(ND)	< 2	(ND) (ND)
UPA-106-USB UPA-107-US (Field duplicate)	_	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	<1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-107-US (Field duplicate)	NA NA	< 1	(ND) (ND)	< 1	(ND)	< 1	(ND) (ND)	< 1	(ND) (ND)	< 1	(ND) (ND)	< 1	(ND) (ND)	< 1	(ND)	< 1	(ND)	< 1	(ND) (ND)	< 2	(ND)	< 2	(ND)
UPA-108B-US	NA NA	<u> </u>	(ND)	< 1	(ND)	<u> </u>	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	<u> </u>	(ND)	<u> </u>	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-108C-US	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
01 A-1000-00	111/7	` 1	(140)	~ 1	(140)	- 1	(IND)	`	(140)	` '	(IND)	` '	(14D)	- 1	(140)	~ 1	(140)	- 1	(140)	·	(IND)		(IND)

	Г										VO											SV/	/OCs
	Compound	cis-1,2-Dich	loroethene	Dibromoch	oromethane	FthvII	benzene	Isopropy	ylbenzene	n-Propy	rlbenzene	,	oroethene	To	luene	Trichlo	roethene	Vinvl	Chloride	Xvlen	es, Total		nlorobenzene
	RSL THQ=0.1	3.	1		87	,	1.5	, , ,	45		66		1.1		10		.28		019		19	' '	0.4
	Depth (ft	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL
All results in ua/L	bgs)	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance
Downgradient Lower Sand I													· · · · · · · · · · · · · · · · · · ·										
DGC-10D	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	1.5	No	< 1	(ND)	0.31	Yes	< 1	(ND)	< 2	(ND)	< 2	(ND)
DGC-11D	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
DGC-8D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
UPA-02D	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.26	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-03D	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-101-LSA	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-101-LSB	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-103-LS	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-104-LS	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-105A-LS	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	1	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-105B-LS	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	3.3	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-106-LS	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.27	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-107-LS	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.34	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
UPA-108B-LS	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
AWC Monitoring Wells																							
AWC-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AWC-6R	NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.62	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
AWC-E1	132	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AWC-E1	156	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AWC-E1	132	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AWC-E1	156	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AWC-E2	140	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AWC-E2	165	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AWC-E2	140	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AWC-E2	165	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
AWC-K1	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	1.7	Yes	< 1	(ND)	< 2	(ND)	< 2	(ND)
NCC UPA Monitoring Wells			(316)		(415) I		(1)5	-	(4.15)		(115)		(115)		45. 1		415		T (Aller)		(115)		1 (15)
BW-2	128	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
BW-2	138	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
MW-18	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
MW-26N	NA 100	0.42	No.	< 1	(ND)	< 1	(ND)	0.75	No.	< 1	(ND)	< 1	(ND)	<1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
MW-26N	128	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
MW-26N	138	0.55	No	< 1	(ND)	< 1	(ND)	2.3	No	1.4	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
MW-34 (Field duplicate)	80	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.89	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
MW-34	110	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.91	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
MW-34	80	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.92	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
MW-34	124	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	<1	(ND)	1.2	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
P-5L	NA NA	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 1	(ND)	0.68	No	< 1	(ND)	< 1	(ND)	< 1	(ND)	< 2	(ND)	< 2	(ND)
P-5U	NA NA	NA 0.00	NA	NA	NA (NE)	NA 110	NA	NA 47	NA	NA 04	NA NA	NA	NA (ND)	NA O	NA	NA	NA (NE)	NA	NA (NB)	NA 04	NA NA	NA 10	NA (NB)
P-6	NA NA	0.36	No	< 1	(ND)	140	Yes	17	No	31	No	< 1	(ND)	2.3	No	< 1	(ND)	< 1	(ND)	61	Yes	< 2	(ND)

										New Ca	astle County, De	elaware											
												SV	/OCs										
	Compound		hlorobenzene	,	naphthalene		(a)pyrene	, ,	uoranthene		anthracene	١ `	oethyl) Ether	Bis(2-ethylhe	* '		nenol A		orobenzene		thalene		nethylaniline
	RSL THQ=0.1		0.48		3.6		.025		25		0.03	•	014	5.			77		.0098		0.17		2.5
	Depth (ft	Maximum		Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL
All results in ug/L	bgs)	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance
DDA Extraction Monitoring B-4DR	NA NA	35	Yes	1.5	No I	1.6	T Vos	1.4	Yes	2.1	Yes	85	Yes	< 2	(ND)	100	T X6-2	< 0.4	(ND)	15	Yes	2.0	Yes
BG-1	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	Yes (ND)	< 0.05	(ND)	2.1 < 0.05	(ND)	4.3	Yes	< 2 < 2	(ND)	< 10	Yes (ND)	< 0.02	(ND) (ND)	< 10	(ND)	3.9 < 1	(ND)
C-18D	NA NA	< 10	(ND)	< 10	(ND)	0.35	Yes	0.03	Yes	0.48	Yes	19	Yes	< 2	(ND)	100	Yes	< 0.02	(ND)	1.8	Yes	< 1	(ND)
C-19D	NA NA	< 10	(ND)	< 10	(ND)	0.37	Yes	0.28	Yes	0.40	Yes	17	Yes	< 2	(ND)	42	No.	< 0.1	(ND)	< 10	(ND)	< 1	(ND)
C-20D	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	5.1	Yes	< 2	(ND)	17	No	< 0.02	(ND)	< 10	(ND)	< 1	No No
C-2D	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	1.2	Yes	< 2	(ND)	38	No	< 0.02	(ND)	4.6	Yes	< 1	(ND)
C-30	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	2.2	Yes	< 2	(ND)	18	No	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
C-4D	NA	4.5	Yes	< 10	(ND)	0.78	Yes	0.6	Yes	1.1	Yes	59	Yes	< 2	(ND)	46	No	< 0.2	(ND)	< 10	(ND)	1.2	No
DDA Monitoring Wells																							
DGC-7C	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
GA-101	NA	< 10	(ND)	4	Yes	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	28	Yes	< 1	(ND)
PZ-11-EXT	NA NA	2.6	Yes	3.6	Yes	< 0.05	(ND)	< 0.05	(ND)	0.019	No	4.6	Yes	< 2	(ND)	120	Yes	< 0.02	(ND)	56	Yes	1.4	No
PZ-5-EXT	NA	1.6	Yes	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	6.5	Yes	< 1	(ND)
PW-1(U) UPCUTZ Monitorin				h.,		h14		h.v.	N	L	N12	L 614	N	NI A	NA T	N/A	- NA - T		, n. n.	h' ^			
DDA-05	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DDA-06	NA NA	NA < 10	NA (ND)	NA < 10	NA (ND)	NA < 0.05	NA (ND)	NA < 0.05	NA (ND)	NA < 0.05	NA (ND)	NA < 0.03	NA (ND)	NA < 2	NA (ND)	NA < 10	NA (ND)	NA < 0.02	NA (ND)	NA < 10	NA (ND)	NA < 1	NA (ND)
DDA-18-TZ DDA-18-TZ (Field duplicate)	NA NA	< 10 < 10	(ND)	< 10	(ND) (ND)	< 0.05	(ND)	< 0.05 < 0.05	(ND)	< 0.05 < 0.05	(ND) (ND)	< 0.03 < 0.03	(ND)	< 2 < 2	(ND) (ND)	< 10	(ND)	< 0.02	(ND) (ND)	< 10	(ND)	< 1	(ND)
DDA-18-TZ (Fleid duplicate)	NA NA	< 10	(ND)	< 10	(ND)	0.05	Yes	0.052	(ND) No	0.13	(ND) Yes	< 0.03 13	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
DDA-20-TZ	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.052	(ND)	< 0.05	(ND)	8.7	Yes	< 2	(ND)	< 10	(ND)	< 0.04	(ND)	< 10	(ND)	1.8	No No
DGC-5	40	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.96	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
DGC-5	50	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.81	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
PW-1(U) Upper Sand Monit			1 (*:=/ 1		1 (=/ 1		1 7:=1	1	1 \1:-/		1 (= /		_1		<u> </u>		1 (**=/ 1		1 (:=/		1 (=/ 1		
DDA-01	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DDA-02	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.15	Yes	< 2	(ND)	< 10	(ND)	0.014	Yes	< 10	(ND)	< 1	(ND)
DDA-03	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DDA-10-US	NA	< 10	(ND)	< 10	(ND)	< 0.5	(ND)	< 0.5	(ND)	0.28	Yes	36	Yes	< 2	(ND)	< 10	(ND)	< 0.2	(ND)	< 10	(ND)	< 1	(ND)
DDA-12-US	NA	1.7	Yes	2	No	< 0.05	(ND)	< 0.05	(ND)	0.024	No	2.8	Yes	< 2	(ND)	11	No	0.023	Yes	14	Yes	9.3	Yes
DDA-18-US	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.4	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
DDA-19-US	NA NA	< 10	(ND)	< 10	(ND)	0.34	Yes	0.31	Yes	0.46	Yes	21	Yes	< 2	(ND)	10	No	< 0.1	(ND)	< 10	(ND)	1.6	No
DDA-20-US	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.83	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
DDA-20-US (Field duplicate) DGC-2S	NA NA	< 10 NA	(ND) NA	< 10 NA	(ND) NA	< 0.05 NA	(ND)	< 0.05 NA	(ND) NA	< 0.05 NA	(ND) NA	8.4 NA	Yes NA	< 2 NA	(ND) NA	< 10 NA	(ND) NA	< 0.02 NA	(ND) NA	< 10	(ND) NA	1.8 NA	No NA
DGC-2S	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
DGC-7S	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MHW-1D	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.13	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
PW-1(U)	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	5.6	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
Downgradient Columbia Me			1 ()		1 (1-7 1		1 (1.12)	1	(1 (1-2)			_	(/		1 (1-/ 1		1 (1.15)		1 (/ 1	·	
CA-102	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
CA-103	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
CA-106	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
Downgradient UPCUTZ Mo							-,				-,		-,										
UPA-102-TZ	NA NA	1.3	Yes	< 10	(ND)	< 0.5	(ND)	< 0.5	(ND)	< 0.5	(ND)	35	Yes	< 2	(ND)	< 10	(ND)	< 0.2	(ND)	< 10	(ND)	< 1	(ND)
UPA-103-TZ	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-104-TZ	NA NA	< 10	(ND)	< 10	(ND)	< 0.1	(ND)	< 0.1	(ND)	0.04	Yes	12	Yes	< 2	(ND)	< 10	(ND)	< 0.04	(ND)	< 10	(ND)	< 1	(ND)
UPA-105A-TZ UPA-105B-TZ	NA NA	< 10 < 10	(ND)	< 10 < 10	(ND) (ND)	< 0.05 < 0.05	(ND) (ND)	< 0.05 < 0.05	(ND) (ND)	< 0.05 < 0.05	(ND) (ND)	< 0.03 < 0.03	(ND) (ND)	< 2 < 2	(ND) (ND)	< 10 < 10	(ND) (ND)	< 0.02 < 0.02	(ND) (ND)	< 10 < 10	(ND) (ND)	< 1 < 1	(ND) (ND)
UPA-1036-12	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	2.8	Yes	< 2	(ND)	< 10	(ND)	0.02	Yes	< 10	(ND)	< 1	(ND)
UPA-108B-TZ	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.61	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
Downgradient Upper Sand			1 (15)	10	1 (.45)	3,00	1 (.45)	3.00	(.45)	. 5.55	1 (.40)	1 5.51	1	-	()	10	1 (.45)	3.02	1 (10)	10	1 (145) 1		
DGC-10S	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.3	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
DGC-11S	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
DGC-8S	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA
RT-1-UP	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-01	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	55	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	5.8	Yes
UPA-02S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
UPA-102-US	NA	1.8	Yes	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	21	Yes	< 2	(ND)	31	No	< 0.02	(ND)	< 10	(ND)	0.95	No
UPA-103-US	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.056	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-104-US	NA NA	< 10	(ND)	< 10	(ND)	< 0.25	(ND)	< 0.25	(ND)	0.11	Yes	29	Yes	< 2	(ND)	< 10	(ND)	< 0.1	(ND)	< 10	(ND)	< 1	(ND)
UPA-105A-US	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	1.3	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-105B-US	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.53	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-106-USA	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-106-USB UPA-107-US (Field duplicate	NA NA	< 10 < 10	(ND)	< 10 < 10	(ND)	< 0.05 < 0.05	(ND)	< 0.05 < 0.05	(ND)	< 0.05 < 0.05	(ND) (ND)	0.2	Yes	< 2	(ND) (ND)	< 10 < 10	(ND)	< 0.02	(ND) (ND)	< 10 < 10	(ND) (ND)	< 1 < 1	(ND)
UPA-107-US (Fleid duplicate	NA NA	< 10	(ND)	< 10	(ND) (ND)	< 0.05	(ND) (ND)	< 0.05	(ND)	< 0.05	(ND)	0.092	Yes Yes	< 2 < 2	(ND) (ND)	< 10	(ND) (ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-108B-US	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-108C-US	NA NA	1.3	Yes	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.34	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
			I		\/	5,50	1 (1.42)	1 0.00	1 (1.15)	1 0.00	()	U. U.	I	-	\/		1 ()	5.52	1/		1 1/	<u>.</u>	

Prepared by: KMS 1/27/2020 Checked by: ERW 1/29/2020 Approved by: TAM 2/28/2020

	Г										astie County, De		100-										
	Compound	1.4 Dioble	probenzene	2 Mothyln	naphthalene	Ponzo/	a)pyrene	Pop-zo/h)f	luoranthene	Ponzolol.	anthracene	·	OCs oethyl) Ether	Dia/2 athylla	exyl) Phthalate	Dion	henol A	Hovooble	probenzene	Monh	nthalene	NI NI Din	nethylaniline
	RSL THQ=0.1		.48	,	тарпитателе 3.6	,	а)ругене 025	, ,	1.25		LO3		.014	,	5 6	,	77		0098		0.17		2.5
	Depth (ft	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL
All results in ug/L	bgs)	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance
Downgradient Lower Sand N								1				1											
DGC-10D	NA I	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
DGC-11D	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
DGC-8D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
UPA-02D	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	4.6	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-03D	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	6.6	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-101-LSA	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	7.5	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-101-LSB	NA	< 10	(ND)	< 10	(ND)	< 0.25	(ND)	< 0.25	(ND)	< 0.25	(ND)	20	Yes	< 2	(ND)	< 10	(ND)	< 0.1	(ND)	< 10	(ND)	< 1	(ND)
UPA-103-LS	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-104-LS	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	7.5	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-105A-LS	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.17	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-105B-LS	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.11	Yes	20	Yes	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-106-LS	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.68	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-107-LS	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	1.2	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
UPA-108B-LS	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
AWC Monitoring Wells			,				,	,					., 										
AWC-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AWC-6R	NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
AWC-E1	132	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
AWC-E1	156	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA
AWC-E1	132	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
AWC-E1	156	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA
AWC-E2	140	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA
AWC-E2	165	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
AWC-E2	140	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
AWC-E2 AWC-K1	165 NA	NA < 10	NA (ND)	NA < 10	NA (ND)	NA < 0.05	NA (ND)	NA < 0.05	NA (ND)	< 0.05	NA (ND)	NA < 0.03	NA (ND)	NA NA	(ND)	NA < 10	NA (ND)	NA < 0.02	(ND)	NA < 10	(ND)	NA	NA (ND)
NCC UPA Monitoring Wells		< 10	(ND)	< 10	(ND)	_ < 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.03	(ND)	< 2	(ND)	<u> </u>	(ND)	< 0.02	ן (מא)	<u> </u>	(ND)	< 1	(ND)
BW-2	128	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.1	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
BW-2	138	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.12	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
MW-18	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.12	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
MW-26N	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	30	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
MW-26N	128	< 10	(ND)	< 10	(ND)	< 0.1	(ND)	< 0.1	(ND)	< 0.1	(ND)	11	Yes	< 2	(ND)	< 10	(ND)	< 0.04	(ND)	< 10	(ND)	< 1	(ND)
MW-26N	138	< 10	(ND)	< 10	(ND)	< 0.5	(ND)	< 0.5	(ND)	< 0.5	(ND)	55	Yes	< 2	(ND)	17	No.	< 0.2	(ND)	< 10	(ND)	< 1	(ND)
MW-34 (Field duplicate)	80	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.58	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
MW-34	110	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.56	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
MW-34	80	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.62	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
MW-34	124	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.42	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
P-5L	NA NA	< 10	(ND)	< 10	(ND)	< 0.05	(ND)	< 0.05	(ND)	< 0.05	(ND)	0.037	Yes	< 2	(ND)	< 10	(ND)	< 0.02	(ND)	< 10	(ND)	< 1	(ND)
P-5U	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA
P-6	NA NA	< 10		< 10		< 0.05	(ND)	< 0.05	(ND)	< 0.05		120	Yes	< 2	(ND)	110	Yes	< 0.02	(ND)	1.9	Yes	21	Yes
			(ND)		(ND)						(ND)												

							New Cas	stle County, D	Jelaware								
	[sv	OCs			Total	Metals					Dissolve	ed Metals			General	Chemistry
	Compound		orophenol		balt		on		ganese	i	obalt		ron		janese		ate as N
R	SL THQ=0.1	0.0	041		0.6		100		43	(0.6	14	100		13		3200
	Depth (ft	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL
All results in ug/L	bgs)	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance
DDA Extraction Monitoring We			(AUD)	212			N10	212	- NA	44.0		01000		F400		212	
B-4DR	NA NA	< 4	(ND)	NA	NA NA	NA NA	NA NA	NA NA	NA NA	44.8 37.6	Yes	81900	Yes	5460 5020	Yes	NA NA	NA NA
BG-1 C-18D	NA NA	<u> </u>	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	44.3	Yes Yes	47100 37300	Yes Yes	3680	Yes Yes	NA NA	NA NA
C-19D	NA NA	< 1	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	83.3	Yes	33100	Yes	6610	Yes	NA NA	NA NA
C-20D	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	45.8	Yes	25900	Yes	8000	Yes	NA NA	NA NA
C-2D	NA NA	< 0.2	(ND)	NA NA	NA NA	NA	NA NA	NA NA	NA NA	11.4	Yes	31100	Yes	2170	Yes	NA NA	NA NA
C-30	NA	< 0.2	(ND)	NA NA	NA NA	NA	NA	NA	NA NA	97	Yes	25600	Yes	3880	Yes	NA	NA
C-4D	NA	< 2	(ND)	NA	NA	NA	NA	NA	NA	14.8	Yes	29700	Yes	1560	Yes	NA	NA
DDA Monitoring Wells							•										
DGC-7C	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	22.1	Yes	91800	Yes	1020	Yes	NA	NA
GA-101	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	< 50	(ND)	7230	Yes	563	Yes	NA	NA
PZ-11-EXT	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	21.3	Yes	39600	Yes	135	Yes	NA	NA NA
PZ-5-EXT	NA	< 0.2	(ND)	NA	NA	NA	NA NA	NA	NA NA	< 50	(ND)	31500	Yes	688	Yes	NA	NA NA
PW-1(U) UPCUTZ Monitoring W	, , , , , , , , , , , , , , , , , , , 	NA	l NA	NIA	l NA I	NΙΛ	I NA	NA	T NA	NA	l na	NIA	T NA T	NA	NA NA	< 100	(ND)
DDA-05 DDA-06	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	200	(ND) No
DDA-06	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	429	Yes	8460	Yes	37500	Yes	< 100	(ND)
DDA-18-TZ (Field duplicate)	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	459	Yes	8970	Yes	38200	Yes	< 100	(ND)
DDA-19-TZ	NA NA	< 0.4	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	11.2	Yes	26400	Yes	554	Yes	< 100	(ND)
DDA-20-TZ	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	35.1	Yes	44600	Yes	424	Yes	< 100	(ND)
DGC-5	40	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	31.6	Yes	24600	Yes	1990	Yes	< 100	(ND)
DGC-5	50	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	34.3	Yes	26900	Yes	2040	Yes	NA	NA
PW-1(U) Upper Sand Monitorin			,		,		,				,						
DDA-01	NA NA	NA NA	NA (NB)	NA	NA NA	NA NA	NA NA	NA	NA NA	NA 10.0	NA NA	NA 10100	NA	NA 4500	NA X	< 100	(ND)
DDA-02 DDA-03	NA NA	< 0.2 NA	(ND) NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	18.8 NA	Yes NA	19100 NA	Yes NA	1520 NA	Yes NA	< 100 < 100	(ND)
DDA-03 DDA-10-US	NA NA	< 2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	60	Yes	53100	Yes	4500	Yes	< 100	(ND)
DDA-10-00	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	15.4	Yes	46100	Yes	330	Yes	< 100	(ND)
DDA-18-US	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.7	Yes	37800	Yes	783	Yes	< 100	(ND)
DDA-19-US	NA	< 1	(ND)	NA	NA	NA	NA	NA	NA	6.5	Yes	21100	Yes	1430	Yes	< 100	(ND)
DDA-20-US	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	17.3	Yes	7810	Yes	309	Yes	370	No
DDA-20-US (Field duplicate)	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	33.5	Yes	44400	Yes	426	Yes	< 100	(ND)
DGC-2S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	62	No
DGC-2S	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	290 < 100	No (ND)
DGC-7S MHW-1D	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	79.4	Yes	20100	Yes	3210	Yes	< 100	(ND)
PW-1(U)	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	23.9	Yes	25800	Yes	1910	Yes	910	No
Downgradient Columbia Monito			1 (1.2)						1				1		1		
CA-102	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	45.6	Yes	87400	Yes	5230	Yes	< 100	(ND)
CA-103	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	7.6	Yes	76.3	No	1920	Yes	3520	Yes
CA-106	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	247	Yes	11600	Yes	5890	Yes	< 100	(ND)
Downgradient UPCUTZ Monito		-							1								
UPA-102-TZ	NA NA	< 2	(ND)	NA NA	NA NA	NA NA	NA NA	NA	NA NA	100	Yes	26100	Yes	5580	Yes	< 100	(ND)
UPA-103-TZ UPA-104-TZ	NA NA	< 0.2 < 0.4	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	31.7 16.5	Yes Yes	8750 6650	Yes Yes	807 352	Yes Yes	< 100 < 100	(ND)
UPA-104-1Z UPA-105A-TZ	NA NA	< 0.4	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	16.5 < 50	(ND)	3200	Yes	93.6	Yes Yes	< 100	(ND)
UPA-105A-12	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 50	(ND)	14200	Yes	221	Yes	< 100	(ND)
UPA-107-TZ	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	6.7	Yes	754	No	533	Yes	< 100	(ND)
UPA-108B-TZ	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	189	Yes	60400	Yes	2210	Yes	< 100	(ND)
Downgradient Upper Sand Mor	•																
DGC-10S	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	2.5	Yes	728	Yes	80	Yes	250	No
DGC-11S	NA NA	< 0.2	(ND)	NA	NA NA	NA NA	NA	NA	NA NA	< 50	(ND)	< 150	(ND)	8	No	< 100	(ND)
DGC-8S	NA NA	NA 100	NA (ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA 10.5	NA	NA 4070	NA NA	NA 167	NA V	97	No.
RT-1-UP UPA-01	NA NA	< 0.2 < 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	18.5 20.3	Yes	4670 20500	Yes Yes	167 2880	Yes	< 100 < 100	(ND)
UPA-01 UPA-02S	NA NA	 NA	(ND) NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	20.3 NA	Yes NA	NA	NA NA	2880 NA	Yes NA	640	(ND)
UPA-102-US	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	10.8	Yes	42400	Yes	3020	Yes	< 100	(ND)
UPA-103-US	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	57.6	Yes	57400	Yes	4530	Yes	< 100	(ND)
UPA-104-US	NA NA	< 1	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	32.8	Yes	14300	Yes	4510	Yes	< 100	(ND)
UPA-105A-US	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA	NA NA	< 50	(ND)	6520	Yes	276	Yes	< 100	(ND)
UPA-105B-US	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	64.8	Yes	44.7	No	1310	Yes	2760	No
UPA-106-USA	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	8.9	Yes	1430	Yes	1750	Yes	760	No
UPA-106-USB	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	85.8	Yes	38900	Yes	2150	Yes	< 100	(ND)
UPA-107-US (Field duplicate)	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	18.9	Yes	7630	Yes	3310	Yes	< 100	(ND)
UPA-107-US UPA-108B-US	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	20.9	Yes	9150	Yes	3400	Yes	< 100	(ND)
UPA-108B-US UPA-108C-US	NA NA	< 0.2 < 0.2	(ND) (ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	13.6 3.2	Yes Yes	32300 66900	Yes Yes	397 238	Yes Yes	< 100 < 100	(ND)
O: A-1000-00		` U.Z	(IAD)	11/7	13/7	144	I IVA	INA	1117	J.Z	163		I Ca	200	100	- 100	T (14D)

							New Cas	stle County, I	Delaware								
		SV	/OCs			Total	Metals					Dissolv	ed Metals			General	Chemistry
	Compound	Pentach	lorophenol	С	obalt	I	ron	Man	ganese	Co	obalt	I	ron	Man	ganese	Nitra	te as N
	RSL THQ=0.1	0.	041		0.6	1.	400		43	(0.6	1-	400		43	3:	200
	Depth (ft	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL	Maximum	RSL
All results in ug/L	bgs)	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance	Result	Exceedance
Downgradient Lower Sand						,				,				,			
DGC-10D	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	3.5	Yes	< 150	(ND)	180	Yes	2100	No
DGC-11D	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	< 50	(ND)	< 150	(ND)	4.4	No	530	No
DGC-8D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	560	No
UPA-02D	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	24.2	Yes	10200	Yes	2010	Yes	< 100	(ND)
UPA-03D	NA	< 0.2	(ND)	2.5	Yes	< 150	(ND)	7.1	No	2.7	Yes	< 150	(ND)	7.9	No	650	No
UPA-101-LSA	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	9.2	Yes	44300	Yes	1440	Yes	< 100	(ND)
UPA-101-LSB	NA	< 1	(ND)	NA	NA	NA	NA	NA	NA	38.2	Yes	24200	Yes	1610	Yes	< 100	(ND)
UPA-103-LS	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	38.8	Yes	13600	Yes	573	Yes	2560	No
UPA-104-LS	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	13.4	Yes	39200	Yes	2840	Yes	< 100	(ND)
UPA-105A-LS	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	14.9	Yes	147	No	1220	Yes	1770	No
UPA-105B-LS	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	< 50	(ND)	926	No	145	Yes	1370	No
UPA-106-LS	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	16.6	Yes	35400	Yes	1190	Yes	< 100	(ND)
UPA-107-LS	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	< 50	(ND)	21800	Yes	1790	Yes	< 100	(ND)
UPA-108B-LS	NA	< 0.2	(ND)	NA	NA	NA	NA	NA	NA	2.1	Yes	55500	Yes	1660	Yes	< 100	(ND)
AWC Monitoring Wells											-						
AWC-2	l na	NA	NA NA	NA	NA NA	NA	l NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA	4200	Yes
AWC-6R	NA	0.16	Yes	NA	NA	NA	NA	NA	NA	3.5	Yes	< 150	(ND)	30.1	No	4260	Yes
AWC-E1	132	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	58	No
AWC-E1	156	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	60	No
AWC-E1	132	NA	NA	10.6	Yes	16200	Yes	1180	Yes	9.7	Yes	7760	Yes	1090	Yes	NA	NA
AWC-E1	156	NA	NA NA	10.7	Yes	33400	Yes	1120	Yes	9.1	Yes	9150	Yes	1080	Yes	NA	NA
AWC-E2	140	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	< 100	(ND)
AWC-E2	165	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	< 100	(ND)
AWC-E2	140	NA NA	NA NA	7	Yes	8420	Yes	901	Yes	6.6	Yes	8110	Yes	882	Yes	NA	NA NA
AWC-E2	165	NA NA	NA NA	9.7	Yes	4710	Yes	550	Yes	7.5	Yes	3630	Yes	523	Yes	NA NA	NA NA
AWC-K1	NA NA	< 0.2	(ND)	NA.	NA NA	NA	NA	NA	NA NA	< 50	(ND)	7830	Yes	120	Yes	NA	NA NA
NCC UPA Monitoring Well			(10)	101	100	101	101	101	100	- 55	1 (145)	1000	1	120			100
BW-2	128	< 0.2	(ND)	NA	NA NA	NA	l NA	NA	NA NA	18.6	Yes	3040	Yes	1870	Yes	< 100	(ND)
BW-2	138	< 0.2	(ND)	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	21.7	Yes	4550	Yes	1940	Yes	< 100	(ND)
MW-18	NA NA	< 0.2	(ND)	NA.	NA NA	NA	NA NA	NA	NA NA	27	Yes	33100	Yes	2670	Yes	< 100	(ND)
MW-26N	NA NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	3.3	Yes	< 150	(ND)	170	Yes	160	No
MW-26N	128	< 0.4	(ND)	NA.	NA NA	NA NA	NA NA	NA.	NA NA	< 50	(ND)	< 150	(ND)	100	Yes	790	No
MW-26N	138	< 2	(ND)	3,8	Yes	< 150	(ND)	336	Yes	4.1	Yes	< 150	(ND)	346	Yes	< 100	(ND)
MW-34 (Field duplicate)	80	< 0.2	(ND)	NA	NA NA	NA NA	NA NA	NA NA	NA	13	Yes	2480	Yes	1190	Yes	510	No.
MW-34	110	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	13.9	Yes	6280	Yes	1300	Yes	670	No No
MW-34	80	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	12.9	Yes	2450	Yes	1200	Yes	520	No No
MW-34	124	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	13.1	Yes	8690	Yes	1080	Yes	1480	No No
P-5L	NA	< 0.2	(ND)	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.9	Yes	138	No Tes	96.8	Yes	340	No No
P-5U	NA NA	NA	(ND) NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NO NA	96.8 NA	NA NA	380	No No
P-50 P-6		< 0.2	(ND)	NA NA	NA NA		NA NA	NA NA	NA NA	4.7		5070	Yes	391	Yes	< 100	(ND)
P-0	NA	< U.Z	(ND)	NA NA	NA	NA	I NA	NA NA	NA	4.7	Yes	5070	yes	391	res	< 100	(ND)

APPENDIX B-3

July-December 2019 Bimonthly Groundwater

Summary of Detected Compounds - June 2019 through October 2019 Bimonthly Groundwater Delaware Sand & Gravel Superfund Site New Castle County, Delaware

										A	WC Monitoring We	ells				NC	C UPA Monitoring	Wells and P-6 Vid	inity	Downgradient Low	er Sand Monitoring Wells
				Samp	e Location	AWC-E1	1	WC-E1	AWC-E1	AWC-E1	AWC-E2	AWC-E2	AWC-E2	AWC-E2	AWC-E2	MW-26N	MW-26N	MW-26N	MW-26N	UPA-03D	UPA-03D
				Sa	mple Date	6/19/2019) 6	/19/2019	10/29/2019	10/29/2019	6/19/2019	6/19/2019	6/19/2019	10/29/2019	10/29/2019	6/19/2019	10/9/2019	10/17/2019	10/17/2019	6/19/2019	10/14/2019
			;	Sample De	pth (ft bgs)	132		156	132	156	140	140	165	140	165			128	138		
			N=Norma	al, FD=Field	Duplicate	N		N	N	N	N	FD	N	N	N	N	N	N	N	N	N
				RSL	RSL																
Parameter	Unit		MCL	HQ=1.0	HO=0.1	Result Qual	RDL Resu	lt Qual RDL	Result Qual RD	L Result Qual RD	L Result Qual RD	L Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RDL	Result Qual RE	L Result Qual RDL
Total Metals																					
Cobalt	ug/L		NE	6	0.6														38 50	31 J 5	25 3 50
Iron	ug/L	13939	NE	14000	1400	3140		1150			100	0 9160 150	2050 150	8420 150	4710 150						
Manganese	ug/L	260	NE	430	43															18.1 10) 7.1 J 15
Dissolved Metal	s																				
Cobalt	ug/L		NE	6	0.6											3.1 3.50	3.3 J 50		41 3 50	27 J 5	27 3 50
Iron	ug/L		NE	14000	1400	3100	150 507	150	7760 15	9150	3000	0 9800 150	1080 150	8110	3630					50.5 J 15	0
Manganese	ug/L	260	NE	430	43												170	100 15		14.8 J 15	5 7.9 J 15

Summary of Detected Compounds - June 2019 through October 2019 Bimonthly Groundwater Delaware Sand & Gravel Superfund Site New Castle County, Delaware

Notes:

Red monignia	Concentration exceeds PRG
Orange highlight =	Concentration exceeds MCL
Yellow highlight =	Concentration exceeds RSL HQ=1.0
Green highlight =	Concentration exceeds RSL HQ=0.1

Abbreviations:

HQ = Hazard Quotient

MCL = USEPA Maximum Contaminant Level (June 2017)

NE = Standard Does Not Exist

PRG = Site Specific Preliminary Remediation Goals for Delaware Sand & Gravel Landfill, provided to the

United States Environmental Protection Agency (USEPA) by the Trust in October 2017

Qual = Interpreted Qualifier

RDL = Reporting Detection Limit

RSL = Regional Screening Level for Tapwater, (June 2017)

ug/L = Micrograms per Liter

Qualifiers:

J = Estimated Result

APPENDIX C

Isoconcentration Maps

APPENDIX D

System Performance Data

Appendix D-1 LFExS Monthly and Semi-Annual Average Extraction Rates Delaware Sand & Gravel Superfund Site New Castle County, Delaware

	·		·	New Castle County, Delaware
Dates	Monthly Extraction Volumes	Monthly Average Extraction	Semi-Annual Average Extraction Rates	Notes
	(Gallons)1	Rates (GPM) ¹	(GPM)	
5/4/2009	NA /	NA		LFExS temporary system began operation on May 4, 2009
5/31/2009	31724	0.82		
6/16/2009	46665	2.03		
7/31/2009	149386	2.31		
8/31/2009	151869	3.40		
9/30/2009	118197	2.74		
10/31/2009	132050	2.96		
5/4/2009 - 10/31			2.43	
11/30/2009	105245	2.44		
12/31/2009	224591	5.03		LFExS shut down to construct the permanent system.
1/31/2010 2/28/2010	0 59178	0.00		LFExS permanent system start-up. February 23, 2010
3/31/2010	213738	4.79		Li Exo permanent system start-up. I ebituary 25, 2010
4/30/2010	166205	3.85	-	
11/1/2009 - 4/30		0.00	2.97	
5/31/2010	274434	5.98	2.01	
6/30/2010	257468	6.44		
7/31/2010	199135	4,55		
8/31/2010	299923	6.91		
9/30/2010	163175	3.78		
10/31/2010	86140	1.94		C-30 connected to LFExS.
5/1/2010 - 10/31	<u> </u>		4.86	
11/30/2010	168538	4.04		
12/31/2010	236487	5.31		
1/31/2011	275673	7.41		
2/28/2011	212994	6.08		
3/31/2011	176161	6.08		
4/30/2011	222325	9.46		
11/1/2010 - 4/30	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4.99	
5/31/2011	347392	9.12		
6/30/2011	312375	8.60		
7/31/2011 8/31/2011	218072 274225	7.50 6.24		
9/30/2011	297546	6.15		
10/31/2011	291446	7.37	 	
5/1/2011 - 10/31	<u> </u>	1.07	6.61	
11/30/2011	354352	8.23	0.01	
12/31/2011	364276	8.24		
1/31/2012	392999	8.80		
2/28/2012	281290	6.74		
3/31/2012	279983	6.27		System off for maintenance and B-4DR connection: March 2-6, 2012
4/30/2012	320849	7.45		
11/1/2011 - 4/30			7.65	
5/31/2012	379904	8.53		
6/30/2012	343060	7.96		
7/31/2012	299653	6.72		
8/31/2012	191801	4.30		System off for NCC sewer force main connection (August 23, 2012 - August 27, 2012)
9/30/2012	258732	5.96		System off intermittently for quarterly maintenance (September 9, 2012 - September 13, 2012)
10/31/2012	323007	7.25	0.00	
5/1/2012 - 10/3 1 11/30/2012	·	9.00	6.82	
12/31/2012	344910 415726	8.00 9.32	-	C-20D connected to LFExS
1/31/2013	436650	10.10	 	O 200 WHILDIGG TO LI ENO
2/28/2013	388316	9.66		
3/31/2013	448131	10.06	-	
4/30/2013	364156	8.45		System off for quarterly maintenance (April 9-11, 2013) and running at reduced flow rate until discharge pump repair on April 15, 2013.
11/1/2012 - 4/30	0/2013		9.25	
5/31/2013	503926	11.32	1	
6/30/2013	417369	9.67		
7/31/2013	450647	10.10		
8/31/2013	302058	6.77		System off for maintenance (August 14-15, 2013) and tank cleaning (August 19, 2013).
9/30/2013	447631	10.58		
10/31/2013	470859	10.58		
5/1/2013 - 10/31			9.84	
11/30/2013	403331	9.37		
12/31/2013	394852	9.17		
1/31/2014	382307	8.90		
2/28/2014	361010	9.18		
3/31/2014	397578	9.26		
4/30/2014	401701	9.65	1	

Appendix D-1 LFExS Monthly and Semi-Annual Average Extraction Rates Delaware Sand & Gravel Superfund Site New Castle County, Delaware

		.,		New Castle County, Delaware
	Monthly	Monthly	Semi-Annual	
Dates	Extraction	Average	Average	Notes
	Volumes	Extraction	Extraction Rates	
	(Gallons) ¹	Rates (GPM) ¹	(GPM)	
11/1/2013 - 4/30			8.98	
5/31/2014	425265	9.56		
6/30/2014	413594	9.60		Addition of Diches to a second to O.O. and D. A.D. and the LETT-O. Each and Each of the
7/31/2014	431964	10.41		Addition of Redux to pumping wells C-2D and B-4DR and the LFExS discharge line via the balancing tank (July 10, 2014)
8/31/2014	415076	9.33		
9/30/2014	449710	10.45		
10/31/2014	503838	11.33		
5/1/2014 - 10/3	~		10.08	
11/30/2014	280901	6.54		
12/31/2014	347712	8.09		
1/31/2015	437655	10.21		
2/28/2015	443212	11.44		
3/31/2015	476093	11.11		
4/30/2015	394217	9.45	0.40	
11/1/2014 - 4/3 0 5/31/2015	·	O AF	9.13	
6/30/2015	413658 424735	9.45 9.85	 	
7/31/2015	398855	9.85 8.97		
8/31/2015	429371	9,64		
9/30/2015	433035	10.08	-	
10/31/2015	386982	8.71	-	
5/1/2015 - 10/31		0.71	9.38	
11/30/2015	378248	8.80	3.56	
12/31/2015	331836	7.47	 	
1/31/2016	282746	6.57		
2/28/2016	266160	6.68		New discharge pump
3/31/2016	317796	7.35		
4/30/2016	338733	8.16		
11/1/2015 - 4/30			7.31	
5/31/2016	363227	8.17		
6/30/2016	418203	9.73		
7/31/2016	466965	10.48		
8/31/2016	464731	10.41		
9/30/2016	292499	6.78		
10/31/2016	276538	5.92		
5/1/2016 - 10/31			8.61	
11/30/2016	225580	5.27		
12/31/2016	220075	4.98		
1/31/2017	236819	5.36		
2/28/2017	214236	5.39		
3/31/2017	414023	9.31		
4/30/2017	419863	9.75		
11/1/2016 - 4/30	531609	14.07	6.64	
5/31/2017		11.97	-	
6/30/2017 7/31/2017	469086 478549	10.89	-	
8/31/2017	429469	9.62		
9/30/2017	445807	10.32	-	
10/31/2017	405644	9.10	 	
5/1/2017 - 10/3		3.10	10.42	
11/30/2017	379685	8.85	10:12	
12/31/2017	377895	8.79		
1/31/2018	396787	8.93		
2/28/2018	378123	9.43		
3/31/2018	478585	10.75		
4/30/2018	443009	10.64		
11/1/2017 - 4/30	0/2018		9.42	
5/31/2018	409684	9.25		
6/30/2018	466062	10.83		
7/31/2018	454583	10.24		
8/31/2018	434829	9.79		
9/30/2018	431685	10.03		
10/31/2018	481555	10.82		

Appendix D-1 LFExS Monthly and Semi-Annual Average Extraction Rates Delaware Sand & Gravel Superfund Site New Castle County, Delaware

Dates	Monthly Extraction Volumes (Gallons) ¹	Monthly Average Extraction Rates (GPM) ¹	Semi-Annual Average Extraction Rates (GPM)	Notes
5/1/2018 - 10/31	1/2018		10.11	
11/30/2018	407980	9.48		
12/31/2018	360806	8.38		
1/31/2019	288931	6.78		
2/28/2019	346120	8.90		
3/31/2019	434414	10.21		
4/30/2019	425052	10.19		
11/1/2018 - 4/30	0/2019		8.68	
5/31/2019	471062	10.59		
6/30/2019	543931	12.63		
7/31/2019	550775	12.38		
8/31/2019	506919	11.36		
9/30/2019	436264	10.10		
10/31/2019	428457	9.61		
5/1/2019 - 10/3	1/2019		11.09	

Notes:

- (1) Monthly flow volumes and average rates based on totalizer volume spreadsheets provided by DS&G Remedial Trust
- (2) LFExS = Low flow extraction system

(3) GPM = gallons per minute (4) NCC = New Castle County

Prepared by: BPC

Checked by: ERW

Reviewed by: TAM

Sept Sept	Date and Time	Flow Meas. Date	Flow Meas. Time	Instantaneous Flow Reading (gpm)	Totalizer Reading (gal)	Flow since last reading (gal)	Calculated Flow Rate (gpm)	Notes
Section Company Comp	12/1/11 14:14	12/1/2011	14:14	24.80	43941008	518144	25.4	
Separative Sep	12/8/11 14:12	12/8/2011	14:12	25.43	44177772	236764	23.5	
SONT 150	12/15/11 11:03	12/15/2011	11:03	24.11	44422508	244736	24.7	
September Sept	12/22/11 10:04	12/22/2011	10:04	22.87	44658616	236108	23.6	
1985 1985	12/28/11 10:50	12/28/2011	10:50	21.46	44853416	194800	22.4	
March Marc	1/5/12 13:50			ļ				
March 1988 2003912 16.56 49.00 497760-	1/18/12 10:00		10:00		45466288			
March Marc	1/19/12 10:08	1/19/2012	 		45493344	27056		
SYSTEM SYSTOM STATE SYSTOM STATE SYSTOM SYSTEM SYSTOM SYS	1/30/12 10:58	1/30/2012	10:58	16.92	45776524	283180	17.8	
2007-01-12 1903 1903 1905 1	2/1/12 10:19	2/1/2012	10:19	16.63	45824268	47744	16.8	Pump cleaned
2009 2-83 200900 44-88 2017 4680-600 2016 4690-600 4016 4690-600 4016 4690-600 4016	2/13/12 14:10	2/13/2012	14:10	29.55	46229676	405408	23.2	
2002-00-00-00-00-00-00-00-00-00-00-00-00	2/16/12 10:53	2/16/2012	10:53	29.35	46351520	121844	29.6	
STATE 13	2/22/12 14:33	2/22/2012	14:33	29.01	46609408	257888	29.1	
	2/23/12 9:41	2/23/2012	9:41	29.10	46642656	33248	29.0	
Month Mont	3/12/12 11:50	3/12/2012	11:50	28.02	47381468	163088	27.8	
1,000 1,00	3/15/12 11:07	3/15/2012	11:07	27.95	47501308	119840	28.0	
4405 000 4409 000 4409 000 4209 000	3/22/12 10:41	3/22/2012	10:41	ļ	47781580	280272	27.9	
March Marc	3/29/12 9:25	3/29/2012	9:25	 	48049700	268120	26.8	
Ministration Mini	4/4/12 10:00	4/4/2012	10:00	23.72	48266516	216816	25.0	
Septical Color May	4/12/12 10:17	4/12/2012	10:17	20.72	48523840	257324	22.3	
March Marc	4/19/12 10:05	4/19/2012	10:05	18.18	48719980	196140	19.5	
SYSTEP1100 SYSTEP 1190	4/24/12 14:00	4/24/2012	14:00	16.28	48848272	128292	17.3	
September 1968 1970-1971 1968 11.00	4/26/12 10:45	4/26/2012	10:45	15.61	48891236	42964		
Seminary 19.00 1	5/3/12 11:10	5/3/2012	11:10	13.25	49037620	146384	14.5	
Scheme S	5/7/12 11:55	5/7/2012	11:55	12.99	49115072	77452	13.3	
SCHILD S		5/10/2012	10:36		49168192	53120	12.5	
SCAPE 19 SCAPE 19 SCAPE 19 19 7.73 4909406 34076 6.2								
Server 111			 					
Select 10.00 Select 1.00 Select Sele	5/24/12 10:19			 	49366460			
690712123 6902612 1023 5.27			10:11	6.54	49417796		7.1	
6779-11.59 677-001.29 11.56 4.69 4.596 4.596 4.595 7.50 5.0 Paper reglecce (1972-10.58 6.21-001.29 11.59 4.595 4.5				<u></u>				
61112 10 38 611 2012 1 10 58 4 4.99 4.99 4.99 4.99 4.99 4.99 4.99 4	6/4/12 13:23	6/4/2012	13:23	5.27	49469944	33488	5.7	
6221121-145 6225072	6/7/12 11:58	6/7/2012	11:58	4.69	49491100	21156	5.0	Pump replaced
625812 1416 6252012 1418 52581 4984900 15516 2014 125044 2016 125041	6/11/12 10:58	6/11/2012	10:58	4.09	49532636	41536	7.3	
	6/21/12 11:45	6/21/2012	11:45	26.21	49800584	116724	26.3	
1701-10-952	6/25/12 14:18	6/25/2012	14:18	25.83	49954900	154316	26.1	
Trigon T	6/28/12 15:15	6/28/2012	15:15	29.64	50079944	125044	28.6	
77/2012 42:18 77/2012 1218 21.00 5568548 22.20 77/8012 1190 77/80/12 1110 11.02 5568648 22.20 77/8012 1190 77/80/12 1110 11.02 5568649 10.089 17.9 77/8012 1190 77/80/12 1110 11.02 5568649 10.089 17.9 77/8012 10.03 77/80/12 10.03 22.0 507/80/10 10.09 17.9 77/8012 10.03 77/80/12 10.03 22.0 507/80/10 17.9 78/8012 10.03 78/80/12 10.03 22.0 507/80/10 17.9 78/8012 10.03 80/20/12 10.03 22.0 507/80/10 10.09 22.5 78/8012 10.03 80/20/12 10.04 2.47 51/80/10 10.09 22.5 78/8012 10.21 80/80/12 10.14 2.48 51/80/10 10.09 2.5 78/8012 10.21 80/80/12 10.14 2.48 51/80/10 10.09 2.2 78/8012 10.21 80/80/12 10.14 2.48 51/80/10 10.09 2.2 78/8012 10.21 80/80/12 10.14 2.48 51/80/10 10.09 2.2 78/8012 10.21 80/80/12 10.12 2.48 51/80/10 10.09 2.2 78/8012 10.21 80/80/12 11.12 2.48 51/80/10 10.09 2.2 78/8012 10.21 80/80/12 11.12 2.48 51/80/10 10.09 2.2 78/8012 10.21 80/80/12 11.02 2.40 51/80/10 10.09 2.2 78/8012 10.21 80/80/12 11.02 2.40 51/80/10 10.09 2.2 78/8012 10.21 80/80/12 11.02 2.40 51/80/10 10.09 2.2 78/8012 10.21 80/80/12 11.02 2.40 51/80/10 10.09 2.2 78/8012 10.21 80/80/12 11.00 2.2 2.0 51/80/10 10.09 2.2 78/8012 10.21 80/80/12 11.00 2.2 2.0 51/80/10 10.09 2.2 78/8012 10.21 80/80/12 11.00 2.2 2.0 51/80/10 10.09 2.2 2.0 78/8012 10.20 80/80/12 11.00 2.2 2.0 51/80/10 10.09 2.2 2.0 78/8012 10.20 80/80/12 10.00 2.2 2.0 51/80/10 10.09 2.2 2.0 78/8012 10.20 80/80/12 10.00 2.2 2.0 51/80/10 10.09 2.2 2.0 78/8012 10.20 80/80/10 80/80/	7/2/12 10:52	7/2/2012	10:52	26.80	50235632	155688	28.3	
7.1912 11-92 7718-2012 14-29 15-55 50688432 11-984 20.4 7.2012 10.10 7.723-012 10.11 10.55 10.55 50688429 17-98 7.2012 10.10 7.723-012 10.10 17-24 50688429 17-98 7.2012 10.00 7.723-012 10.10 17-24 50688429 17-98 7.2012 10.00 7.723-012 10.10 17-24 50688429 17-98 7.2012 10.00 7.723-012 10.10 10.55 11-88 50648429 17-98 7.2012 10.00 8.80-012 10.38 2.32-0 51073-729 10.30000 22-5 8.8012 10.00 8.80-012 10.48 24.77 5158488 10.1888 29-98 8.8012 10.10 8.80-012 10.48 24.77 17-886 10.1889 24.5 8.8012 10.10 8.80-012 10.48 25.12 10.18 10.18 8.8012 10.14 8.80-012 10.48 25.12 10.18 8.8012 10.14 8.80-012 10.48 25.12 10.18 8.8012 10.14 8.80-012 10.48 25.12 10.18 8.8012 10.14 8.80-012 10.48 25.12 10.18 8.8012 10.14 8.80-012 10.48 25.12 10.18 8.8012 10.14 8.80-012 10.48 25.12 10.18 8.8012 10.14 8.80-012 10.48 25.12 51877-64 10.94 24.9 8.8012 10.14 8.80-012 10.48 24.02 51877-64 10.94 24.9 8.8012 10.14 8.80-012 10.48 24.02 51877-64 10.94 24.9 8.8012 10.14 8.80-012 10.48 24.02 51877-64 10.94 24.9 8.8012 10.14 8.800012 10.48 24.02 51877-64 10.94 24.9 8.8012 10.14 8.800012 10.48 24.02 51877-64 10.94 24.9 8.8012 10.14 8.800012 10.48 24.02 51877-64 10.94 24.9 8.8012 10.14 8.800012 10.48 24.02 51877-64 10.94 24.9 8.8012 10.14 8.800012 10.48 24.02 51877-64 10.94 24.9 8.8012 10.14 8.800012 10.14 25.73 5169688 4.0000 24.0 8.8012 10.14 8.800012 10.14 25.73 5169688 4.0000 24.0 8.8012 10.14 8.800012 10.14 24.00 32.10 32.	7/5/12 10:13	7/5/2012	10:13	24.10	50344268	108636	25.4	
7.9912 11-19	7/12/12 12:18	7/12/2012	12:18	21.00	50568548	224280	22.0	
	7/16/12 14:29	7/16/2012	14:29	19.55	50688432	119884	20.4	
	7/19/12 11:16	7/19/2012	11:16		50766740	78308	19.0	
	7/23/12 10:10		10:10	<u> </u>	50868829		17.9	
88/219 93			10:05	 				Pump cleaned
588/12 1048 586/2012 1049 24.77 5118488 142880 24.5			10:39			130600		
8882112 1021			 					
### 1789 ### 1789								
String 11-12 String St								
		~~~~	<del> </del>	<b></b>	<b> </b>			
8822121   1525			<del> </del>					
82812 14:14			<del> </del>					
BROWING   BROWING   STATES   BROWING   STATES   SOUTHON   TABLE   256   SOUTHON   TABLE   239				ф				
98/12 11-86 98/2012 11-86 23.88 5253840 84096 23.3 9 98/211-186 98/2012 11-46 23.88 5253840 84096 23.3 9 98/211-186 98/2012 11-46 23.88 5253840 84096 23.3 9 98/212-10-55 98/3/2012 10-55 21.78 101-50 71020 16.1 1 98/212-10-55 98/3/2012 10-55 21.78 101-50 71020 16.1 1 98/212-10-30 99/212-10 15-51 21.62 449963 348243 21.6 1 98/212-10-30 99/212-10 10-50 21.55 68097 88314 21.6 1 98/212-10-30 19/212-10-50 21.55 68097 88314 21.6 1 98/212-10-30 19/212-10-30 12-50 68026 12-71 92.6 1 98/212-10-30 19/212-10-30 10-50 21.55 68097 88314 21.6 1 98/212-10-30 10-8/212-10-50 21.55 68097 88314 21.6 1 98/212-10-30 10-8/212-10-50 21.55 68097 88314 21.6 1 98/212-10-30 10-8/212-10-50 21.55 68097 88314 21.6 1 98/212-10-30 10-8/212-10-50 21.55 68097 88314 21.6 1 98/212-10-30 10-8/212-10-50 21.55 68097 88314 19891 20.9 1 98/212-10-30 10-8/212-10-6 20.06 87338 119891 20.9 20.2 1 99/512-10-30 10-8/212-10-6 10-6 20.06 87338 119891 20.9 20.2 1 99/512-11-6 10-8/2012 11-16 18.78 11566 11-2 11-2 11-2 11-2 11-2 11-2 11-2 11			<b>†</b>	<del> </del>				
98/10/12-911   91/02/012			<del> </del>					
9/10/20 9/11 9/10/2012 9:11 21.82 30.431 30.431 21.8 9/13/10.55 9/17/8 10/15/5 10.55 21.78 10/15/5 10.55 21.78 10/15/5 10.55 21.78 10/15/5 10.55 21.78 10/15/5 10.55 21.78 10/15/5 10.55 21.78 10/15/5 10.55 21.78 10/15/5 10.55 21.78 10/15/5 10.55 21.78 10/15/5 10.55 21.78 10/15/5 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.7 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 21.6 10.55 2								
Bristra 2 10:55			<del> </del>	<u> </u>				
924/12 15:51 9:24/2012 15:51 21:62 449693 348243 21:6   92772 10:30 92772012 10:30 21:66 536007 86314 21:6   10/41/21 05:50 10/41/2012 10:50 21:25 660726 12/419 21:6   10/41/21 05:50 10/42012 10:50 21:25 660726 12/419 21:6   10/41/21 05:50 10/42012 10:50 21:25 660726 12/419 21:6   10/41/21 05:50 10/42012 10:59 21:18 753247 92:51 21:4   10/61/21 05:60 10/61/2012 10:46 20:66 873138 11:9891 20:9   10/41/21 070 10/41/2012 10:07 19:94 959426 86289 20:2   10/41/21 11:07 10/41/2012 11:04 19:37 10/3659 114:23 19:6 DS&G began well PW-1(U) OM&M   10/81/21 11:16 10/82012 11:16 18:78 115:6491 82832 19:1   10/221/21 14:16 10/222012 11:45 17:71 1262636 10:6945 18:4   10/221/21 14:50 10:222012 11:45 16:33 13:41029 78:193 17:6   11/61/21 13:25 11/62/2012 11:32 15:76 16:41843 71:20 16:2   11/61/21 13:32 11/82012 11:32 15:76 16:41843 71:20 16:2   11/12/21 13:15 11/12/2012 13:15 15:00 173:160 1 89959 15:3   11/12/21 13:45 11/22/2012 13:45 21:40 20:905974 59:57 1.1 Pump cleaned   11/39/12 10:42 11:30 20:12 14:25 14:09 1795415 63:613 14:5   11/29/12 10:46 12/20012 14:35 21:40 20:90748 59:57 1.1 Pump cleaned   11/29/12 10:16 12/20012 11:36 21:10 20:905974 59:57 1.1 Pump cleaned   11/29/12 10:16 12/20012 11:36 21:10 21:80 20:90748 2774 21:8   12/29/12 10:16 12/20012 11:36 21:11 21:888 97940 21:5   12/29/12 10:16 12/20012 11:06 20:27 23:3499 12:194 20:7   12/29/12 10:16 12/20012 11:06 20:27 23:3499 12:194 20:7   12/29/12 10:10 12/20012 11:06 20:27 23:3499 12:194 20:7   12/29/12 10:10 12/20012 11:06 20:27 23:3499 12:194 20:7   12/29/12 10:10 12/20012 11:06 20:27 23:3499 12:194 20:7   12/29/12 10:10 12/20012 11:06 20:27 23:3499 12:194 20:7   12/29/12 10:10 12/20012 11:06 20:27 23:3499 12:194 20:7   12/29/12 10:10 12/20012 11:06 20:27 23:3499 12:194 20:7   12/29/12 10:10 12/20012 11:06 20:27 23:3499 12:194 20:7   12/29/12 10:10 12/20012 11:06 20:27 23:3499 12:194 20:7   12/29/12 10:10 12/20012 11:06 20:27 23:3499 12:194 20:7   12/29/12 10:10 12/20012 11:06 20:27 23:3499 12:194 20:7   12/29/12 10:10 12/20012 11:06 20:27 23:3499 12:194 20:			<del> </del>					
927/12 10:30 9/27/2012 10:30 21:68 536007 88314 21:6   10/17/20:50 10/17/2012 10:50 21:25 660726 17/47/19 21:6   10/17/20:50 10/17/2012 10:50 21:18 753247 92521 21:4   10/17/20:50 10/17/2012 10:46 20:06 873138 118891 20:9   10/17/20:70 10/17/2012 10:07 19:94 959426 82689 20:2   10/17/20:70 10/17/2012 10:07 19:94 959426 82689 20:2   10/17/20:70 10/17/2012 11:04 19:37 10/3659 114/23 19:6 DS&G began well PW-1(U) OM&M   10/18/12 11:16 10/18/2012 11:16 18:78 1156491 82832 19:1   10/22/12 11:45 10/22/2012 11:45 17/7/1 1262836 10/6345 18:4   10/22/12 11:45 10/22/2012 13:56 16:93 1341029 78:193 17:6   11/5/12 10:16 11/5/2012 10:16 16:72 1570723 100468 17:3   11/5/12 10:16 11/5/2012 13:15 15:00 17/31802 8959 15:3   11/17/21 13:21 11/12/2013 13:15 15:00 17/31802 8959 15:3   11/15/12 14:25 11/15/2012 14:25 14:09 17/98415 63613 14:5   11/23/12 14:35 11/23/2012 10:46 21:80 20:09748 24774 21:8   11/23/12 14:35 12/3/2012 10:46 21:80 20:09748 24774 21:8   12/3/12 11:16 12/2/2012 10:46 22:18 22:28688 97940 21:5   12/3/12 11:16 12/2/2012 11:06 20:27 23:34399 12:194 20:7   12/3/12 10:06 12/3/2012 11:06 20:27 23:34399 12:194 20:7   12/3/12 10:06 12/3/2012 11:06 20:27 23:34399 12:194 20:7   12/3/12 10:06 12/3/2012 11:06 20:27 23:34399 12:194 20:7   12/3/12 10:06 12/3/2012 10:00 18:01 26:12/20 27:385 21:1   12/3/12 13:10 12/3/2012 10:00 18:01 20:22/35 23:595 11:88 1   12/3/12 13:10 12/3/2012 10:00 18:01 26:12/30 20:3959 19:9   12/3/12 13:10 12/3/2012 10:00 18:01 26:12/30 20:3959 11:88 1   12/3/12 13:10 12/3/2012 10:00 18:01 26:12/30 20:3959 11:88 1   12/3/12 13:10 12/3/2012 10:00 18:01 26:12/30 20:3959 11:88 1   12/3/12 13:10 12/3/2012 10:00 18:01 26:12/30 20:3959 11:88 1   12/3/12 13:10 12/3/2012 10:00 18:01 26:12/30 20:3959 11:88 1   12/3/12 13:10 12/3/2012 10:00 18:01 26:12/30 20:3050 18:8    12/3/12 13:10 12/3/2012 10:00 18:01 26:12/30 29:3050 18:8    12/3/12 13:10 12/3/2012 10:00 18:01 26:12/30 29:3050 18:8    12/3/12 13:10 12/3/2012 10:00 18:01 26:12/30 29:3050 18:8    12/3/12 13:10 13/2013 11:10 10:45 16:46 276666 70:206 16:8			<b>!</b>	<b></b>	<b></b>			
101/12   10:50   101/2012   10:50   21:25   660726   124719   21.8			<b> </b>					
10/4/12 10:59   10/4/2012   10:59   21:18   753247   92521   21:4				<del>}</del>				
10/8/12 10-46   10/8/2012   10.46   20.06   873138   119891   20.9			<del> </del>	<del></del>				
10/11/12 10:07			<del> </del>	ļ				
10/15/12 11:04			<del> </del>					
10/18/12 11:16   10/18/2012   11:16   18.78   1156491   82832   19.1				ļ				DS&G began well PW-1(U) OM&M
10/22/12 11:45   10/22/2012   11:45   17.71   1262836   106345   18.4			<b></b>					Substitution in the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of th
10/25/12 13:56   10/25/2012   13:56   16:93   1341029   78193   17:6								
11/5/12 10:16         11/5/2012         10:16         16.72         1570723         100468         17.3           11/8/12 11:32         11/8/2012         11:32         15.76         1641843         71120         16.2           11/12/12 13:15         11/12/2012         13:15         15:00         1731802         89859         1.3           11/15/12 14:25         11/15/2012         14:25         14.09         1795415         63613         14.5           11/29/12 15:45         11/29/2012         15:45         21.70         2005974         5957         1.1         Pump cleaned           11/30/12 10:42         11/30/2012         10:42         21.80         2030748         24774         21.8           12/3/12 14:35         12/3/2012         14:35         21.12         2126688         97940         21.5           12/5/12 11:16         12/5/2012         11:35         21.12         218688         97940         21.5           12/5/12 11:16         12/5/2012         11:36         21.01         2212205         27385         21.1           12/6/12 8:56         12/6/2012         8:56         21.01         221205         27385         21.1           12/13/12 10:02         12/13/2012         1								
11/8/12 11:32   11/8/2012   11:32   15:76   1641843   71120   16:2   11/12/12 13:15   11/12/2012   13:15   15:00   1731802   89959   15:3   11/12/12 14:25   11/15/2012   14:25   14:09   1795415   63613   14:5   11/29/2012   15:45   21:70   2005974   5957   1.1   Pump cleaned   11/30/2012   10:42   21:80   2030748   24774   21:8   12/31/2014   13:5   12/31/2012   14:35   21:12   2128688   97940   21:5   12/31/2014   13:5   12/31/2012   14:35   21:12   2128688   97940   21:5   12/31/2014   13:6   21:21   2184820   56132   20:9   12/61/2012   8:56   21:01   2212205   27385   21:1   12/10/12 11:06   12/10/2012   11:06   20:27   2334399   122194   20:7   12/13/2012   10:20   20:11   2419496   85097   19:9   12/13/2012   10:20   20:11   2419496   85097   19:9   12/13/12 10:10   12/17/2012   10:10   19:29   2532359   112863   19:6   12/2012   13:18   18:56   2562919   30560   18:8   12/2012   13:18   12/2012   11:20   17:10   2714640   102511   17:6   12/21/2012   10:20   18:01   2714640   102511   17:6   12/21/2012   10:20   18:01   2714640   102511   17:6   12/21/2012   10:45   16:46   2786666   72026   16:8   16:14   16:14   17/13   11:19   14:61   3033103   85433   14:9   18/31   18/31   18/30   18/2013   18/2013   18/2013   18/2013   18/2013   18/2013   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/3013   18/301   18/			<del> </del>	ļ	<u> </u>			
11/12/12 13:15   11/12/2012   13:15   15:00   1731802   89959   15:3   11/15/2012   14:25   14:09   1795415   63613   14:5   11/15/2012   15:45   21:70   2005974   5957   1.1   Pump cleaned   11/30/12 10:42   21:80   2030748   24774   21:8   21:31/2012   14:35   21:12   21:8688   97940   21:5   21:5   21:5/2012   11:16   21:21   21:84820   56132   20.9   21:5/2012   11:16   21:21   21:84820   56132   20.9   21:5/2012   11:16   21:21   21:84820   56132   20.9   21:5/2012   11:16   20:27   23:34399   12:194   20:7   20:27   23:34399   12:194   20:7   20:27   23:34399   12:194   20:7   20:27   23:34399   12:194   20:7   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:27   20:			<del> </del>					
11/15/12 14:25			<del> </del>	<b> </b>			L	
11/29/12 15:45         11/29/2012         15:45         21.70         2005974         5957         1.1         Pump cleaned           11/30/12 10:42         11/30/2012         10:42         21.80         2030748         24774         21.8           12/3/12 14:35         12/3/2012         14:35         21.12         2128688         97940         21.5           12/5/12 11:16         12/5/2012         11:16         21.21         2184820         56132         20.9           12/6/12 8:56         12/6/2012         8:56         21.01         2212205         27385         21.1           12/10/12 11:06         12/10/2012         11:06         20.27         2334399         122194         20.7           12/13/12 0:20         12/13/2012         10:20         20.11         2419496         85097         19.9           12/13/12 10:20         12/13/2012         10:10         19.29         2532359         112863         19.6           12/18/12 13:18         12/18/2012         13:18         18.56         2562919         30560         18.8           12/20/12 10:00         12/20/2012         10:00         18.01         2612129         49210         18.3           12/27/12 10:45         12/27/2012				<del> </del>				
11/30/12 10:42         11/30/2012         10:42         21.80         2030748         24774         21.8           12/3/12 14:35         12/3/2012         14:35         21.12         2128688         97940         21.5           12/5/12 11:16         12/5/2012         11:16         21.21         2184820         56132         20.9           12/6/12 8:56         12/6/2012         8:56         21.01         2212205         27385         21.1           12/10/12 11:06         12/10/2012         11:06         20.27         2334399         122194         20.7           12/13/12 10:20         12/13/2012         10:20         20.11         2419496         85097         19.9           12/13/12 10:10         12/17/2012         10:10         19.29         2532359         11.86         19.6           12/18/12 13:18         12/18/2012         13:18         18.56         2562919         30560         18.8           12/20/12 10:00         12/20/2012         10:00         18.01         2612129         49210         18.3           12/27/12 10:45         12/27/2012         10:45         16.46         2786666         72026         16.8           12/31/12 11:12         12/31/2013         11:12         <								Pump cleaned
12/3/12 14:35         12/3/2012         14:35         21.12         2128688         97940         21.5         12/5/12 11:16         12/5/2012         11:16         21.21         2184820         56132         20.9         12/6/12 8:56         12/6/2012         8:56         21.01         2212205         27385         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         21.1         20.7         21.1         21.1         20.7         21.1         20.7         21.1         20.7         20.7         21.1         20.7         20.7         21.1         20.7         20.7         20.7         20.7         20.7         20.7         20.7         20.7         20.7         20.1         20.7         20.1         20.7 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
12/5/12 11:16         12/5/2012         11:16         21.21         2184820         56132         20.9           12/6/12 8:56         12/6/2012         8:56         21.01         2212205         27385         21.1           12/10/12 11:06         12/10/2012         11:06         20.27         2334399         122194         20.7           12/13/12 10:20         12/13/2012         10:20         20.11         2419496         85097         19.9           12/17/12 10:10         12/17/2012         10:10         19.29         2532359         112863         19.6           12/18/12 13:18         12/18/2012         13:18         18.56         2562919         30560         18.8           12/20/12 10:00         12/20/2012         10:00         18.01         2612129         49210         18.3           12/21/12 10:05         12/24/2012         11:20         17.10         2714640         102511         17.6           12/27/12 10:45         12/27/2012         10:45         16.46         2786666         72026         16.8           12/31/13 12:01         1/3/2013         12:01         15.23         2947670         67728         15.5           1/7/13 11:19         1/7/2013         11:19 <td< td=""><td></td><td></td><td><b></b></td><td><del> </del></td><td></td><td></td><td></td><td></td></td<>			<b></b>	<del> </del>				
12/6/12 8:56         12/6/2012         8:56         21.01         2212205         27385         21.1         12/10/2012         11:06         20.27         2334399         122194         20.7         12/13/12 10:20         12/13/2012         10:20         20.11         2419496         85097         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9			<del> </del>					
12/10/12 11:06         12/10/2012         11:06         20.27         2334399         122194         20.7           12/13/12 10:20         12/13/2012         10:20         20.11         2419496         85097         19.9           12/17/12 10:10         12/17/2012         10:10         19.29         2532359         112863         19.6           12/18/12 13:18         12/18/2012         13:18         18.56         2562919         30560         18.8           12/20/12 10:00         12/20/2012         10:00         18.01         2612129         49210         18.3           12/24/12 11:20         12/24/2012         11:20         17.10         2714640         102511         17.6           12/27/12 10:45         12/27/2012         10:45         16.46         2786666         72026         16.8           12/31/12 11:12         12/31/2012         11:12         16.04         2879942         93276         16.1           1/3/13 12:01         1/3/2013         12:01         15.23         2947670         67728         15.5           1/7/13 11:19         1/7/2013         11:19         14.61         3033103         85433         14.9           1/8/13 8:30         1/8/2013         8:30         N			<del> </del>	ļ				
12/13/12 10:20         12/13/2012         10:20         20.11         2419496         85097         19.9           12/17/12 10:10         12/17/2012         10:10         19.29         2532359         112863         19.6           12/18/12 13:18         12/18/2012         13:18         18.56         2562919         30560         18.8           12/20/12 10:00         12/20/2012         10:00         18.01         2612129         49210         18.3           12/24/12 11:20         12/24/2012         11:20         17.10         2714640         102511         17.6           12/27/12 10:45         12/27/2012         10:45         16.46         2786666         72026         16.8           12/31/12 11:12         12/31/2012         11:12         16.04         2879942         93276         16.1           1/3/13 12:01         1/3/2013         12:01         15.23         2947670         67728         15.5           1/7/13 11:19         1/7/2013         11:19         14.61         3033103         85433         14.9           1/8/13 8:30         1/8/2013         8:30         N/A         3051304         18201         14.3         Chemical scrub of well screen, vacuumed debris from base, surge block, redevelopment, and cleaned pump <td></td> <td></td> <td><b></b></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td>			<b></b>	<u> </u>				
12/17/12 10:10         12/17/2012         10:10         19.29         2532359         112863         19.6           12/18/12 13:18         12/18/2012         13:18         18.56         2562919         30560         18.8           12/20/12 10:00         12/20/2012         10:00         18.01         2612129         49210         18.3           12/24/12 11:20         12/24/2012         11:20         17.10         2714640         102511         17.6           12/27/12 10:45         12/27/2012         10:45         16.46         2786666         72026         16.8           12/31/12 11:12         12/31/2012         11:12         16.04         2879942         93276         16.1           1/3/13 12:01         1/3/2013         12:01         15.23         2947670         67728         15.5           1/7/13 11:19         1/7/2013         11:19         14.61         3033103         85433         14.9           1/8/13 8:30         1/8/2013         8:30         N/A         3051304         18201         14.3         Chemical scrub of well screen, vacuumed debris from base, surge block, redevelopment, and cleaned pump				<b></b>				
12/18/12 13:18       12/18/2012       13:18       18.56       2562919       30560       18.8         12/20/12 10:00       12/20/2012       10:00       18.01       2612129       49210       18.3         12/24/12 11:20       12/24/2012       11:20       17.10       2714640       102511       17.6         12/27/12 10:45       12/27/2012       10:45       16.46       2786666       72026       16.8         12/31/12 11:12       12/31/2012       11:12       16.04       2879942       93276       16.1         1/3/13 12:01       1/3/2013       12:01       15.23       2947670       67728       15.5         1/7/13 11:19       1/7/2013       11:19       14.61       3033103       85433       14.9         1/8/13 8:30       1/8/2013       8:30       N/A       3051304       18201       14.3       Chemical scrub of well screen, vacuumed debris from base, surge block, redevelopment, and cleaned pump			<del> </del>	<b></b>				
12/20/12 10:00         12/20/2012         10:00         18.01         2612129         49210         18.3           12/24/12 11:20         12/24/2012         11:20         17.10         2714640         102511         17.6           12/27/12 10:45         12/27/2012         10:45         16.46         2786666         72026         16.8           12/31/12 11:12         12/31/2012         11:12         16.04         2879942         93276         16.1           1/3/13 12:01         1/3/2013         12:01         15.23         2947670         67728         15.5           1/7/13 11:19         1/7/2013         11:19         14.61         3033103         85433         14.9           1/8/13 8:30         1/8/2013         8:30         N/A         3051304         18201         14.3         Chemical scrub of well screen, vacuumed debris from base, surge block, redevelopment, and cleaned pump								
12/24/12 11:20         12/24/2012         11:20         17.10         2714640         102511         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.6         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2         17.2 <t< td=""><td></td><td></td><td><del>}</del></td><td></td><td><del></del></td><td></td><td></td><td></td></t<>			<del>}</del>		<del></del>			
12/27/12 10:45         12/27/2012         10:45         16.46         2786666         72026         16.8           12/31/12 11:12         12/31/2012         11:12         16.04         2879942         93276         16.1           1/3/13 12:01         1/3/2013         12:01         15.23         2947670         67728         15.5           1/7/13 11:19         1/7/2013         11:19         14.61         3033103         85433         14.9           1/8/13 8:30         1/8/2013         8:30         N/A         3051304         18201         14.3         Chemical scrub of well screen, vacuumed debris from base, surge block, redevelopment, and cleaned pump			<del> </del>					
12/31/12 11:12         12/31/2012         11:12         16.04         2879942         93276         16.1           1/3/13 12:01         1/3/2013         12:01         15.23         2947670         67728         15.5           1/7/13 11:19         1/7/2013         11:19         14.61         3033103         85433         14.9           1/8/13 8:30         1/8/2013         8:30         N/A         3051304         18201         14.3         Chemical scrub of well screen, vacuumed debris from base, surge block, redevelopment, and cleaned pump								
1/3/13 12:01         1/3/2013         12:01         15.23         2947670         67728         15.5           1/7/13 11:19         1/7/2013         11:19         14.61         3033103         85433         14.9           1/8/13 8:30         1/8/2013         8:30         N/A         3051304         18201         14.3         Chemical scrub of well screen, vacuumed debris from base, surge block, redevelopment, and cleaned pump								
1/7/13 11:19         1/7/2013         11:19         14.61         3033103         85433         14.9           1/8/13 8:30         1/8/2013         8:30         N/A         3051304         18201         14.3         Chemical scrub of well screen, vacuumed debris from base, surge block, redevelopment, and cleaned pump								
1/8/13 8:30 1/8/2013 8:30 N/A 3051304 18201 14.3 Chemical scrub of well screen, vacuumed debris from base, surge block, redevelopment, and cleaned pump								
1/8/13 8:30								Chemical scrub of well screen, vacuumed debris from base, surge block
1/15/13 10:00 1/15/2013 10:00 27.21 3176009 34376 23.5	1/8/13 8:30	1/8/2013	8:30	N/A	3051304	18201	14.3	
		1/15/2012	10:00	27.21	3176009	34376	23.5	



1/24/13 9:24 1/31/13 15:15 2/4/13 10:35 2/5/13 9:27 2/6/13 9:12 2/7/13 11:09 2/11/13 10:50 2/13/13 10:50 2/13/13 10:03 2/14/13 10:43 2/18/13 10:40 2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:54 4/8/13 11:54 4/9/13 13:35	1/22/2013 1/24/2013 2/4/2013 2/5/2013 2/6/2013 2/7/2013 2/11/2013 2/11/2013 2/11/2013 2/12/2013 2/14/2013 2/18/2013 2/19/2013 2/25/2013 2/25/2013 2/25/2013 2/27/2013 2/28/2013 3/4/2013 3/11/2013 3/11/2013 3/11/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/20/2013 3/20/2013 3/20/2013 3/21/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013 4/4/2013	9:34 9:24 15:15 10:35 9:27 9:12 11:09 10:18 10:50 10:03 10:43 10:40 10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10 9:28	30.25 30.34 31.01 30.51 30.71 30.54 30.88 29.12 29.24 28.87 28.73 27.14 26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42 40.18	3467102 3553534 3874812 4043808 4085899 4129698 4177215 4348943 4392166 4432776 4475344 4635839 4673724 4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345 5557381	210040 86432 321278 168996 42091 43799 47517 171728 43223 40610 42568 160495 37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	29.2 30.1 30.8 30.8 30.7 30.7 30.7 30.5 30.1 29.4 29.2 28.8 27.9 27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
1/31/13 15:15 2/4/13 10:35 2/5/13 9:27 2/6/13 9:12 2/7/13 11:09 2/11/13 10:18 2/12/13 10:50 2/13/13 10:03 2/14/13 10:43 2/18/13 10:40 2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:54 4/8/13 11:54 4/9/13 13:35	1/31/2013 2/4/2013 2/5/2013 2/6/2013 2/7/2013 2/11/2013 2/12/2013 2/13/2013 2/14/2013 2/18/2013 2/19/2013 2/25/2013 2/25/2013 2/26/2013 2/27/2013 2/28/2013 3/4/2013 3/11/2013 3/11/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/27/2013 3/28/2013 3/28/2013 4/2/2013	15:15 10:35 9:27 9:12 11:09 10:18 10:50 10:03 10:43 10:40 10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10 9:28	31.01 30.51 30.71 30.54 30.88 29.12 29.24 28.87 28.73 27.14 26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	3874812 4043808 4085899 4129698 4177215 4348943 4392166 4432776 4475344 4635839 4673724 4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	321278 168996 42091 43799 47517 171728 43223 40610 42568 160495 37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	30.8 30.8 30.7 30.7 30.5 30.1 29.4 29.2 28.8 27.9 27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/4/13 10:35 2/5/13 9:27 2/6/13 9:12 2/7/13 11:09 2/11/13 10:18 2/12/13 10:50 2/13/13 10:03 2/14/13 10:43 2/18/13 10:40 2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:54 4/8/13 11:54 4/9/13 13:35	2/4/2013 2/5/2013 2/6/2013 2/7/2013 2/11/2013 2/12/2013 2/13/2013 2/14/2013 2/18/2013 2/19/2013 2/25/2013 2/25/2013 2/26/2013 2/27/2013 2/28/2013 3/5/2013 3/11/2013 3/11/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	10:35 9:27 9:12 11:09 10:18 10:50 10:03 10:43 10:40 10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10 9:28	30.51 30.71 30.54 30.88 29.12 29.24 28.87 28.73 27.14 26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4043808 4085899 4129698 4177215 4348943 4392166 4432776 4475344 4635839 4673724 4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	168996 42091 43799 47517 171728 43223 40610 42568 160495 37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	30.8 30.7 30.7 30.5 30.1 29.4 29.2 28.8 27.9 27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/5/13 9:27 2/6/13 9:12 2/7/13 11:09 2/11/13 10:18 2/12/13 10:50 2/13/13 10:03 2/14/13 10:43 2/18/13 10:40 2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:54 4/8/13 11:54 4/9/13 13:35	2/5/2013 2/6/2013 2/7/2013 2/11/2013 2/12/2013 2/13/2013 2/14/2013 2/18/2013 2/19/2013 2/25/2013 2/25/2013 2/26/2013 2/27/2013 2/28/2013 3/5/2013 3/11/2013 3/11/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	9:27 9:12 11:09 10:18 10:50 10:03 10:43 10:40 10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10 9:28	30.71 30.54 30.88 29.12 29.24 28.87 28.73 27.14 26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4085899 4129698 4177215 4348943 4392166 4432776 4475344 4635839 4673724 4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	42091 43799 47517 171728 43223 40610 42568 160495 37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	30.7 30.7 30.5 30.1 29.4 29.2 28.8 27.9 27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1	Pump cleaned
2/6/13 9:12 2/7/13 11:09 2/11/13 10:18 2/12/13 10:50 2/13/13 10:03 2/14/13 10:43 2/18/13 10:40 2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:54 4/8/13 11:54 4/9/13 13:35	2/6/2013 2/7/2013 2/11/2013 2/12/2013 2/13/2013 2/14/2013 2/18/2013 2/19/2013 2/21/2013 2/25/2013 2/25/2013 2/26/2013 3/4/2013 3/5/2013 3/11/2013 3/11/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/27/2013 3/25/2013 3/27/2013 3/27/2013 3/28/2013 4/2/2013	9:12 11:09 10:18 10:50 10:03 10:43 10:40 10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10 9:28	30.54 30.88 29.12 29.24 28.87 28.73 27.14 26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4129698 4177215 4348943 4392166 4432776 4475344 4635839 4673724 4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	43799 47517 171728 43223 40610 42568 160495 37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	30.7 30.5 30.1 29.4 29.2 28.8 27.9 27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/6/13 9:12 2/7/13 11:09 2/11/13 10:18 2/12/13 10:50 2/13/13 10:03 2/14/13 10:43 2/18/13 10:40 2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:54 4/8/13 11:54 4/9/13 13:35	2/6/2013 2/7/2013 2/11/2013 2/12/2013 2/13/2013 2/14/2013 2/18/2013 2/19/2013 2/21/2013 2/25/2013 2/25/2013 2/26/2013 3/4/2013 3/5/2013 3/11/2013 3/11/2013 3/12/2013 3/12/2013 3/12/2013 3/12/2013 3/25/2013 3/25/2013 3/25/2013 3/25/2013 3/27/2013 3/25/2013 3/27/2013 3/27/2013 3/28/2013 4/2/2013	9:12 11:09 10:18 10:50 10:03 10:43 10:40 10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10 9:28	30.54 30.88 29.12 29.24 28.87 28.73 27.14 26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4129698 4177215 4348943 4392166 4432776 4475344 4635839 4673724 4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	43799 47517 171728 43223 40610 42568 160495 37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	30.7 30.5 30.1 29.4 29.2 28.8 27.9 27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/7/13 11:09 2/11/13 10:18 2/12/13 10:50 2/13/13 10:03 2/14/13 10:43 2/18/13 10:40 2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:54 4/8/13 11:54 4/9/13 13:35	2/7/2013 2/11/2013 2/12/2013 2/13/2013 2/14/2013 2/18/2013 2/19/2013 2/25/2013 2/25/2013 2/25/2013 2/27/2013 3/4/2013 3/5/2013 3/11/2013 3/11/2013 3/14/2013 3/14/2013 3/14/2013 3/14/2013 3/25/2013 3/25/2013 3/27/2013 3/27/2013 3/27/2013 3/28/2013 4/2/2013 4/2/2013	11:09 10:18 10:50 10:03 10:43 10:40 10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10 9:28	30.88 29.12 29.24 28.87 28.73 27.14 26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4177215 4348943 4392166 4432776 4475344 4635839 4673724 4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	47517 171728 43223 40610 42568 160495 37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	30.5 30.1 29.4 29.2 28.8 27.9 27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/11/13 10:18 2/12/13 10:50 2/13/13 10:03 2/14/13 10:43 2/18/13 10:00 2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 10:54 3/12/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:54 4/8/13 11:54 4/9/13 13:35	2/11/2013 2/12/2013 2/13/2013 2/14/2013 2/18/2013 2/19/2013 2/25/2013 2/25/2013 2/25/2013 2/26/2013 2/27/2013 3/4/2013 3/5/2013 3/11/2013 3/11/2013 3/14/2013 3/14/2013 3/14/2013 3/12/2013 3/20/2013 3/25/2013 3/27/2013 3/27/2013 3/28/2013 4/2/2013	10:18 10:50 10:03 10:43 10:40 10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10 9:28	29.12 29.24 28.87 28.73 27.14 26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4348943 4392166 4432776 4475344 4635839 4673724 4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	171728 43223 40610 42568 160495 37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	30.1 29.4 29.2 28.8 27.9 27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/12/13 10:50 2/13/13 10:03 2/14/13 10:43 2/18/13 10:40 2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:54 4/8/13 11:54 4/9/13 13:35	2/12/2013 2/13/2013 2/14/2013 2/18/2013 2/19/2013 2/25/2013 2/25/2013 2/26/2013 2/26/2013 2/28/2013 3/4/2013 3/5/2013 3/11/2013 3/11/2013 3/14/2013 3/14/2013 3/12/2013 3/20/2013 3/20/2013 3/27/2013 3/27/2013 3/28/2013 4/2/2013	10:50 10:03 10:43 10:40 10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10 9:28	29.24 28.87 28.73 27.14 26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4392166 4432776 4475344 4635839 4673724 4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	43223 40610 42568 160495 37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	29.4 29.2 28.8 27.9 27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/13/13 10:03 2/14/13 10:43 2/18/13 10:40 2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	2/13/2013 2/14/2013 2/18/2013 2/19/2013 2/25/2013 2/25/2013 2/26/2013 2/27/2013 2/28/2013 3/4/2013 3/5/2013 3/11/2013 3/11/2013 3/12/2013 3/12/2013 3/25/2013 3/25/2013 3/27/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	10:03 10:43 10:40 10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10	28.87 28.73 27.14 26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4432776 4475344 4635839 4673724 4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	40610 42568 160495 37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	29.2 28.8 27.9 27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/14/13 10:43 2/18/13 10:40 2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	2/14/2013 2/18/2013 2/19/2013 2/25/2013 2/26/2013 2/26/2013 2/28/2013 3/4/2013 3/5/2013 3/7/2013 3/11/2013 3/11/2013 3/12/2013 3/12/2013 3/20/2013 3/25/2013 3/27/2013 3/27/2013 3/28/2013 4/2/2013	10:43 10:40 10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10	28.73 27.14 26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4475344 4635839 4673724 4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	42568 160495 37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	28.8 27.9 27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/18/13 10:40 2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:12 3/11/13 10:18 3/14/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	2/18/2013 2/19/2013 2/21/2013 2/25/2013 2/26/2013 2/27/2013 2/28/2013 3/4/2013 3/5/2013 3/7/2013 3/11/2013 3/11/2013 3/12/2013 3/20/2013 3/20/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	10:40 10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10	27.14 26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4635839 4673724 4753407 4899380 4931168 4974441 5018925 5181224 529224 5298671 5450464 5486345	160495 37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	27.9 27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/19/13 10:00 2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:12 3/11/13 10:18 3/14/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	2/19/2013 2/21/2013 2/25/2013 2/26/2013 2/27/2013 2/28/2013 3/4/2013 3/5/2013 3/7/2013 3/11/2013 3/12/2013 3/14/2013 3/18/2013 3/20/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	10:00 11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10 9:28	26.85 26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4673724 4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	37885 79683 145973 31788 43273 44484 162299 39000 78447 151793	27.1 26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/21/13 11:56 2/25/13 11:30 2/26/13 13:27 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	2/21/2013 2/25/2013 2/26/2013 2/27/2013 2/28/2013 3/4/2013 3/5/2013 3/7/2013 3/11/2013 3/12/2013 3/18/2013 3/20/2013 3/25/2013 3/25/2013 3/28/2013 4/2/2013	11:56 11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10 9:28	26.01 24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4753407 4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	79683 145973 31788 43273 44484 162299 39000 78447 151793	26.6 25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/25/13 11:30 2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/12/13 10:18 3/12/13 10:18 3/12/13 11:36 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:54 4/8/13 11:54 4/9/13 13:35	2/25/2013 2/26/2013 2/27/2013 2/28/2013 3/4/2013 3/5/2013 3/7/2013 3/11/2013 3/12/2013 3/18/2013 3/20/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	11:30 13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10 9:28	24.70 29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4899380 4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	145973 31788 43273 44484 162299 39000 78447 151793	25.5 20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	2/26/2013 2/27/2013 2/28/2013 3/4/2013 3/5/2013 3/7/2013 3/11/2013 3/12/2013 3/14/2013 3/20/2013 3/20/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10	29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	31788 43273 44484 162299 39000 78447 151793	20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/26/13 13:27 2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	2/26/2013 2/27/2013 2/28/2013 3/4/2013 3/5/2013 3/7/2013 3/11/2013 3/12/2013 3/14/2013 3/20/2013 3/20/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	13:27 14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10	29.40 30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4931168 4974441 5018925 5181224 5220224 5298671 5450464 5486345	31788 43273 44484 162299 39000 78447 151793	20.4 29.3 30.0 29.1 28.1 27.6	Pump cleaned
2/27/13 14:04 2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	2/27/2013 2/28/2013 3/4/2013 3/5/2013 3/7/2013 3/11/2013 3/12/2013 3/14/2013 3/20/2013 3/20/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	14:04 14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10	30.05 29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	4974441 5018925 5181224 5220224 5298671 5450464 5486345	43273 44484 162299 39000 78447 151793	29.3 30.0 29.1 28.1 27.6	
2/28/13 14:48 3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	2/28/2013 3/4/2013 3/5/2013 3/7/2013 3/11/2013 3/12/2013 3/18/2013 3/20/2013 3/21/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	14:48 11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10	29.87 28.32 27.92 27.60 25.60 25.56 25.08 40.42	5018925 5181224 5220224 5298671 5450464 5486345	44484 162299 39000 78447 151793	30.0 29.1 28.1 27.6	
3/4/13 11:38 3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/4/2013 3/5/2013 3/7/2013 3/11/2013 3/12/2013 3/14/2013 3/18/2013 3/20/2013 3/21/2013 3/27/2013 3/28/2013 4/2/2013	11:38 10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10	28.32 27.92 27.60 25.60 25.56 25.08 40.42	5181224 5220224 5298671 5450464 5486345	162299 39000 78447 151793	29.1 28.1 27.6	
3/5/13 10:47 3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/5/2013 3/7/2013 3/11/2013 3/12/2013 3/14/2013 3/18/2013 3/20/2013 3/21/2013 3/27/2013 3/28/2013 4/2/2013	10:47 10:12 10:54 10:18 9:14 9:16 11:36 11:10	27.92 27.60 25.60 25.56 25.08 40.42	5220224 5298671 5450464 5486345	39000 78447 151793	28.1 27.6	
3/7/13 10:12 3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/7/2013 3/11/2013 3/12/2013 3/14/2013 3/18/2013 3/20/2013 3/21/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	10:12 10:54 10:18 9:14 9:16 11:36 11:10	27.60 25.60 25.56 25.08 40.42	5298671 5450464 5486345	78447 151793	27.6	
3/11/13 10:54 3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/11/2013 3/12/2013 3/14/2013 3/18/2013 3/20/2013 3/21/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	10:54 10:18 9:14 9:16 11:36 11:10 9:28	25.60 25.56 25.08 40.42	5450464 5486345	151793	<del> </del>	
3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/12/2013 3/14/2013 3/18/2013 3/20/2013 3/21/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	10:18 9:14 9:16 11:36 11:10 9:28	25.56 25.08 40.42	5486345		00.0	1
3/12/13 10:18 3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/12/2013 3/14/2013 3/18/2013 3/20/2013 3/21/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	10:18 9:14 9:16 11:36 11:10 9:28	25.56 25.08 40.42	5486345		26.2	
3/14/13 9:14 3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/14/2013 3/18/2013 3/20/2013 3/21/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	9:14 9:16 11:36 11:10 9:28	25.08 40.42		י ואארה.	25.6	
3/18/13 9:16 3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/18/2013 3/20/2013 3/21/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	9:16 11:36 11:10 9:28	40.42		35881 71036	25.2	Buildup in discharge line to sewer jetted out
3/20/13 11:36 3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/20/2013 3/21/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	11:36 11:10 9:28					Danaah in aponaria inia to sawai jattau out
3/21/13 11:10 3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/21/2013 3/25/2013 3/27/2013 3/28/2013 4/2/2013	11:10 9:28	40.18	5783225	225844	39.2	
3/25/13 9:28 3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/25/2013 3/27/2013 3/28/2013 4/2/2013	9:28	·	5903470	120245	39.8	
3/27/13 10:45 3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/27/2013 3/28/2013 4/2/2013		39.49	5959114	55644	39.4	
3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/28/2013 4/2/2013	40.45	39.08	6178809	219695	38.8	
3/28/13 11:24 4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	3/28/2013 4/2/2013	10:45	38.05	6291760	112951	38.2	
4/2/13 11:22 4/4/13 10:51 4/8/13 11:54 4/9/13 13:35	4/2/2013	11:24	37.76	6347526	55766	37.7	
4/4/13 10:51 4/8/13 11:54 4/9/13 13:35		11:22	36.61	6613416	265890	36.9	
4/8/13 11:54 4/9/13 13:35	4/4/2013						
4/9/13 13:35	410.00	10:51	36.34	6716499	103083	36.2	
	4/8/2013	11:54	35.83	6925704	209205	35.9	
4/11/13 13:24	4/9/2013	13:35	35.92	6980797	55093	35.8	
	4/11/2013	13:24	37.71	7083932	103135	35.9	
4/15/13 9:12	4/15/2013	9:12	36.95	7287186	203254	36.9	
4/16/13 8:46	4/16/2013	8:46	37.70	7336665	49479	35.0	
	4/17/2013	10:03	0.00	7393803	57138	37.7	Pump off for aquifer testing
						ļ	
	5/22/2013	12:20	47.00	7634146	240343	4.8	Pump off for aquifer testing, pump cleaned and check valve replaced
	5/23/2013	14:49	40.98	7700402	66256	41.7	
5/24/13 9:10	5/24/2013	9:10	40.40	7745302	44900	40.8	
5/28/13 10:23	5/28/2013	10:23	38.80	7976031	230729	39.6	
5/29/13 9:56	5/29/2013	9:56	38.30	8030610	54579	38.6	
5/30/13 12:55	5/30/2013	12:55	38.10	8092659	62049	38.3	
	6/3/2013	9:41	37.08	8302281	209622	37.7	
						<u> </u>	
	6/4/2013	15:00	36.68	8367111	64830	36.9	
	6/5/2013	10:19	36.58	8409780	42669	36.8	
6/6/13 10:38	6/6/2013	10:38	36.75	8463462	53682	36.8	
6/10/13 9:36	6/10/2013	9:36	36.55	8673312	209850	36.8	
6/13/13 9:03	6/13/2013	9:03	35.67	8828999	155687	36.3	
6/17/13 10:02	6/17/2013	10:02	33.20	9029387	200388	34.4	
	6/18/2013	11:27	32.86	9079726	50339	33.0	
	6/19/2013	10:35	32.51	9125080	45354	32.7	
			<b></b>	ļ			
	6/20/2013	15:45	31.83	9181524	56444	32.3	
	6/24/2013	13:48	29.85	9356358	174834	31.0	
	6/25/2013	10:22	29.66	9393034	36676	29.7	
6/27/13 13:43	6/27/2013	13:43	28.21	9481880	88846	28.8	
7/1/13 11:09	7/1/2013	11:09	26.16	9634846	152966	27.3	
	7/2/2013	8:46	25.84	9668490	33644	25.9	Pump cleaned
	7/8/2013	9:00	33.59	9957520	247080	34.6	
	7/16/2013	10:44	34.25	10350580	53966	34.6	
	7/17/2013	9:26	34.29	10330380	46549	34.0	
						ļ	
	7/18/2013	10:18	33.95	10447140	50011	33.5	
	7/23/2013	9:32	31.77	10677757	230617	32.2	
	7/24/2013	11:44	31.13	10727194	49437	31.4	
7/25/13 12:07	7/25/2013	12:07	31.24	10772560	45366	31.0	
7/29/13 11:07	7/29/2013	11:07	28.97	10943931	171371	30.1	
	7/30/2013	15:49	28.25	10993221	49290	28.6	
	7/31/2013	10:06	28.23	11024181	30960	28.2	
	8/1/2013	12:23	27.42	11024181	44302	28.1	
			ļ			<b></b>	
	8/5/2013	9:03	26.42	11218719	150236	27.0	
	8/6/2013	13:26	33.01	11259475	40756	23.9	Pump cleaned
	8/7/2013	9:25	33.11	11300637	41162	34.3	
8/8/13 11:08	8/8/2013	11:08	32.53	11351202	50565	32.8	
	8/12/2013	11:07	31.21	11533093	181891	31.6	
	8/13/2013	11:26	30.61	11578161	45068	30.9	
				11617528			
	8/14/2013	8:54	30.53		39367	30.6	
	8/15/2013	9:06	29.88	11661412	43884	30.2	
8/16/13 14:00	8/16/2013	14:00	41.61	11669814	8402	4.8	Line jetted and cleaned and well screen cleaned
8/19/13 8:31	8/19/2013	8:31	40.25	11832183	162369	40.7	
	8/20/2013	8:45	40.00	11890747	58564	40.3	
	8/26/2013	11:25		12232119	341372	38.8	
			38.20			<b> </b>	
	8/27/2013	10:43	38.99	12284302	52183	37.3	
8/28/13 10:09	8/28/2013	10:09	38.43	12338475	54173	38.5	
8/29/13 9:50	8/29/2013	9:50	38.01	12392544	54069	38.0	
	9/3/2013	11:12	35.88	12661045	268501	36.9	
	9/4/2013	10:01	35.12	12709679	48634	35.5	
						ļ	
	9/5/2013	15:10	34.56	12770850	61171	35.0	
	9/9/2013	10:33	32.63	12955225	184375	33.6	
	9/10/2013 9/11/2013	14:45 10:03	31.99	13009853 13046597	54628 36744	32.3 31.7	



9/12/13 12:23 9/16/13 11:05 9/17/13 14:38 9/19/13 9:06	9/12/2013 9/16/2013	12:23			(gal)	(gpm)	
9/17/13 14:38	9/16/2013	12.20	31.45	13096776	50179	31.8	
ļ	0/10/2010	11:05	30.43	13270999	174223	30.7	
9/19/13 9:06	9/17/2013	14:38	29.48	13320242	49243	29.8	
	9/19/2013	9:06	28.87	13394917	74675	29.3	
9/19/13 14:15	9/19/2013	14:15	32.57	13395545	628	2.0	Pump and pipe cleaned
9/23/13 8:21	9/23/2013	8:21	31.79	13571261	175716	32.5	
9/24/13 11:08	9/24/2013	11:08	31.66	13621860	50599	31.5	
9/25/13 13:00	9/25/2013	13:00	31.35	13670142	48282	31.1	
9/26/2013	9/26/2013	N/A	N/A	N/A	N/A	N/A	The power to the well PW-1(U) pump and totalizer were interrupted
10/3/2013	10/3/2013	N/A	N/A	N/A	N/A	N/A	Redux 620 application began
10/17/2013	10/17/2013	N/A	N/A	N/A	N/A	N/A	The totalizer was reset and the equipment was restarted
10/21/13 9:57	10/21/2013	9:57	40.39	231527	231527	41.3	
10/22/13 12:35	10/22/2013	12:35	40.87	296845	65318	40.9	
10/23/13 9:55	10/23/2013	9:55	40.83	349169	52324	40.9	
10/24/13 9:23	10/24/2013	9:23	40.70	406795	57626	40.9	
10/28/13 9:58	10/28/2013	9:58 10:57	40.98	644233	237438	41.0 41.0	
10/29/13 10:57 10/30/13 14:50	10/29/2013 10/30/2013	14:50	40.90 40.94	705619 774271	61386 68652	41.0	
11/5/13 9:44	11/5/2013	9:44	40.95	1118489	56509	40.9	
11/11/13 10:58	11/11/2013	10:58	40.78	1474968	356479	40.9	
11/12/13 10:25	11/12/2013	10:35	40.74	1532332	57364	40.8	
11/13/13 10:57	11/13/2013	10:57	40.65	1592450	60118	40.8	
11/14/13 10:33	11/14/2013	10:33	40.87	1650175	57725	40.8	
11/18/13 11:03	11/18/2013	11:03	41.35	1885748	235573	40.7	
11/19/13 10:18	11/19/2013	10:18	40.16	1942334	56586	40.6	
11/20/13 10:51	11/20/2013	10:10	40.34	2002025	59691	40.5	
11/21/13 11:03	11/21/2013	11:03	40.20	2060772	58747	40.5	
11/25/13 11:05	11/25/2013	11:05	38.90	2290468	229696	39.9	
12/2/13 10:39	12/2/2013	10:39	39.05	2681887	391419	38.9	
12/3/13 13:52	12/3/2013	13:52	38.96	2745430	63543	38.9	
12/4/13 13:34	12/4/2013	13:34	38.80	2800674	55244	38.8	
12/5/13 15:30	12/5/2013	15:30	38.83	2867833	67159	43.2	
12/10/13 9:44	12/10/2013	9:44	38.56	3125810	257977	37.6	
12/12/13 9:58	12/12/2013	9:58 AM	38.63	3237624	111814	38.6	
12/16/13 11:08	12/16/2013	11:08 AM	39.87	3459456	221832	38.1	
12/17/13 11:56	12/17/2013	11:56 AM	37.55	3518131	58675	39.4	
12/18/13 10:07	12/18/2013	10:07 AM	39.89	3569188	51057	38.4	
12/19/13 14:50	12/19/2013	2:50 PM	37.74	3636376	67188	39.0	
12/23/13 11:37	12/23/2013	11:37 AM	38.10	3850296	213920	38.4	
12/27/13 12:52	12/27/2013	12:52 PM	38.11	4076687	226391	38.8	
12/30/13 13:55	12/30/2013	1:55 PM	39.95	4246201	169514	38.7	
12/31/13 10:39	12/31/2013	10:39 AM	40.11	4294399	48198	38.7	
1/2/14 10:29	1/2/2014	10:29 AM	38.27	4405620	111221	38.8	
1/6/14 10:02	1/6/2014	10:02 AM	38.45	4627777	222157	38.8	
1/7/14 11:27	1/7/2014	11:27 AM	38.51	4687029	59252	38.9	
1/8/14 9:37	1/8/2014	9:37 AM	38.54	4738802	51773	38.9	
1/9/14 10:27	1/9/2014	10:27 AM	38.55	4796733	57931	38.9	
1/13/14 10:29	1/13/2014	10:29 AM	38.57	5021113	224380	38.9	
1/14/14 11:58	1/14/2014	11:58 AM	38.66	5080694	59581	39.0	
1/15/14 9:18	1/15/2014	9:18 AM	38.61	5130754	50060	39.1	
1/16/14 9:49	1/16/2014	9:49 AM	38.70	5188199	57445	39.1	
1/20/14 12:04	1/20/2014	12:04 PM	38.67	5417964	229765	39.0	
1/21/14 9:30	1/21/2014	9:30 AM	40.37	5468126	50162	39.0	
1/23/14 11:28	1/23/2014	11:28 AM	38.81 38.82	5584450 5806907	116324 222457	38.8 38.8	
1/27/14 11:00 1/28/14 11:56	1/28/2014	11:00 AM 11:56 AM	38.75	5864968	58061	38.8	
1/29/14 9:39	1/29/2014	9:39 AM	38.92	5915567	50599	38.8	
1/30/14 11:37	1/30/2014	11:37 AM	38.78	5976642	61075	39.2	
2/3/14 10:33	2/3/2014	10:33 AM	39.54	6198556	221914	39.2	
2/4/14 9:52	2/4/2014	9:52 AM	40.59	6253263	54707	39.0	
2/5/14 9:15	2/5/2014	9:15 AM	40.10	6308888	55625	39.6	
2/6/14 12:49	2/6/2014	12:49 PM	38.26	6373982	65094	39.4	
2/10/14 10:50	2/10/2014	10:50 AM	40.28	6592399	218417	38.7	
2/11/14 9:15	2/11/2014	9:15 AM	40.19	6644565	52166	38.8	
2/12/14 10:30	2/12/2014	10:30 AM	40.15	6703349	58784	38.8	
2/17/14 11:53	2/17/2014	11:53 AM	38.22	6983823	280474	38.5	
2/18/14 11:30	2/18/2014	11:30 AM	39.61	7037971	54148	38.2	
2/20/14 10:40	2/20/2014	10:40 AM	42.05	7155784	117813	41.6	
2/24/14 9:16	2/24/2014	9:16 AM	37.86	7392670	236886	41.7	
2/25/14 15:09	2/25/2014	3:09 PM	39.94	7459970	67300	37.5	
2/26/14 14:58	2/26/2014	2:58 PM	37.83	7514576	54606	38.2	
2/27/14 13:50	2/27/2014	1:50 PM	37.99	7567221	52645	38.4	
3/4/14 10:56	3/4/2014	10:56 AM	38.05	7834047	266826	38.0	
3/5/14 9:15	3/5/2014	9:15 AM	37.94	7884924	50877	38.0	
3/6/14 10:06	3/6/2014	10:06 AM	39.66	7941640	56716	38.0	
3/10/14 10:28	3/10/2014	10:28 AM	39.50	8159329	217689	37.6	
3/11/14 13:10	3/11/2014	1:10 PM	40.01	8213332	54003	33.7	
3/12/14 10:33	3/12/2014	10:33 AM	40.04	8262043	48711	38.0	
3/13/14 11:55	3/13/2014	11:55 AM	40.05	8320124	58081	38.2	
3/19/14 8:40	3/19/2014	8:40 AM	37.54	8640577	320453	37.9	
3/20/14 13:17	3/20/2014	1:17 PM	40.21	8700552	59975	34.9	
3/24/14 10:19	3/24/2014	10:19 AM	39.10	8923381	222829	39.9	
3/25/14 12:38	3/25/2014	12:38 PM	39.52	8986129	62748	39.7	
3/26/14 11:20	3/26/2014	11:20 AM	39.64	9040096	53967	39.6	
3/27/14 10:41	3/27/2014	10:41 AM	39.66	9096017	55921	39.9	
3/31/14 10:40	3/31/2014	10:40 AM	38.11	9324439	228422	39.7	
4/1/14 15:20	4/1/2014	3:20 PM	39.28	9392266	67827	39.4	
4/2/14 10:48	4/2/2014	10:48 AM	40.18	9439024	46758	40.0	
4/3/14 14:17	4/3/2014	2:17 PM	39.01	9504550	65526	39.7	
4/7/14 10:48	4/7/2014	10:48 AM	39.12	9723859	219309	39.5	
4/8/14 11:43	4/8/2014	11:43 AM	39.22	9782930	59071	39.5	



Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Cont	Date and Time	Flow Meas. Date	Flow Meas. Time	Instantaneous Flow Reading (gpm)	Totalizer Reading (gal)	Flow since last reading	Calculated Flow Rate	Notes
Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry   Ministry	4/0/44 44 05					(gal)	(gpm)	
SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   SAMPLE   S			<b> </b>					
Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Miles   Mile	ļ		<b>+</b>					
September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   Sept			<del> </del>					
Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Cont			<del> </del>	<del> </del>	<b></b>			
Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   Common   C	<b> </b>		<del> </del>					
COMPAND   ACCOUNT   COMPAND   COMP			<b> </b>					
Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topon   Topo	4/23/14 10:26	4/23/2014	10:26 AM	38.88	10627997		39.2	
	l	4/24/2014	10:04 AM	38.66	10683481	55484	39.1	
Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect	4/28/14 10:12	4/28/2014	10:12 AM	38.20	10907768	224287	38.9	
September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   September   Sept	4/29/14 11:52	4/29/2014	11:52 AM	38.77	10967574	59806	38.8	
	4/30/14 10:33	4/30/2014	10:33 AM	38.36	11020130	52556	38.6	
Service 14  Security   1817-140   3971   113-0675   56000   388   1817-140   3970   1817-140   3971   1818-140   3971   3971   1818-140   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   3971   39	5/1/14 12:16	5/1/2014	12:16 PM	38.71	11080264	60134	39.0	
Section   Column	5/5/14 10:46	5/5/2014	<b></b>	<u></u>	11300269	220005	38.8	
Section   1987   Security   1987   May   Section   1986   1986   1986   1986   1987   1986   1986   1987   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986   1986	5/6/14 9:14	5/6/2014	9:14 AM		11352657		38.9	
SECRET   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   1	5/7/14 10:07	5/7/2014	10:07 AM	38.61	11410252		38.6	
STATE   Color   Colo	ļ		<del> </del>					
Septic   1905   Septic   1907   Septic   190								
SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPECIAL PRINCE   SPEC			<del> </del>					
			<del> </del>					
Control   14   15   Control   14   15   Control   14   15   Control   14   15   Control   14   15   Control   14   15   Control   14   Control   15   Cont			<del> </del>					
SQUING   15-10   SQUING   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15-10   15	l		<del> </del>					
1,000,000,000,000,000,000,000,000,000,0			<del> </del>					
S02911   123   202011   215   24   38   1   1203012   28   38   3   202011   215   24   38   1   1203012   28   38   3   3   3   4   202011   215   24   38   1   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   38   3   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   24   202011   215   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   225   22			<del> </del>					
	ļ		<del> </del>					
			<del> </del>					
Secret   1988   90,02014   1,750 AM   30,04   2291351   32,089   39.4			<del> </del>					
60/114   620			<del> </del>					
65/114 1028   65/2014   10.55 AM   50.28   10.0278   50.00   10.00			<del> </del>					
General First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   First   Firs	h		<del> </del>					
\$\frac{1}{10000000000000000000000000000000000	6/9/14 10:26		<del> </del>					
	6/10/14 14:14	6/10/2014	2:14 PM	39.35	13307735	63778	38.2	
	6/12/14 10:02	6/12/2014	10:02 AM	38.04	13408815	101080	38.5	
ESTITUTE   1973   61190211   1973   6119021   1973   6119021   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973   1973	6/17/14 10:56	6/17/2014	10:56 AM	37.96	13686403	277588	38.3	
B025/14   B027   B025/2014   957 AM   37 67   44   B05028   20015   38 3	6/18/14 9:14	6/18/2014	9:14 AM	37.90	13737620	51217	38.3	
		6/19/2014	<del> </del>					
ROSPIN 11-100   ROSPONI	ļ		<del></del>					
BOZDAT   19.22   67,000   19.22   M   17,000   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19.02   33.1   19	ļ		<del> </del>					
	ļ		<del> </del>					
T7141 10.55   T716214   10.55 AM   37.66   14455552   55946   30.0   T7241 14.05   T722014   99.0 AM   37.76   1450552   39.0   T7241 14.05   T722014   20.9 PM   37.8   14502020   59.0 PM   37.9   T7741 14.7   T772014   24.7   T72014								
T27214 996   T22214   9.96 AW   37.81   144566027   51.975   38.0   T27814 1408   T27814 1408   T27814 1408   T27814 1407   T2	h		<del> </del>					
	ļ		<b></b>	<del> </del>				
			<del> </del>					
7814 917   782014   617 AM   39 11   14855540   24796   38.0			<del> </del>	<b></b>				
770174 900 762014 900 AM 3617 14898356 53816 37 8 7710174 97 77102014 8.47 AM 37.86 14943220 53884 37 7 7714174 924 77142014 9.24 AM 38.31 15169430 220210 38.0 7715174 9018 77152014 9.03 AM 37.66 15169430 220210 38.0 7715174 9018 77152014 9.93 AM 37.66 1520057 56607 37 9 77174174 940 77172014 9.40 AM 37.76 1520057 56607 37 9 77174174 940 77172014 9.40 AM 37.77 15327733 56006 38.0 77174174 940 77172014 9.40 AM 37.77 15327733 56006 38.0 7728174 90-44 77282014 10.04 AM 37.86 1552811 221672 37.8 772814 10.04 77282014 10.04 AM 37.86 1552811 221672 37.8 772814 10.04 77282014 10.04 AM 37.86 1552811 221672 37.8 773174 10.04 77282014 10.02 AM 37.64 1582214 38.0 773014 921 7700014 921 7700014 921 AM 37.64 1582214 37.64 1582214 37.6 773174 10.38 77312014 10.38 AM 37.64 1582224 37.76 773174 10.38 77312014 10.38 AM 37.66 16082427 37545 37.9 86714 8.50 862014 8.38 AM 37.85 1631207 219630 37.9 86714 8.50 862014 8.38 AM 37.85 1631207 219630 37.9 86714 8.50 862014 8.38 AM 37.85 1631207 219630 37.9 87114 957 8772014 9.95 74.00 40.23 16042879 8892 5.6 Pump and pipe cleaned 87114 911 871 87112014 9.95 AM 37.45 16312087 219630 37.7 87114 10.12 8142014 10.14 AM 37.43 1670149 37.73 1751194 3883 37.7 87114 10.12 8142014 10.14 AM 37.43 1670149 37.73 1751194 3892 37.9 87114 940 8172014 9.95 AM 37.45 1670149 37.73 1751194 3892 37.7 87114 10.12 8142014 10.14 AM 37.73 1670149 3892 37.7 87114 10.12 8142014 10.14 AM 37.73 1670149 3892 37.7 87114 10.12 8142014 10.14 AM 37.73 1670149 3892 37.7 87114 10.12 8142014 10.14 AM 37.73 1670149 3892 37.7 87114 10.10 8102014 10.14 AM 37.73 1670149 3892 37.7 87114 10.10 8102014 10.14 AM 37.73 1670149 3892 37.7 87114 10.10 8102014 10.14 AM 38.83 175643 37.9 87114 10.10 8102014 10.14 AM 38.83 175643 37.9 87114 10.10 9102014 10.14 AM 38.83 11563014 37.9 87114 10.10 9102014 10.14 AM 38.83 11563014 38.83 13.83 13.83 13.83 13.83 13.83 13.83 13.83 13.83 13.83 13.83 13.83 1								
Trifstri 40:18	ļ		<del> </del>					
T71514 9018   T7152914   1018 AM   39.15   15220037   56607   37.9	7/10/14 8:47	7/10/2014	8:47 AM	37.66	14943220	53864	37.7	
771614 9133	7/14/14 9:24	7/14/2014	9:24 AM	39.31	15163430	220210	38.0	
7/17/14/9/00 7/17/2014 9-90 AM 37.57 1532/2773 56065 38.0 7 7/24/14/9.04 7/24/2014 9-90 AM 37.57 1532/2773 56065 38.0 7 7/24/14/9.04 7/24/2014 10-04 AM 37.57 1532/2773 578 1502/2014 27/26/2014 10-02 AM 37.64 1598/2234 33124 38.0 7 7/26/14/10-02 7/25/2014 10-02 AM 37.64 1598/2234 33124 38.0 7 7/30/14/10-03 7/30/2014 9-21 AM 37.67 1693/4882 33124 38.0 7 7/30/14/10-03 7/30/2014 10-38 AM 37.67 1693/4882 37.6 7 7/30/14/10-38 7/31/2014 10-38 AM 37.66 1695/24/7 57945 37.9 8 84/14/14/10-38 16/2014 8-54 AM 37.65 1689/15/8 499/2 37.9 8 85/14/8-54 86/2014 8-54 AM 37.85 1689/15/8 499/2 37.9 8 85/14/8-30 86/2014 8-54 AM 37.85 1689/15/8 499/2 37.9 8 87/14/8-97 87/2014 9-57 AM 40.50 1642/4879 8402 5.6 Pump and pipe cleaned 181/21/49/9 81/2014 8-11 AM 40.50 1642/4879 8402 36.6 Pump and pipe cleaned 181/21/49/9 81/2014 8-11 AM 40.50 1642/4879 8402 37.9 8 81/31/49/11 8/11/2014 9-11 AM 40.50 1642/4879 8402 36.6 Pump and pipe cleaned 181/21/49/9 81/2014 8-11 AM 40.50 1642/4879 8402 37.9 8 81/31/49/11 8/11/2014 9-11 AM 40.50 1642/4879 8402 36.6 Pump and pipe cleaned 181/21/49/9 81/2014 8-11 AM 40.50 1642/4879 8402 37.7 8 81/31/49/11 8/11/2014 9-11 AM 40.50 1642/4879 8402 37.7 8 81/31/49/11 9/31/2014 9-10 AM 37.59 1670/381 589/27 38.1 9 81/31/49/11 9/31/2014 9-10 AM 37.59 1670/381 589/27 38.1 9 81/31/49/31 9/32/2014 9-10 AM 37.59 170/26754 212/56 37.2 8 82/74/49/31 9/32/2014 9-32 AM 38.29 170/26754 212/56 37.2 9 82/74/49/31 9/32/2014 9-35 AM 36.63 175/26/31 26/31/49/3 9/32/49/3 9/32/49/3 9/33/4 9/33/4 9/32/4 9/33/4 9/33/4 9/32/4 9/33/4 9/33/4 9/32/4 9/33/4 9/33/4 9/32/4 9/33/4 9/33/4 9/32/4 9/33/4 9/33/4 9/32/4 9/33/4 9/32/4 9/33/4 9/33/4 9/32/4 9/33/4 9/33/4 9/32/4 9/33/4 9/33/4 9/32/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/33/4 9/	7/15/14 10:18	7/15/2014	10:18 AM	39.15	15220037	56607	37.9	
T26414 904	7/16/14 9:03		9:03 AM	<del></del>	15271668	51631	37.8	
772814 10:04	7/17/14 9:40						38.0	
	ļ		<del></del>	<b>}</b>				
7:30:14 9:21         77:30:20:14         9:21 AM         37.57         1603-2822         52:648         37.8           7:37:14 10:38         77:31:20:14         10:38 AM         37.66         16092427         57:545         37.9           8:57:14 8:54         95:20:14         8:54 AM         37:85         1638:15:99         34:99         37.9           8:67:14 8:54         95:20:14         8:54 AM         37:85         1638:15:49         49492         37.9           8:67:14 8:57         8:71:20:14         9:57 AM         N.NA         164:18:29         548:38         38.7           8:77:14 9:57         8:71:20:14         9:57 AM         40.50         16424870         8492         5.6         Pump and pipe cleaned           8:17:14 9:57         8:71:20:14         9:57 AM         40.50         16424870         8492         5.6         Pump and pipe cleaned           8:17:14 9:51         8:17:20:14         9:40 AM         37.43         1676:18:18         58972         38.1           8:13:14 10:46         8:13:20:14         10:46 AM         37.43         1676:18:48         58823         37.7           8:14:14 10:12         8:14:20:14         10:12:24         37.2         12:27:56         37.2           <			<del> </del>	<b></b>				
7.53114 10.38			<del> </del>					
8/4/14 11:07         8/4/2014         11:07 AM         37.75         16312057         219830         37.9           8/5/14 8:54         8/5/2014         8:54 AM         37.85         16361549         49492         37.9           8/6/14 8:30         8/6/2014         8:30 AM         N/A         16418387         54838         38.7           8/7/14 9:57         8/7/2014         9:57 AM         40.50         16424879         8492         5.6         Pump and pipe cleaned           8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:11         8/11/14 9:12         8/11/14 9:11         8/11/14 9:12         8/11/14 9:12         8/11/14 9:12         8/11/14 9:12         8/11/14 9:12         8/11/14 9:12         8/11/14 9:12         8/11/14 9:12         8/11/14 9:12         8/11/14 9:12         8/11/14 9:12         8/11/14 9:13         8/11/14 9:13         8/11/14 9:13         8/11/14 9:13         8/11/14 9:13         8/11/14 9:13<			<del> </del>	ļ				
8/5/14 8.54   8/5/2014   8.54 AM   37.85   16361549   49492   37.9	l							
8/8/14/8:30 8/8/2014 8:30 AM N/A 16416387 54838 38.7 8/7/14/9:57 8/7/2014 9:57 AM 40.50 16424879 8492 5.6 Pump and pipe cleaned 8/7/14/9:11 8/7/12014 9:41 AM 40.23 16464839 233510 39.1 8/7/14/9:40 8/7/2014 9:40 AM 37.59 16704361 55972 38.1 8/7/3/14/0:46 8/7/2014 9:40 AM 37.59 16704361 55972 38.1 8/7/3/14/0:46 8/7/2014 10:46 AM 37.43 16761184 56823 37.7 8/7/3/14/0:40 8/7/2014 10:12 AM 37.24 16813998 52814 37.6 8/7/3/14/0:30 8/7/2014 10:12 AM 37.24 16813998 52814 37.6 8/7/3/14/0:30 8/7/2014 10:59 FM 36.95 17514018 487264 37.0 8/7/3/14/0:31 8/7/2014 11:45 AM 36.82 17564135 50117 36.9 9/3/14/0:31 9/3/2014 9:53 AM 36.93 17825314 261179 36.8 9/3/14/0:31 9/3/2014 9:53 AM 36.93 17825314 261179 36.8 9/3/14/0:31 9/3/2014 9:37 AM 38.01 1753488 51430 37.4 9/8/14/0:31 9/3/2014 9:37 AM 38.01 1753488 51430 37.4 9/8/14/0:31 9/3/2014 9:37 AM 36.57 18146297 214809 36.8 9/9/14/9:35 9/9/2014 9:35 AM 36.57 18196651 50354 36.7 9/9/14/0:30 9/0/2014 9:09 0/0/2014 9:00 AM 36.57 18196651 50354 36.7 9/9/14/0:30 9/0/2014 9:09 0/0/2014 9:00 AM 36.57 18196651 50354 36.7 9/11/14/10:45 9/11/2014 10:45 AM 36.08 18512492 208428 36.3 9/11/14/10:45 9/11/2014 10:45 AM 36.08 18512492 208428 36.3 9/11/14/10:45 9/11/2014 10:45 AM 36.08 18512492 208428 36.3 9/11/14/10:45 9/11/2014 9:45 AM 35.93 1856497 50985 36.4 9/11/14/10:45 9/11/2014 9:45 AM 35.93 1856497 50985 36.3 9/11/14/10:46 9/11/2014 9:45 AM 35.93 1856497 50985 36.3 9/11/14/10:49 9/17/2014 11:40 AM 36.06 18619926 56449 36.3 9/11/14/10:49 9/17/2014 10:45 AM 35.77 18926129 49961 35.7 9/22/14/19:48 9/23/2014 9:45 AM 35.77 18926129 49961 35.7 9/23/14/9:48 9/23/2014 9:45 AM 35.79 1897409 51280 35.7 9/23/14/9:48 9/23/2014 9:45 AM 35.93 1856418 50995 35.8 9/23/14/9:48 9/23/2014 9:45 AM 35.93 1856418 50958 36.3 9/13/14/14/39 9/23/2014 9:45 AM 35.93 1856418 50958 36.3 9/13/14/14/39 9/23/2014 9:45 AM 35.93 1856418 50958 36.3 9/13/14/14/39 9/23/2014 9:45 AM 35.79 1897409 51280 35.7 9/23/14/9:48 9/23/2014 9:45 AM 35.79 1897409 51280 35.7 9/23/14/9:48 9/23/2014 9:45 AM 35.79 1897409 51280 35.7 9/23/14/9:4			<del> </del>					
8/7/14 9:57 8/7/2014 9:57 AM 40.50 16424879 8492 5.6 Pump and pipe cleaned  8/11/14 9:11 8/11/2014 9:11 AM 40.23 16464389 223510 39.1  8/13/14 9:40 8/12/2014 9:40 AM 37.59 16704381 55972 38.1  8/13/14 10:46 8/13/2014 10:46 AM 37.43 16761184 56823 37.7  8/13/14 10:10 8/14/2014 10:12 AM 37.24 16813998 52814 37.6  8/13/14 10:10 8/13/2014 9:32 AM 38.29 17026754 212756 37.2  8/13/14 10:30 8/13/2014 1:05 PM 36.95 17514018 487264 37.0  8/12/14 13:05 8/13/2014 1:05 PM 36.95 17514018 487264 37.0  8/12/14 13:05 8/13/2014 9:32 AM 38.29 17026754 212756 37.2  8/12/14 13:05 8/13/2014 1:05 PM 36.95 17514018 487264 37.0  8/12/14 10:31 9/3/2014 9:35 AM 36.93 17825314 261179 36.8  9/13/14 0:31 9/3/2014 9:27 AM 38.01 17931488 51430 37.4  9/13/14 0:34 9/13/2014 9:35 AM 36.37 18146297 214809 36.8  9/13/14 10:44 9/12/27 9/13/2014 9:35 AM 36.37 18146297 214809 36.8  9/10/14 9:10 9/10/2014 9:10 AM 36.36 18248250 51599 36.5  9/10/14 9:10 9/10/2014 9:10 AM 36.31 18512492 208428 36.3  9/15/14 10:49 9/15/2014 9:45 AM 36.93 18512492 208428 36.3  9/15/14 10:49 9/15/2014 9:45 AM 36.93 1865477 50985 36.3  9/15/14 10:49 9/15/2014 9:45 AM 36.93 18656477 50985 36.3  9/15/14 10:49 9/15/2014 9:45 AM 36.93 18656477 50985 36.3  9/15/14 10:49 9/15/2014 9:45 AM 36.93 18656477 50985 36.3  9/15/14 10:49 9/15/2014 9:45 AM 35.93 18656477 50985 36.3  9/15/14 10:49 9/15/2014 9:45 AM 35.93 18656477 50985 36.3  9/15/14 10:49 9/15/2014 9:45 AM 35.90 18876168 205484 35.9  9/15/14 10:27 9/22/2014 9:45 AM 35.79 18876168 205484 35.9  9/22/14 10:27 9/22/2014 9:45 AM 35.79 18876168 205484 35.9  9/22/14 9:49 9/23/2014 9:44 AM 36.11 19235091 195469 35.8  9/23/14 9:49 9/23/2014 9:44 AM 36.11 19235091 195469 35.8  9/23/14 9:49 9/23/2014 9:44 AM 36.11 19235091 195469 35.8  9/23/14 9:49 9/23/2014 9:44 AM 36.11 19235091 195469 35.8  9/23/14 9:49 9/23/2014 9:44 AM 36.11 19235091 195469 35.8  9/23/14 9:49 9/23/2014 9:44 AM 36.11 19235091 195469 35.8  9/23/14 9:49 9/23/2014 9:44 AM 36.11 19235091 195469 35.8  9/23/14 9:49 9/23/2014 9:44 AM 36.11 19235091 195469 35.8			<del> </del>					
8/11/14 9:11 8/11/2014 9:11 AM 40.23 16648389 223510 39.1 8/12/14 9:40 B 8/12/2014 9:40 AM 37.99 1670/361 55972 38.1 8/13/14 10:46 8/13/2014 10:46 AM 37.43 1676/184 56823 37.7 8/14/14 10:12 8/14/2014 10:12 AM 37.24 16813998 52814 37.6 8/14/14 10:12 8/14/2014 10:12 AM 37.24 16813998 52814 37.6 8/14/2014 9:32 AM 38.29 17026754 212756 37.2 8/14/2014 10:56 PM 36.95 1751/3018 487264 37.0 9/14/14 19:35 8/12/2014 10:56 PM 36.95 1751/3018 487264 37.0 9/14/14 9:35 8/14/2014 9:53 AM 36.93 17828314 261179 36.8 9/14/14 9:37 9/14/2014 9:53 AM 36.93 17828314 261179 36.8 9/14/14 9:27 9/14/2014 9:57 AM 38.01 17931488 51430 37.4 9/14/2014 9:27 9/14/2014 9:27 AM 38.01 17931488 51430 37.4 9/14/2014 9:27 9/14/2014 9:37 AM 36.37 18146297 214809 36.8 9/14/2014 9:09/2014 9:35 AM 36.37 18146297 214809 36.8 9/14/2014 9:09/2014 9:35 AM 36.36 18248250 51599 36.5 9/14/2014 9:10 9/10/2014 9:10 9/10/2014 9:10 AM 36.36 18248250 51599 36.5 9/16/14 9:45 9/16/2014 9:45 AM 36.91 18304064 58814 36.4 9/16/14 10:37 9/16/2014 9:45 AM 36.91 18304064 58814 36.4 9/16/14 10:39 9/16/2014 9:45 AM 36.91 18563477 59985 36.3 9/16/2014 9:45 AM 36.91 18304064 58814 36.4 9/16/14 10:39 9/16/2014 9:45 AM 36.91 18304064 58814 36.4 9/16/2014 9:45 AM 36.91 18304064 58814 36.4 9/16/14 10:39 9/16/2014 9:45 AM 36.91 18304064 58814 36.4 9/16/2014 9:45 AM 36.91 18304064 58814 36.4 9/16/2014 9:45 9/16/2014 9:45 AM 36.91 18304064 58814 36.4 9/16/14 10:39 9/16/2014 9:45 AM 36.91 18304064 58814 36.4 9/16/2014 9:45 9/16/2014 9:45 AM 36.91 18304064 58814 36.4 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 AM 36.91 18304064 58814 36.4 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/16/2014 9:45 9/1			<del> </del>					Pump and pipe cleaned
8/12/14 9:40         8/12/2014         9:40 AM         37.59         16704361         55972         38.1           8/13/14 10:46         8/13/2014         10:46 AM         37.43         16761184         56823         37.7           8/13/14 10:40         8/13/2014         9:32 AM         37.24         16813998         52814         37.6           8/18/14 9:32         8/18/2014         9:32 AM         38.29         17026754         212756         37.2           8/27/14 13:05         8/27/2014         1:05 PM         36.95         17514018         487264         37.0           8/28/14 11:45         8/28/2014         11:45 AM         36.82         17564135         50117         36.9           9/2/14 9:53         9/2/2014         9:53 AM         36.93         17825314         261179         36.8           9/3/14 10:31         9/3/2014         10:31 AM         37.02         1788058         54744         37.0           9/4/14 9:27         9/4/2014         9:47 AM         36.01         17931488         51430         37.4           9/6/14 9:35         9/9/2014         9:35 AM         36.57         18196651         50354         36.7           9/11/14 10:45         9/11/2014         10:45 AM			<del> </del>					· · · ·
8/13/14 10:46 8/13/2014 10:46 AM 37.43 16761184 56823 37.7 8/14/14 10:12 8/14/2014 10:12 AM 37.24 16813998 52814 37.6 8/18/14 9:32 8/18/2014 9:32 AM 38.29 17026754 212756 37.2 8/27/14 13:05 8/27/2014 10:5F M 36.95 17514018 467264 37.0 8/28/14 11:45 8/28/2014 11:45 AM 36.82 17564135 50117 36.9 9/2/14 9:53 9/2/2014 9:53 AM 36.93 17825314 261179 36.8 9/3/14 10:31 9/3/2014 10:31 AM 37.02 17880058 54744 37.0 9/4/14 9:27 9/4/2014 9:27 AM 38.01 17931488 51430 37.4 9/8/14 10:44 9/8/2014 10:44 AM 36.37 18146297 214809 36.8 9/9/14 10:49 9/8/2014 9:35 AM 36.57 1816651 50354 36.7 9/11/14 10:45 9/11/2014 10:45 AM 36.21 18304064 55814 36.4 9/15/14 9:19 9/15/2014 10:19 AM 36.08 18512492 208428 36.3 9/16/14 9:45 9/16/2014 9:45 AM 36.08 18512492 208428 36.3 9/16/14 9:45 9/16/2014 10:56 AM 36.08 18512492 208428 36.3 9/18/14 10:36 9/18/2014 10:56 AM 36.03 18670684 50758 36.4 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 208428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 208428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 11:40 AM 36.08 18512492 308428 36.3 9/18/14 10:49 9/17/2014 9/18/2014 9/18/2014 9/18/2014 9/18/2014 9/18/2014 9/18/2014 9/18/2014 9/1								
8/14/14 10:12         8/14/2014         10:12 AM         37.24         16813998         52814         37.6           8/18/14 9:32         8/18/2014         9:32 AM         38.29         17026754         212756         37.2           8/27/14 13:05         8/27/2014         1:05 PM         36.95         17514018         487264         37.0           8/28/14 11:45         8/28/2014         1:145 AM         36.95         17564135         50117         36.9           9/2/14 9:53         9/2/2014         9:53 AM         36.93         17825314         261179         36.8           9/3/14 10:31         9/3/2014         9:35 AM         36.93         17825314         261179         36.8           9/3/14 9:27         9/4/2014         9:27 AM         38.01         17931488         51430         37.4           9/8/14 10:44         9/8/2014         10:44 AM         36.37         18146297         214809         36.8           9/9/14 9:35         9/9/2014         9:35 AM         36.57         18196651         50354         36.7           9/10/14 9:10         9/10:2014         9:10 AM         36.21         18304064         55814         36.4           9/15/14 10:19         9/15:2014         10:19 AM <td>ļ</td> <td></td> <td><b></b></td> <td></td> <td> </td> <td></td> <td></td> <td></td>	ļ		<b></b>					
8/18/14 9:32 8/18/2014 9:32 AM 38.29 17026754 212756 37.2 8/27/14 13:05 8/27/2014 1:05 PM 36.95 17514018 487264 37.0 8/28/14 11:45 8/28/2014 11:45 AM 36.82 17564135 50117 36.9 9/2/14 9:53 9/2/2014 9:53 AM 36.93 178/25314 261179 36.8 9/3/14 10:31 9/3/2014 10:31 AM 37.02 17880058 54744 37.0 9/4/14 9:27 9/4/2014 9:27 AM 38.01 17931488 51430 37.4 9/8/14 10:44 9/8/2014 9:27 AM 38.01 17931488 51430 37.4 9/8/14 10:44 9/8/2014 9:35 AM 36.37 18146297 214809 36.8 9/9/14 9:35 9/9/2014 9:35 AM 36.57 18196651 50354 36.7 9/10/14 9:10 9/10/2014 9:10 AM 36.36 18248250 51599 36.5 9/11/14 10:45 9/11/2014 10:45 AM 36.21 18304064 55814 36.4 9/15/14 10:19 9/15/2014 10:45 AM 36.08 18512492 208428 36.3 9/15/14 10:49 9/19/2014 9:45 AM 35.93 18563477 50985 36.3 9/17/14 11:40 9/17/2014 11:40 AM 36.06 18619926 56449 36.3 9/18/14 10:27 9/22/2014 10:27 AM 35.90 18876168 205484 35.9 9/22/14 10:27 9/22/2014 9:45 AM 35.77 18926129 49961 35.7 9/22/14 10:47 9/25/2014 9:45 AM 35.77 18926129 49961 35.7 9/22/14 10:47 9/25/2014 9:45 AM 35.77 18926129 49961 35.7 9/22/14 10:47 9/25/2014 9:45 AM 35.77 18926129 35.7 9/22/14 10:47 9/25/2014 9:45 AM 35.79 18977409 51260 35.7 9/22/14 10:49 9/25/2014 9:45 AM 35.71 18926129 35.8 9/22/14 10:47 9/25/2014 9:45 AM 35.71 18926129 35.7 9/22/14 10:49 9/25/2014 9:45 AM 35.71 18926129 35.7 9/22/14 10:49 9/25/2014 9:45 AM 35.71 18926129 35.7 9/22/14 10:49 9/25/2014 9:45 AM 35.71 18926129 35.7 9/22/14 10:49 9/25/2014 9:45 AM 35.71 18926129 35.7 9/23/14 9:49 9/23/2014 9:45 AM 35.71 18926129 35.7 9/23/14 9:49 9/23/2014 9:45 AM 35.71 18926129 35.7 9/23/14 9:49 9/23/2014 9:45 AM 35.71 18926129 35.5 9/23/14 9:49 9/23/2014 9:45 AM 35.71 18926129 35.7 9/23/14 9:49 9/23/2014 9:45 AM 35.71 18926129 35.5 9/23/14 9:49 9/23/2014 9:44 AM 36.11 19:35091 185669 35.8 9/30/14 9:42 9/30/2014 9:44 AM 36.11 19:35091 185669 35.8 9/30/14 9:42 9/30/2014 9:42 AM 37.31 19:286181 51090 35.5 10/1/14 10:36 10/1/2014 10:36 AM 37.43 19:339914 53733 36.0 10/2/14 15:32 10/2/2014 3:32 PM 35.08 19402131 62217 35.8								
8/28/14 11:45       8/28/2014       11:45 AM       36.82       17564135       50117       36.9         9/2/14 9:53       9/2/2014       9:53 AM       36.93       17825314       261179       36.8         9/3/14 10:31       9/3/2014       10:31 AM       37.02       17880058       54744       37.0         9/3/14 10:34       9/4/2014       9:27 AM       38.01       17931488       51430       37.4         9/3/14 10:44       9/4/2014       9:27 AM       36.31       18146297       214809       36.8         9/9/14 9:35       9/9/2014       9:35 AM       36.57       18196651       50354       36.7         9/10/14 9:10       9/10/2014       9:10 AM       36.36       18248250       51599       36.5         9/11/14 10:45       9/11/2014       10:45 AM       36.21       18304064       55814       36.4         9/15/14 10:19       9/15/2014       10:19 AM       36.08       18512492       208428       36.3         9/16/14 9:45       9/16/2014       9:45 AM       35.93       18563477       50965       36.3         9/17/14 11:40       9:17/2014       11:40 AM       36.06       18619926       56449       36.3         9/12/14 10:27	8/18/14 9:32	8/18/2014	9:32 AM	38.29	17026754	212756	37.2	
9/2/14 9:53         9/2/2014         9:53 AM         36.93         17825314         261179         36.8           9/3/14 10:31         9/3/2014         10:31 AM         37.02         1788058         54744         37.0           9/4/14 9:27         9/4/2014         9:27 AM         38.01         17931488         51430         37.4           9/8/14 9:35         9/9/2014         9:35 AM         36.57         1816651         50354         36.7           9/10/14 9:10         9/10/2014         9:10 AM         36.36         18248250         51599         36.5           9/11/14 10:45         9/11/2014         10:45 AM         36.21         18304064         55814         36.4           9/15/14 10:19         9/15/2014         10:19 AM         36.08         18512492         208428         36.3           9/16/14 9:45         9/16/2014         9:45 AM         35.93         18563477         50985         36.3           9/17/14 11:40         9/17/2014         10:56 AM         36.06         18619926         56449         36.3           9/12/14 10:27         9/22/2014         10:56 AM         36.13         18670684         50758         36.4           9/22/14 10:27         9/22/2014         9:48 AM	8/27/14 13:05		<del> </del>	36.95				
9/3/14 10:31 9/3/2014 10:31 AM 37.02 17880058 54744 37.0 9/4/14 9:27 9/4/2014 9:27 AM 38.01 17931488 51430 37.4 9/8/14 10:44 9/8/2014 10:44 AM 36.37 18146297 214809 36.8 9/9/14 9:35 9/9/2014 9:35 AM 36.57 18196651 50354 36.7 9/10/14 9:10 9/10/2014 9:10 AM 36.36 18248250 51599 36.5 9/11/14 10:45 9/11/2014 10:45 AM 36.21 18304064 55814 36.4 9/15/14 10:19 9/15/2014 10:19 AM 36.08 18512492 208428 36.3 9/16/14 9:45 9/16/2014 9.45 AM 35.93 18563477 50985 36.3 9/16/14 10:40 9/17/2014 11:40 AM 36.06 18619926 56449 36.3 9/18/14 10:56 9/18/2014 10:56 AM 36.13 18670684 50758 36.4 9/12/14 10:27 9/22/2014 10:27 AM 35.90 18876168 205484 35.9 9/23/14 9:48 9/23/2014 9:48 AM 35.77 18926129 49961 35.7 9/23/14 9:45 9/24/2014 9:45 AM 35.79 18977409 51280 35.7 9/26/14 9:47 9/25/2014 9:45 AM 36.11 19235091 195469 35.8 10/11/14 10:36 10/1/2014 9:42 AM 37.31 19235091 195469 35.8 10/11/14 10:36 10/1/2014 9:42 AM 37.31 19235091 195469 35.8 10/11/14 10:36 10/1/2014 9:42 AM 37.31 19235091 35.7 10/2/14 15:32 10/2/2014 3:32 PM 35.08 19402131 62217 35.8	ļ		<del> </del>	<b> </b>				
9/4/14 9:27         9/4/2014         9:27 AM         38.01         17931488         51430         37.4           9/8/14 10:44         9/8/2014         10:44 AM         36.37         18146297         214809         36.8           9/9/14 9:35         9/9/2014         9:35 AM         36.57         18196651         50354         36.7           9/10/14 9:10         9/10/2014         9:10 AM         36.36         18248250         51599         36.5           9/11/14 10:45         9/11/2014         10:45 AM         36.21         18304064         55814         36.4           9/15/14 10:19         9/15/2014         10:45 AM         36.08         18512492         208428         36.3           9/16/14 9:45         9/16/2014         9:45 AM         35.93         18563477         50985         36.3           9/17/14 11:40         9/17/2014         11:40 AM         36.06         18619926         56449         36.3           9/18/14 10:27         9/22/2014         10:27 AM         35.90         18876168         205484         35.9           9/23/14 9:48         9/23/2014         9:48 AM         35.77         18926129         49961         35.7           9/25/14 14:47         9/25/2014         9:45 AM<			<b></b>					
9/8/14 10:44 9/8/2014 10:44 AM 36.37 18146297 214809 36.8  9/9/14 9:35 9/9/2014 9:35 AM 36.57 18196651 50354 36.7  9/10/14 9:10 9/10/2014 9:10 AM 36.36 18248250 51599 36.5  9/11/14 10:45 9/11/2014 10:45 AM 36.21 18304064 55814 36.4  9/15/14 10:19 9/15/2014 10:19 AM 36.08 18512492 208428 36.3  9/16/14 9:45 9/16/2014 9:45 AM 35.93 18563477 50985 36.3  9/17/14 11:40 9/17/2014 11:40 AM 36.06 18619926 56449 36.3  9/18/14 10:56 9/18/2014 10:27 AM 35.90 18876168 205484 35.9  9/22/14 10:27 9/22/2014 10:27 AM 35.90 18876168 205484 35.9  9/22/14 19:48 9/23/2014 9:45 AM 35.77 18926129 49961 35.7  9/25/14 14:47 9/25/2014 9:45 AM 35.79 18977409 51280 35.7  9/25/14 14:47 9/25/2014 9:44 AM 36.11 19235091 195469 35.8  9/30/14 9:42 9/30/2014 9:44 AM 36.11 19235091 195469 35.8  9/30/14 9:42 9/30/2014 9:42 AM 37.31 19286181 51090 35.5  10/1/14 10:36 10/1/2014 10:36 AM 37.43 19339914 53733 36.0  10/2/14 15:32 10/2/2014 3:32 PM 35.08 19402131 62217 35.8	ļ							
9/9/14 9:35         9/9/2014         9:35 AM         36.57         18196651         50354         36.7           9/10/14 9:10         9/10/2014         9:10 AM         36.36         18248250         51599         36.5           9/11/14 10:45         9/11/2014         10:45 AM         36.21         18304064         55814         36.4           9/15/14 10:19         9/15/2014         10:19 AM         36.08         18512492         208428         36.3           9/16/14 9:45         9/16/2014         9:45 AM         35.93         18563477         50985         36.3           9/17/14 11:40         9/17/2014         11:40 AM         36.06         18619926         56449         36.3           9/18/14 10:56         9/18/2014         10:56 AM         36.13         18670684         50758         36.4           9/22/14 10:27         9/22/2014         10:27 AM         35.90         18876168         205484         35.9           9/23/14 9:48         9/23/2014         9:48 AM         35.77         18926129         49961         35.7           9/25/14 14:47         9/25/2014         2:47 PM         35.88         19039622         62213         35.7           9/29/14 9:44         9/29/2014         9:48	ļ							
9/10/14 9:10       9/10/2014       9:10 AM       36.36       18248250       51599       36.5         9/11/14 10:45       9/11/2014       10:45 AM       36.21       18304064       55814       36.4         9/15/14 10:19       9/15/2014       10:19 AM       36.08       18512492       208428       36.3         9/16/14 9:45       9/16/2014       9:45 AM       35.93       18563477       50985       36.3         9/17/14 11:40       9/17/2014       11:40 AM       36.06       18619926       56449       36.3         9/18/14 10:56       9/18/2014       10:56 AM       36.13       18670684       50758       36.4         9/22/14 10:27       9/22/2014       10:27 AM       35.90       18876168       205484       35.9         9/23/14 9:48       9/23/2014       9:48 AM       35.77       18926129       49961       35.7         9/24/14 9:45       9/24/2014       9:45 AM       35.79       18977409       51280       35.7         9/29/14 9:44       9/29/2014       9:44 AM       36.11       19235091       195469       35.8         9/30/14 9:42       9/30/2014       9:42 AM       37.31       19286181       51090       35.5         10/1/14 10:	l		<del> </del>	ļ				
9/11/14 10:45       9/11/2014       10:45 AM       36.21       18304064       55814       36.4         9/15/14 10:19       9/15/2014       10:19 AM       36.08       18512492       208428       36.3         9/16/14 9:45       9/16/2014       9:45 AM       35.93       18563477       50985       36.3         9/17/14 11:40       9/17/2014       11:40 AM       36.06       18619926       56449       36.3         9/18/14 10:56       9/18/2014       10:56 AM       36.13       18670684       50758       36.4         9/22/14 10:27       9/22/2014       10:27 AM       35.90       18876168       205484       35.9         9/23/14 9:48       9/23/2014       9:48 AM       35.77       18926129       49961       35.7         9/24/14 9:45       9/24/2014       9:45 AM       35.79       18977409       51280       35.7         9/25/14 14:47       9/25/2014       2:47 PM       35.88       19039622       62213       35.7         9/29/14 9:49       9/29/2014       9:44 AM       36.11       19235091       195469       35.8         9/30/14 9:42       9/30/2014       9:42 AM       37.31       19286181       51090       35.5         10/1/14 10								
9/15/14 10:19       9/15/2014       10:19 AM       36.08       18512492       208428       36.3         9/16/14 9:45       9/16/2014       9:45 AM       35.93       18563477       50985       36.3         9/17/14 11:40       9/17/2014       11:40 AM       36.06       18619926       56449       36.3         9/18/14 10:56       9/18/2014       10:56 AM       36.13       18670684       50758       36.4         9/22/14 10:27       9/22/2014       10:27 AM       35.90       18876168       205484       35.9         9/23/14 9:48       9/23/2014       9:48 AM       35.77       18926129       49961       35.7         9/24/14 9:45       9/24/2014       9:45 AM       35.79       18977409       51280       35.7         9/25/14 14:47       9/25/2014       2:47 PM       35.88       19039622       62213       35.7         9/29/14 9:44       9/29/2014       9:44 AM       36.11       19235091       195469       35.8         9/30/14 9:42       9/30/2014       9:42 AM       37.31       19286181       51090       35.5         10/1/14 10:36       10/1/2014       10:36 AM       37.43       19339914       53733       36.0         10/2/14 15	·		<del> </del>					
9/16/14 9:45       9/16/2014       9:45 AM       35.93       18563477       50985       36.3         9/17/14 11:40       9/17/2014       11:40 AM       36.06       18619926       56449       36.3         9/18/14 10:56       9/18/2014       10:56 AM       36.13       18670684       50758       36.4         9/22/14 10:27       9/22/2014       10:27 AM       35.90       18876168       205484       35.9         9/23/14 9:48       9/23/2014       9:48 AM       35.77       18926129       49961       35.7         9/24/14 9:45       9/24/2014       9:45 AM       35.79       18977409       51280       35.7         9/25/14 14:47       9/25/2014       2:47 PM       35.88       19039622       62213       35.7         9/29/14 9:44       9/29/2014       9:44 AM       36.11       19235091       195469       35.8         9/30/14 9:42       9/30/2014       9:42 AM       37.31       19286181       51090       35.5         10/1/14 10:36       10/1/2014       10:36 AM       37.43       19339914       53733       36.0         10/2/14 15:32       10/2/2014       3:32 PM       35.08       19402131       62217       35.8								
9/17/14 11:40       9/17/2014       11:40 AM       36.06       18619926       56449       36.3         9/18/14 10:56       9/18/2014       10:56 AM       36.13       18670684       50758       36.4         9/22/14 10:27       9/22/2014       10:27 AM       35.90       18876168       205484       35.9         9/23/14 9:48       9/23/2014       9:48 AM       35.77       18926129       49961       35.7         9/24/14 9:45       9/24/2014       9:45 AM       35.79       18977409       51280       35.7         9/25/14 14:47       9/25/2014       2:47 PM       35.88       19039622       62213       35.7         9/29/14 9:44       9/29/2014       9:44 AM       36.11       19235091       195469       35.8         9/30/14 9:42       9/30/2014       9:42 AM       37.31       19286181       51090       35.5         10/1/14 10:36       10/1/2014       10:36 AM       37.43       19339914       53733       36.0         10/2/14 15:32       10/2/2014       3:32 PM       35.08       19402131       62217       35.8			<del> </del>					
9/18/14 10:56       9/18/2014       10:56 AM       36.13       18670684       50758       36.4         9/22/14 10:27       9/22/2014       10:27 AM       35.90       18876168       205484       35.9         9/23/14 9:48       9/23/2014       9:48 AM       35.77       18926129       49961       35.7         9/24/14 9:45       9/24/2014       9:45 AM       35.79       18977409       51280       35.7         9/25/14 14:47       9/25/2014       2:47 PM       35.88       19039622       62213       35.7         9/29/14 9:44       9/29/2014       9:44 AM       36.11       19235091       195469       35.8         9/30/14 9:42       9/30/2014       9:42 AM       37.31       19286181       51090       35.5         10/1/14 10:36       10/1/2014       10:36 AM       37.43       19339914       53733       36.0         10/2/14 15:32       10/2/2014       3:32 PM       35.08       19402131       62217       35.8			<del> </del>					
9/22/14 10:27     9/22/2014     10:27 AM     35.90     18876168     205484     35.9       9/23/14 9:48     9/23/2014     9:48 AM     35.77     18926129     49961     35.7       9/24/14 9:45     9/24/2014     9:45 AM     35.79     18977409     51280     35.7       9/25/14 14:47     9/25/2014     2:47 PM     35.88     19039622     62213     35.7       9/29/14 9:44     9/29/2014     9:44 AM     36.11     19235091     195469     35.8       9/30/14 9:42     9/30/2014     9:42 AM     37.31     19286181     51090     35.5       10/1/14 10:36     10/1/2014     10:36 AM     37.43     19339914     53733     36.0       10/2/14 15:32     10/2/2014     3:32 PM     35.08     19402131     62217     35.8			<del> </del>					
9/23/14 9:48     9/23/2014     9:48 AM     35.77     18926129     49961     35.7       9/24/14 9:45     9/24/2014     9:45 AM     35.79     18977409     51280     35.7       9/25/14 14:47     9/25/2014     2:47 PM     35.88     19039622     62213     35.7       9/29/14 9:44     9/29/2014     9:44 AM     36.11     19235091     195469     35.8       9/30/14 9:42     9/30/2014     9:42 AM     37.31     19286181     51090     35.5       10/1/14 10:36     10/1/2014     10:36 AM     37.43     19339914     53733     36.0       10/2/14 15:32     10/2/2014     3:32 PM     35.08     19402131     62217     35.8			<del> </del>					
9/24/14 9:45     9/24/2014     9:45 AM     35.79     18977409     51280     35.7       9/25/14 14:47     9/25/2014     2:47 PM     35.88     19039622     62213     35.7       9/29/14 9:44     9/29/2014     9:44 AM     36.11     19235091     195469     35.8       9/30/14 9:42     9/30/2014     9:42 AM     37.31     19286181     51090     35.5       10/1/14 10:36     10/1/2014     10:36 AM     37.43     19339914     53733     36.0       10/2/14 15:32     10/2/2014     3:32 PM     35.08     19402131     62217     35.8	ļ		<del> </del>					
9/25/14 14:47     9/25/2014     2:47 PM     35.88     19039622     62213     35.7       9/29/14 9:44     9/29/2014     9:44 AM     36.11     19235091     195469     35.8       9/30/14 9:42     9/30/2014     9:42 AM     37.31     19286181     51090     35.5       10/1/14 10:36     10/1/2014     10:36 AM     37.43     19339914     53733     36.0       10/2/14 15:32     10/2/2014     3:32 PM     35.08     19402131     62217     35.8			<del> </del>	<u> </u>				
9/29/14 9:44     9/29/2014     9:44 AM     36.11     19235091     195469     35.8       9/30/14 9:42     9/30/2014     9:42 AM     37.31     19286181     51090     35.5       10/1/14 10:36     10/1/2014     10:36 AM     37.43     19339914     53733     36.0       10/2/14 15:32     10/2/2014     3:32 PM     35.08     19402131     62217     35.8								
9/30/14 9:42     9/30/2014     9:42 AM     37.31     19286181     51090     35.5       10/1/14 10:36     10/1/2014     10:36 AM     37.43     19339914     53733     36.0       10/2/14 15:32     10/2/2014     3:32 PM     35.08     19402131     62217     35.8	ļ		<del> </del>					
10/1/14 10:36     10/1/2014     10:36 AM     37.43     19339914     53733     36.0       10/2/14 15:32     10/2/2014     3:32 PM     35.08     19402131     62217     35.8	ļ		<del> </del>					
10/2/14 15:32 10/2/2014 3:32 PM 35.08 19402131 62217 35.8								
			<del> </del>					
10/6/14 9:49	10/6/14 9:49	10/6/2014	9:49 AM	35.68	19595340	193209	35.7	
10/7/14 10:27	10/7/14 10:27	10/7/2014	10:27 AM	35.67	19648015	52675	35.6	



Date and Time	Flow Meas. Date	Flow Meas. Time	Instantaneous Flow Reading (gpm)	Totalizer Reading (gal)	Flow since last reading (gal)	Calculated Flow Rate (gpm)	Notes
10/8/14 11:38	10/8/2014	11:38 AM	35.61	19701790	53775	35.6	
10/9/14 10:41	10/9/2014	10:41 AM	35.48	19750717	48927	35.4	
10/13/14 9:50	10/13/2014	9:50 AM	35.40	19953165	202448	35.5	
10/14/14 14:51	10/14/2014	2:51 PM	35.61	20014687	61522	35.3	
10/15/14 9:54	10/15/2014	9:54 AM	35.24	20055140	40453	35.4	
10/16/14 15:04	10/16/2014	3:04 PM	35.40	20116684	61544	35.2	
10/20/14 11:13	10/20/2014	11:13 AM	35.53	20311858	195174	35.3	
10/21/14 10:40	10/21/2014	10:40 AM	35.35	20361490	49632	35.3	
10/22/14 10:01	10/22/2014	10:01 AM	35.31	20410995	49505	35.3	
10/23/14 10:51	10/23/2014	10:51 AM	35.41	20463689	52694	35.4	
10/27/14 10:21	10/27/2014	10:21 AM	35.41	20666408	202719	35.4	
10/28/14 8:57	10/28/2014	8:57 AM	35.40	20714396	47988	35.4	
10/29/14 11:14	10/29/2014	11:14 AM	36.75	20770182	55786	35.4	
10/30/14 11:00	10/30/2014	11:00 AM	36.76	20820861	50679	35.5	
11/3/14 11:27	11/3/2014	11:27 AM	34.77	21026079	205218	35.5	
11/4/14 10:55	11/4/2014	10:55 AM	36.69	21075586	49507	35.2	
11/5/14 9:34	11/5/2014	9:34 AM	36.71	21125454	49868	36.7	
11/6/14 11:42	11/6/2014	11:42 AM	36.73	21180745	55291	35.3	
11/10/14 11:22	11/10/2014	11:22 AM	34.69	21381634	200889	35.0	
11/11/14 10:05	11/11/2014	10:05 AM	36.55	21429468 21478765	47834	35.1 35.0	
11/12/14 9:32 11/18/14 10:40	11/12/2014 11/18/2014	9:32 AM 10:40 AM	34.68 37.11	21773543	49297 294778	33.9	
11/19/14 10:28	11/19/2014	10:40 AM	36.98	21773343	50489	35.9	
11/20/14 10:38	11/20/2014	10:38 AM	34.29	21875802	51770	35.7	
11/24/14 9:47	11/24/2014	9:47 AM	34.10	22078430	202628	35.5	
11/24/14 9:47	11/24/2014	9:47 AW 11:10 AM	34.10	22132781	54351	35.5	
11/26/14 9:47	11/26/2014	9:47 AM	34.46	22181431	48650	35.7	
11/28/14 10:51	11/28/2014	10:51 AM	38.01	22287367	105936	36.0	
12/1/14 10:20	12/1/2014	10:20 AM	37.85	22441361	153994	35.9	
12/2/14 10:55	12/2/2014	10:55 AM	34.29	22494226	52865	35.8	
12/3/14 14:42	12/3/2014	2:42 PM	34.49	22553451	59225	35.5	
12/4/14 15:19	12/4/2014	3:19 PM	34.40	22606008	52557	35.6	
12/8/14 14:27	12/8/2014	2:27 PM	37.20	22808869	202861	35.5	
12/9/14 10:08	12/9/2014	10:08 AM	34.50	22851275	42406	35.9	
12/11/14 9:18	12/11/2014	9:18 AM	34.38	22952204	100929	35.7	
12/12/14 10:16	12/12/2014	10:16 AM	34.69	23005957	53753	35.9	
12/15/14 10:30	12/15/2014	10:30 AM	34.48	23160175	154218	35.6	
12/16/14 12:52	12/16/2014	12:52 PM	35.20	23213345	53170	33.6	
12/17/14 9:13	12/17/2014	9:13 AM	34.78	23256480	43135	35.3	
12/18/14 14:33	12/18/2014	2:33 PM	34.17	23318933	62453	35.5	
12/22/14 11:30	12/22/2014	11:30 AM	34.15	23515187	196254	35.2	
12/23/14 10:41	12/23/2014	10:41 AM	36.63	23563658	48471	34.8	
12/24/14 14:45	12/24/2014	2:45 PM	34.55	23622854	59196	35.2	
12/29/14 11:27	12/29/2014	11:27 AM	34.04	23868972	246118	35.1	
12/30/14 10:43	12/30/2014	10:43 AM	34.46	23917705	48733	34.9	
12/31/14 9:39	12/31/2014	9:39 AM	37.45	23966364	48659	35.4	
1/5/15 10:50	1/5/2015	10:50 AM	37.24	24226491	260127	35.8	
1/6/15 10:49	1/6/2015	10:49 AM	37.37	24278038	51547	35.8	
1/7/15 10:36	1/7/2015	10:36 AM	34.88	24328743	50705	35.5	
1/8/15 11:33	1/8/2015	11:33 AM	34.74	24381581	52838	35.3	
1/12/15 9:30	1/12/2015	9:30 AM	34.66	24580270	198689	35.2	
1/16/15 15:30	1/16/2015	3:30 PM	34.56	24794901	214631	35.1	
1/19/15 10:50	1/19/2015	10:50 AM	34.68	24936811	141910	35.1	
1/20/15 10:28 1/21/15 10:25	1/20/2015 1/21/2015	10:28 AM 10:25 AM	34.57	24986513 25036398	49702 49885	35.1 34.7	
1/22/15 9:45	1/21/2015	9:45 AM	34.85 34.70	25085635	49883	35.2	
1/26/15 10:54	1/26/2015	10:54 AM	34.75	25288090	202455	34.7	
1/27/15 10:34	1/27/2015	10:34 AM	34.06	25337879	49789	35.1	
1/28/15 9:26	1/28/2015	9:26 AM	34.06	25385425	47546	34.6	
1/29/15 10:57	1/29/2015	10:57 AM	33.60	25439086	53661	35.0	
2/2/15 11:25	2/2/2015	11:25 AM	33.99	25640374	201288	34.8	
2/3/15 11:29	2/3/2015	11:29 AM	33.81	25690064	49690	34.4	
2/4/15 11:31	2/4/2015	11:31 AM	36.41	25740262	50198	34.8	
2/5/15 11:46	2/5/2015	11:46 AM	34.02	25790509	50247	34.5	
2/9/15 11:27	2/9/2015	11:27 AM	36.11	25987967	197458	34.4	
2/10/15 10:55	2/10/2015	10:55 AM	33.95	26036533	48566	34.5	
2/11/15 9:38	2/11/2015	9:38 AM	33.49	26083313	46780	34.3	
2/12/15 10:57	2/12/2015	10:57 AM	33.97	26135438	52125	34.3	
2/17/15 10:13	2/17/2015	10:13 AM	34.14	26381175	245737	34.3	
2/18/15 10:00	2/18/2015	10:00 AM	34.19	26430248	49073	34.4	
2/19/15 10:45	2/19/2015	10:45 AM	34.11	26480822	50574	34.1	
2/23/15 10:42	2/23/2015	10:42 AM	34.15	26677671	196849	34.2	
2/24/15 10:43	2/24/2015	10:43 AM	34.22	26728054	50383	35.0	
2/26/15 10:51	2/26/2015	10:51 AM	34.12	26826573	98519	34.1	
3/2/15 11:36	3/2/2015	11:36 AM	34.64	27026572	199999	34.5	
3/3/15 12:25	3/3/2015	12:25 PM	34.74	27078153	51581	34.6	
3/4/15 11:02	3/4/2015	11:02 AM	35.03	27125544	47391	34.9	
3/9/15 9:49	3/9/2015	9:49 AM	37.58	27377276	251732	35.3	
3/10/15 11:28	3/10/2015	11:28 AM	35.11	27425105	47829	31.1	
3/11/15 14:59	3/11/2015	2:59 PM	34.93	27483467	58362	35.3	
3/12/15 11:38	3/12/2015	11:38 AM	37.27	27528030	44563	36.0	
3/16/15 11:18	3/16/2015	11:18 AM	37.61	27732039	204009	35.5	
3/17/15 9:53	3/17/2015	9:53 AM	35.16	27781057	49018	36.2	
3/18/15 15:38	3/18/2015	3:38 PM	37.64	27844690	63633	35.6	
3/19/15 11:49	3/19/2015	11:49 AM	37.50	27888384	43694	36.1	
		,	1	28093130	204746	35.9	
3/23/15 10:53	3/23/2015	10:53 AM	35.40	20000100			
3/23/15 10:53 3/24/15 10:02	3/23/2015 3/24/2015	10:53 AM 10:02 AM	35.40 35.45	28143122	49992	36.0	
		<del> </del>				36.0 36.3	
3/24/15 10:02	3/24/2015	10:02 AM	35.45	28143122	49992		
3/24/15 10:02 3/25/15 13:37	3/24/2015 3/25/2015	10:02 AM 1:37 PM	35.45 34.85	28143122 28203235	49992 60113	36.3	



Date and Time	Flow Meas. Date	Flow Meas. Time	Instantaneous Flow Reading (gpm)	Totalizer Reading (gal)	Flow since last reading (gal)	Calculated Flow Rate (gpm)	Notes
4/1/15 10:18	4/1/2015	10:18 AM	35.26	28559836	50101	36.3	
4/2/15 11:54	4/2/2015	11:54 AM	37.91	28615463	55627	36.2	
4/6/15 15:13	4/6/2015	3:13 PM	35.31	28830722	215259	36.1	
4/7/15 15:06	4/7/2015	3:06 PM	35.49	28882358	51636	36.0	
4/8/15 15:26	4/8/2015	3:26 PM	38.21	28935631	53273	36.5	
4/9/15 11:50	4/9/2015	11:50 AM	35.32	28979979	44348	36.2	
4/13/15 10:14	4/13/2015	10:14 AM	35.60	29185112	205133	36.2	
4/14/15 11:06	4/14/2015	11:06 AM	35.71	29239191	54079	36.2	
4/15/15 10:08	4/15/2015	10:08 AM	37.73	29289838	50647	36.6	
4/16/15 9:45	4/16/2015	9:45 AM	35.75	29341821	51983	36.7	
4/20/15 12:04	4/20/2015	12:04 PM	36.36	29556435	214614	36.4	
4/21/15 10:28	4/21/2015	10:28 AM	36.33	29605887	49452	36.8	
4/22/15 10:34	4/22/2015	10:34 AM	35.80	29658392	52505	36.3	
4/23/15 10:33	4/23/2015	10:33 AM	36.45	29711430	53038	36.9	
4/27/15 10:32	4/27/2015	10:32 AM	38.61	29923990	212560	36.9	
4/28/15 9:15	4/28/2015	9:15 AM	38.68	29974789	50799	37.3	
4/29/15 11:31	4/29/2015	11:31 AM	36.04	30032589	57800	36.7	
4/30/15 11:38	4/30/2015	11:38 AM	36.10	30085511	52922	36.6	
5/4/15 10:02	5/4/2015	10:02 AM	35.88	30293164	207653	36.7	
5/5/15 10:23	5/5/2015	10:23 AM	38.32	30346257	53093	36.3	
5/6/15 10:09	5/6/2015	10:09 AM	38.46	30398147	51890	36.4	
5/7/15 10:03	5/7/2015	10:03 AM	36.03	30450695	52548	36.6	
5/9/15 12:46	5/9/2015	12:46 PM	36.00	30563401	112706	37.0	
5/11/15 11:39	5/11/2015	11:39 AM	38.45	30670645	107244	38.1	
5/12/15 9:40 5/13/15 15:21	5/12/2015	9:40 AM	36.19 36.26	30719137 30784588	48492 65451	36.7 36.7	
5/13/15 15:21 5/14/15 10:34	5/13/2015 5/14/2015	3:21 PM	36.26 36.42	30784588	65451 42737	36.7 37.1	
5/14/15 10:34 5/18/15 10:41	5/14/2015	10:34 AM 10:41 AM	36.42 38.35	30827325 31037937	42737 210612	37.1 36.5	
5/18/15 10:41	5/18/2015	9:35 AM	38.35 38.95	3103/93/	50635	36.5 36.9	
5/20/15 10:51	5/20/2015	10:51 AM	35.68	31136908	48336	31.9	
5/21/15 11:55	5/21/2015	11:55 AM	38.89	31192450	55542	36.9	
5/26/15 10:19	5/26/2015	10:19 AM	38.81	31454231	261781	36.8	
5/27/15 12:58	5/27/2015	12:58 PM	36.03	31513420	59189	37.0	
5/28/15 10:00	5/28/2015	10:00 AM	36.07	31559744	46324	36.7	
6/2/15 13:38	6/2/2015	1:38 PM	38.54	31831649	271905	36.7	
6/8/15 10:03	6/8/2015	10:03 AM	36.83	32142004	310355	36.8	
6/9/15 9:28	6/9/2015	9:28 AM	36.45	32193707	51703	36.8	
6/10/15 9:00	6/10/2015	9:00 AM	37.13	32245837	52130	36.9	
6/11/15 10:58	6/11/2015	10:58 AM	36.45	32302942	57105	36.7	
6/15/15 13:38	6/15/2015	1:38 PM	36.90	32521237	218295	36.9	
6/16/15 12:16	6/16/2015	12:16 PM	36.92	32571201	49964	36.8	
6/17/15 9:56	6/17/2015	9:56 AM	36.87	32619090	47889	36.8	
6/18/15 10:30	6/18/2015	10:30 AM	36.66	32673981	54891	37.2	
6/22/15 10:45	6/22/2015	10:45 AM	36.64	32887066	213085	36.9	
6/23/15 9:48 6/24/15 10:29	6/23/2015 6/24/2015	9:48 AM 10:29 AM	39.07 37.41	32938272 32994129	51206 55857	37.0 37.7	
6/25/15 10:18	6/25/2015	10:29 AM	37.41	33047865	53736	37.7	
6/29/15 9:58	6/29/2015	9:58 AM	37.41	33261684	213819	37.3	
6/30/15 10:01	6/30/2015	10:01 AM	37.22	33315719	54035	37.4	
7/1/15 10:01	7/1/2015	10:01 AM	37.02	33369507	53788	37.4	
7/2/15 8:30	7/2/2015	8:30 AM	37.36	33419969	50462	37.4	Off while jetting tank discharge line
7/6/15 10:24	7/6/2015	10:24 AM	36.20	33621713	201744	34.3	
7/7/15 15:13	7/7/2015	3:13 PM	38.71	33685486	63773	36.9	
7/8/15 9:54	7/8/2015	9:54 AM	36.52	33727175	41689	37.2	
7/9/15 10:22	7/9/2015	10:22 AM	36.71	33781662	54487	37.1	
7/13/15 9:40	7/13/2015	9:40 AM	37.00	33992564	210902	36.9	
7/14/15 9:48 7/15/15 10:36	7/14/2015 7/15/2015	9:48 AM 10:36 AM	37.21 38.72	34046629 34103745	54065 57116	37.3 38.4	
7/16/15 10:30	7/16/2015	11:07 AM	38.87	34160747	57002	38.8	
7/10/13 11:07	7/10/2015	9:46 AM	39.01	34369491	208744	36.8	
7/21/15 9:44	7/21/2015	9:44 AM	38.77	34422329	52838	36.7	
7/23/15 9:57	7/23/2015	9:57 AM	35.18	34528292	105963	36.6	
7/27/15 15:26	7/27/2015	3:26 PM	38.87	34753001	224709	36.9	
7/28/15 10:21	7/28/2015	10:21 AM	38.87	34796211	43210	38.1	
7/29/15 9:45	7/29/2015	9:45 AM	38.90	34848928	52717	37.5	
7/30/15 9:45	7/30/2015	9:45 AM	38.90	34902790	53862	37.4	
8/3/15 10:10	8/3/2015	10:10 AM	35.83	35116180	213390	36.9	
8/4/15 9:45	8/4/2015	9:45 AM	35.78	35168126	51946	36.7	
8/5/15 15:22	8/5/2015	3:22 PM	35.91	35233086	64960	36.6	
8/6/15 10:45	8/6/2015	10:45 AM	36.15	35275986	42900	36.9	
8/10/15 13:03	8/10/2015	1:03 PM	38.31	35491938	215952	36.6	
8/11/15 9:13	8/11/2015	9:13 AM	36.11	35535906	43968	36.3	
8/12/15 10:00	8/12/2015	10:00 AM	35.87	35589593	53687	36.1	
8/13/15 10:18 8/17/15 0:27	8/13/2015	10:18 AM	36.11	35643210	53617	36.8	
8/17/15 9:27 8/18/15 10:17	8/17/2015 8/18/2015	9:27 AM 10:17 AM	36.65 36.39	35851098 35905369	207888 54271	36.4 36.4	
8/19/15 10:17	8/19/2015	10:17 AM 10:26 AM	36.39	35959089	53720	37.1	
8/20/15 9:37	8/20/2015	9:37 AM	36.65	36010139	51050	36.7	
8/25/15 8:38	8/25/2015	8:38 AM	36.98	36275819	265680	37.2	PW-1 pump replaced
8/27/15 8:22	8/27/2015	8:22 AM	42.55	36324750	48931	17.1	· · ·
0/2//10 0.22		9:11 AM	43.39	36375183	50433	33.9	
8/28/15 9:11	8/28/2015			36543455	168272	37.5	
	8/28/2015 8/31/2015	11:53 AM	37.33				
8/28/15 9:11	<u> </u>	11:53 AM 10:33 AM	37.33 36.86	36593838	50383	37.0	
8/28/15 9:11 8/31/15 11:53	8/31/2015	<b></b>			50383 52306	37.0 37.0	
8/28/15 9:11 8/31/15 11:53 9/1/15 10:33	8/31/2015 9/1/2015	10:33 AM	36.86	36593838	52306 53726	<b> </b>	
8/28/15 9:11 8/31/15 11:53 9/1/15 10:33 9/2/15 10:06 9/3/15 10:21 9/8/15 10:13	8/31/2015 9/1/2015 9/2/2015 9/3/2015 9/8/2015	10:33 AM 10:06 AM 10:21 AM 10:13 AM	36.86 36.80 36.77 36.54	36593838 36646144 36699870 36964956	52306 53726 265086	37.0 36.9 36.9	
8/28/15 9:11 8/31/15 11:53 9/1/15 10:33 9/2/15 10:06 9/3/15 10:21 9/8/15 10:13 9/9/15 13:37	8/31/2015 9/1/2015 9/2/2015 9/3/2015 9/8/2015 9/9/2015	10:33 AM 10:06 AM 10:21 AM 10:13 AM 1:37 PM	36.86 36.80 36.77 36.54 36.62	36593838 36646144 36699870 36964956 37025455	52306 53726 265086 60499	37.0 36.9 36.9 36.8	
8/28/15 9:11 8/31/15 11:53 9/1/15 10:33 9/2/15 10:06 9/3/15 10:21 9/8/15 10:13 9/9/15 13:37 9/10/15 10:13	8/31/2015 9/1/2015 9/2/2015 9/3/2015 9/8/2015 9/9/2015 9/10/2015	10:33 AM 10:06 AM 10:21 AM 10:13 AM 1:37 PM 10:13 AM	36.86 36.80 36.77 36.54 36.62 36.49	36593838 36646144 36699870 36964956 37025455 37070909	52306 53726 265086 60499 45454	37.0 36.9 36.9 36.8 36.8	
8/28/15 9:11 8/31/15 11:53 9/1/15 10:33 9/2/15 10:06 9/3/15 10:21 9/8/15 10:13 9/9/15 13:37 9/10/15 10:13 9/14/15 10:07	8/31/2015 9/1/2015 9/2/2015 9/3/2015 9/8/2015 9/9/2015 9/10/2015 9/14/2015	10:33 AM 10:06 AM 10:21 AM 10:13 AM 1:37 PM 10:13 AM 10:07 AM	36.86 36.80 36.77 36.54 36.62 36.49 36.73	36593838 36646144 36699870 36964956 37025455 37070909 37283058	52306 53726 265086 60499 45454 212149	37.0 36.9 36.9 36.8 36.8 36.8	
8/28/15 9:11 8/31/15 11:53 9/1/15 10:33 9/2/15 10:06 9/3/15 10:21 9/8/15 10:13 9/9/15 13:37 9/10/15 10:13	8/31/2015 9/1/2015 9/2/2015 9/3/2015 9/8/2015 9/9/2015 9/10/2015	10:33 AM 10:06 AM 10:21 AM 10:13 AM 1:37 PM 10:13 AM	36.86 36.80 36.77 36.54 36.62 36.49	36593838 36646144 36699870 36964956 37025455 37070909	52306 53726 265086 60499 45454	37.0 36.9 36.9 36.8 36.8	



Date and Time	Flow Meas. Date	Flow Meas. Time	Instantaneous Flow Reading (gpm)	Totalizer Reading (gal)	Flow since	Calculated Flow Rate	Notes
9/21/15 11:01	9/21/2015	11:01 AM	36.50	37652438	(gal) 214105	( <b>gpm</b> ) 36.8	
9/22/15 11:42	9/22/2015	11:42 AM	35.79	37702424	49986	33.8	
9/23/15 8:55	9/23/2015	8:55 AM	35.29	37748350	45926	36.1	
9/24/15 8:55 9/28/15 12:47	9/24/2015 9/28/2015	8:55 AM 12:47 PM	37.74 37.70	37799696 38013099	51346 213403	35.7 35.6	
9/29/15 10:53	9/29/2015	10:53 AM	34.73	38059833	46734	35.2	
9/30/15 9:08	9/30/2015	9:08 AM	34.86	38107233	47400	35.5	
10/1/15 9:53	10/1/2015	9:53 AM	37.76	38159277	52044	35.0	
10/5/15 9:47 10/6/15 12:29	10/5/2015 10/6/2015	9:47 AM 12:29 PM	37.32 37.34	38366920 38422907	207643 55987	36.1 34.9	
10/7/15 10:34	10/6/2015	10:34 AM	34.06	38469018	46111	34.8	
10/8/15 11:20	10/8/2015	11:20 AM	34.00	38520708	51690	34.8	
10/12/15 10:01	10/12/2015	10:01 AM	33.70	38718885	198177	34.9	
10/13/15 9:48	10/13/2015	9:48 AM	33.81	38768698	49813	34.9	
10/14/15 13:39	10/14/2015 10/15/2015	1:39 PM 11:01 AM	36.83 36.25	38827200 38871338	58502 44138	35.0 34.4	
10/19/15 10:47	10/19/2015	10:47 AM	36.90	39071131	199793	34.8	
10/20/15 14:08	10/20/2015	2:08 PM	36.89	39128777	57646	35.1	
10/21/15 9:24	10/21/2015	9:24 AM	33.74	39168213	39436	34.1	
10/22/15 10:21 10/26/15 13:25	10/22/2015 10/26/2015	10:21 AM 1:25 PM	37.88 37.64	39215662 39426981	47449 211319	31.7 35.6	
10/27/15 12:02	10/27/2015	12:02 PM	33.77	39474720	47739	35.2	
10/28/15 10:15	10/28/2015	10:15 AM	37.54	39521420	46700	35.0	
10/29/15 10:10	10/29/2015	10:10 AM	33.62	39572531	51111	35.6	
11/2/15 9:40 11/3/15 9:15	11/2/2015 11/3/2015	9:40 AM 9:15 AM	37.15 33.40	39774479 39823982	201948 49503	35.2 35.0	
11/4/15 9:13	11/4/2015	9:15 AW 9:33 AM	33.40	39823982	49949	34.3	
11/5/15 12:54	11/5/2015	12:54 PM	33.32	39931665	57734	35.2	
11/9/15 10:07	11/9/2015	10:07 AM	33.50	40125771	194106	34.7	
11/10/15 9:52 11/11/15 9:52	11/10/2015 11/11/2015	9:52 AM 9:52 AM	37.15 33.26	40176222 40225767	50451 49545	35.4 34.4	
11/11/15 9:52	11/11/2015	9:52 AM 10:25 AM	33.26 37.12	40225767 40276947	49545 51180	34.4 34.7	
11/16/15 10:37	11/16/2015	10:37 AM	33.12	40476953	200006	34.7	
11/17/15 12:14	11/17/2015	12:14 PM	37.61	40531350	54397	35.4	
11/18/15 9:58	11/18/2015	9:58 AM	33.78	40577470	46120	35.4	
11/19/15 9:26 11/22/15 12:08	11/19/2015 11/22/2015	9:26 AM 12:08 PM	33.91 37.59	40626602 40785070	49132 158468	34.9 35.4	
11/30/15 10:44	11/30/2015	10:44 AM	37.52	41187433	402363	35.2	
12/1/15 9:20	12/1/2015	9:20 AM	33.67	41234902	47469	35.0	
12/2/15 9:32	12/2/2015	9:32 AM	37.48	41286194	51292	35.3	
12/3/15 11:18 12/7/15 13:43	12/3/2015 12/7/2015	11:18 AM 1:43 PM	33.51 37.66	41339815 41547951	53621 208136	34.7 35.2	
12/8/15 9:42	12/8/2015	9:42 AM	37.54	41590001	42050	35.1	
12/9/15 9:36	12/9/2015	9:36 AM	33.60	41640072	50071	34.9	
12/10/15 14:54	12/10/2015	2:54 PM	37.55	41702410	62338	35.5	
12/14/15 12:50 12/15/15 15:40	12/14/2015 12/15/2015	12:50 PM 3:40 PM	33.90 37.13	41901459 41957629	199049 56170	35.3 34.9	
12/16/15 9:55	12/16/2015	9:55 AM	37.13	41996513	38884	35.5	
12/17/15 11:07	12/17/2015	11:07 AM	33.94	42050670	54157	35.8	
12/21/15 11:33	12/21/2015	11:33 AM	33.54	42254108	203438	35.2	
12/23/15 9:21 12/28/15 15:15	12/23/2015 12/28/2015	9:21 AM 3:15 PM	37.37 37.16	42350091 42613652	95983 263561	34.9 34.9	
12/29/15 11:27	12/29/2015	11:27 AM	37.16	42615632	42333	34.9	
12/30/15 14:20	12/30/2015	2:20 PM	33.66	42712447	56462	35.0	
1/4/16 10:47	1/4/2016	10:47 AM	33.77	42957837	245390	35.1	
1/5/16 10:37	1/5/2016	10:37 AM	33.80	43007908	50071	35.0	
1/6/16 15:53 1/7/16 10:15	1/6/2016 1/7/2016	3:53 PM 10:15 AM	37.32 33.90	43069007 43107537	61099 38530	34.8 35.0	
1/11/16 10:15	1/11/2016	10:15 AM	33.91	43309310	201773	35.0	
1/12/16 10:22	1/12/2016	10:22 AM	37.41	43359933	50623	35.0	
1/13/16 10:29	1/13/2016	10:29 AM	33.51	43410841	50908	35.2	
1/14/16 9:19 1/21/16 10:38	1/14/2016 1/21/2016	9:19 AM 10:38 AM	33.80 38.11	43458830 43816402	47989 357572	35.0 35.2	
1/25/16 14:55	1/25/2016	2:55 PM	37.85	44031899	215497	35.8	
1/27/16 10:26	1/27/2016	10:26 AM	33.84	44124910	93011	35.6	
1/28/16 13:45	1/28/2016	1:45 PM	37.66	44183560	58650	35.8	
2/1/16 14:00 2/4/16 9:49	2/1/2016 2/4/2016	2:00 PM 9:49 AM	33.67 33.70	44388058 44530830	204498 142772	35.4 35.1	
2/8/16 14:36	2/8/2016	2:36 PM	37.83	44744831	214001	35.4	
2/9/16 10:04	2/9/2016	10:04 AM	33.71	44786232	41401	35.4	
2/11/16 11:30	2/11/2016	11:30 AM	38.22	44892085	105853	35.7	
2/15/16 9:46 2/18/16 9:45	2/15/2016 2/18/2016	9:46 AM 9:45 AM	37.78 37.62	45092743 45245890	200658 153147	35.5 35.5	
2/18/16 9:45	2/22/2016	9:45 AM 9:47 AM	33.01	45245890	204580	35.5	
2/25/16 9:26	2/25/2016	9:26 AM	33.17	45603124	152654	35.5	
2/29/16 10:43	2/29/2016	10:43 AM	37.69	45809108	205984	35.3	
3/1/16 9:12	3/1/2016	9:12 AM	33.17	45855901 45959344	46793	34.7 35.0	
3/3/16 10:29 3/7/16 9:20	3/3/2016 3/7/2016	10:29 AM 9:20 AM	37.80 37.44	45959344 46159475	103443 200131	35.0 35.2	
3/8/16 9:17	3/8/2016	9:17 AM	39.82	46211727	52252	36.4	
3/10/16 9:52	3/10/2016	9:52 AM	39.62	46321612	109885	37.7	
3/14/16 10:11	3/14/2016	10:11 AM	34.56	46535844	214232	37.1	
3/17/16 15:06 3/21/16 9:14	3/17/2016 3/21/2016	3:06 PM 9:14 AM	34.81 38.72	46704215 46904909	168371 200694	36.5 37.1	
3/22/16 11:09	3/22/2016	11:09 AM	34.86	46904909	55619	35.8	
3/23/16 8:45	3/23/2016	8:45 AM	34.44	47006689	46161	35.6	On March 23, 2016; NCC cleaned the 2" piping and the check valve at the railroad
3/24/16 10:47	3/24/2016	10:47 AM	40.16	47060823	54134	34.7	bridge.
3/24/16 10:47	3/24/2016	2:13 PM	35.81	47060823 47282472	221649	34.7 37.2	
3/31/16 9:50	3/31/2016	9:50 AM	38.99	47430026	147554	36.4	
4/4/16 10:10	4/4/2016	10:10 AM	35.49	47640200	210174	36.4	
4/5/16 9:59	4/5/2016	9:59 AM	35.16	47691840	51640	36.1	
4/6/16 9:03	4/6/2016	9:03 AM	34.98	47741784	49944	36.1	



Page 7 of 14

Date and Time	Flow Meas. Date	Time	Instantaneous Flow Reading (gpm)	Reading (gal)	Flow since last reading (gal)	Calculated Flow Rate (gpm)	Notes
4/7/16 10:55	4/7/2016	10:55 AM	38.40	47798444	56660	36.5	
4/11/16 12:03 4/13/16 15:18	4/11/2016 4/13/2016	12:03 PM 3:18 PM	34.57 34.90	48008592 48118210	210148 109618	36.1 35.6	
4/14/16 10:19	4/14/2016	10:19 AM	34.74	48159183	40973	35.9	
4/18/16 10:03	4/18/2016	10:03 AM	37.57	48364840	205657	35.8	
4/19/16 9:46	4/19/2016	9:46 AM	37.99	48415869	51029	35.9	
4/20/16 9:58	4/20/2016	9:58 AM	37.92	48467428	51559	35.5	
4/21/16 11:41	4/21/2016	11:41 AM	37.90	48522407	54979	35.6	
4/25/16 9:56 4/28/16 10:50	4/25/2016	9:56 AM 10:50 AM	37.93	48723626 48879027	201219 155401	35.6 35.5	
5/2/16 10:30	4/28/2016 5/2/2016	10:30 AW	34.66 37.88	49082973	203946	35.6	
5/3/16 9:30	5/3/2016	9:30 AM	37.72	49132788	49815	35.6	
5/4/16 16:10	5/4/2016	4:10 PM	39.67	49187089	54301	29.5	
5/9/16 9:15	5/9/2016	9:15 AM	33.07	49439550	252461	37.2	
5/10/16 8:58	5/10/2016	8:58 AM	32.89	49491611	52061	36.6	On May 10, 2016; the 4" ductile iron line between the PW-1/LFExS connection at the tie-in at the NCC force main was flushed using NCC equipment and personne
5/11/16 9:20 5/12/16 9:19	5/11/2016 5/12/2016	9:20 AM 9:19 AM	40.65 34.22	49544064 49592527	52453 48463	35.9 33.7	To meet discharge permit flow limitations, the Trust decreased the discharge from well PW-1(U) slightly following clean out of the discharge line on March 23 and M 10, 2016.
5/16/16 10:40	5/16/2016	10:40 AM	33.83	49780776	188249	32.2	
5/19/16 10:58	5/19/2016	10:58 AM	29.50	49918344	137568	31.7	
5/23/16 11:18	5/23/2016	11:18 AM	33.50	50101800	183456	31.7	
5/26/16 10:22	5/26/2016	10:22 AM	33.08	50238299	136499	32.0	
5/31/16 9:40	5/31/2016	9:40 AM	33.08	50466047	227748	31.8	
6/1/16 9:46	6/1/2016	9:46 AM	33.13	50512070	46023	31.8	
6/2/16 11:08	6/2/2016	11:08 AM	29.06	50560328	48258	31.7	
6/6/16 9:20	6/6/2016	9:20 AM	29.07	50739549	179221	31.7	
6/7/16 9:44	6/7/2016	9:44 AM	33.06	50784475	44926	30.7	
6/8/16 9:54	6/8/2016	9:54 AM	32.78	50829416	44941 48473	31.0	
6/9/16 11:59 6/13/16 14:48	6/9/2016 6/13/2016	11:59 AM 2:48 PM	28.73 28.58	50877889 51059798	48473 181909	31.0	
6/13/16 14:48	6/13/2016 6/14/2016	10:00 AM	28.58	51059798	181909 35547	30.7	
6/16/16 10:38	6/16/2016	10:38 AM	29.10	51095345	89999	30.8	
6/20/16 9:04	6/20/2016	9:04 AM	29.20	51362004	176660	31.2	
6/23/16 9:26	6/23/2016	9:26 AM	33.17	51496513	134509	31.0	
6/27/16 10:14	6/27/2016	10:14 AM	32.57	51676457	179944	31.0	
6/30/16 12:07	6/30/2016	12:07 PM	28.76	51813586	137129	30.9	
7/5/16 11:49	7/5/2016	11:49 AM	33.45	52035254	221668	30.9	
7/6/16 9:15	7/6/2016	9:15 AM	33.13	52075081	39827	31.0	
7/7/16 9:58	7/7/2016	9:58 AM	32.96	52121310	46229	31.2	
7/8/16 8:58	7/8/2016	8:58 AM	32.90	52164002	42692	30.9	
7/11/16 8:41	7/11/2016	8:41 AM	29.09	52296857	132855	30.9	
7/12/16 8:44	7/12/2016	8:44 AM	28.87	52341246	44389	30.8	
7/13/16 9:17	7/13/2016	9:17 AM	28.92	52386408	45162	30.7	
7/14/16 9:01	7/14/2016	9:01 AM	28.87	52429928	43520	30.6	
7/18/16 11:21 7/19/16 9:07	7/18/2016 7/19/2016	11:21 AM 9:07 AM	28.79	52610724 52650703	180796 39979	30.6 30.6	
7/21/16 9:15	7/21/2016	9:15 AM	28.86	52738848	88145	30.5	
7/25/16 9:16	7/25/2016	9:16 AM	28.80	52915030	176182	30.6	
7/26/16 8:55	7/26/2016	8:55 AM	28.66	52958451	43421	30.6	
7/27/16 13:31	7/27/2016	1:31 PM	33.22	53012738	54287	31.6	
8/1/16 8:53	8/1/2016	8:53 AM	32.55	53236534	223796	32.3	
8/2/16 9:22	8/2/2016	9:22 AM	32.42	53286038	49504	33.7	
8/3/16 8:52	8/3/2016	8:52 AM	32.34	53334043	48005	34.0	
8/4/16 11:10	8/4/2016	11:10 AM	32.46	53387881	53838	34.1	
8/10/16 11:01	8/10/2016	11:01 AM	36.26	53681719	293838	34.0	
8/11/16 9:12	8/11/2016	9:12 AM	32.20	53726164	44445	33.4	
8/15/16 9:40	8/15/2016	9:40 AM	31.98	53921659	195495	33.8	
8/18/16 9:35	8/18/2016	9:35 AM	31.90	54065421 54364456	143762	33.3	
8/24/16 13:21 8/25/16 9:47	8/24/2016 8/25/2016	1:21 PM 9:47 AM	31.89 31.80	54364456 54406184	299035 41728	33.7 34.0	
8/25/16 9:47 8/29/16 14:32	8/25/2016 8/29/2016	9:47 AM 2:32 PM	31.80	54406184 54609506	41728 203322	34.0	
8/31/16 10:34	8/31/2016	10:34 AM	35.62	54697554	88048	33.3	
9/6/16 9:30	9/6/2016	9:30 AM	31.82	54987242	289688	33.8	
9/8/16 12:20	9/8/2016	12:20 PM	31.54	55089263	102021	33.4	
9/12/16 10:00	9/12/2016	10:00 AM	32.77	55270106	180843	32.2	
9/13/16 10:41	9/13/2016	10:41 AM	32.46	55321903	51797	35.0	
9/15/16 10:35	9/15/2016	10:35 AM	32.43	55422879	100976	35.1	
9/19/16 13:14	9/19/2016	1:14 PM	36.38	55627729	204850	34.6	
9/22/16 10:33	9/22/2016	10:33 AM	36.10	55768958	141229	34.0	
9/26/16 9:05	9/26/2016	9:05 AM	31.99	55967590	198632	35.0	
9/27/16 9:25	9/27/2016	9:25 AM	36.29	56004873	37283	25.5	
9/28/16 8:47	9/28/2016	8:47 AM	36.57	56055073	50200	35.8	
9/29/16 12:50	9/29/2016	12:50 PM	36.38	56115498	60425	35.9	
10/3/16 11:24 10/6/16 10:30	10/3/2016 10/6/2016	11:24 AM 10:30 AM	32.31 31.94	56313182 56460277	197684 147095	34.8 34.5	
10/6/16 10:30	10/6/2016	9:29 AM	31.77	56800299	340022	34.5	
10/13/16 9.29	10/13/2016	10:34 AM	34.86	56998158	197859	34.0	
10/18/16 8:58	10/18/2016	8:58 AM	35.27	57042272	44114	32.8	
10/19/16 8:25	10/19/2016	8:25 AM	35.24	57091907	49635	35.3	
10/20/16 11:04	10/20/2016	11:04 AM	36.35	57097033	5126	3.2	
10/24/16 9:28	10/24/2016	9:28 AM	32.81	57296764	199731	35.3	
10/26/16 9:51	10/26/2016	9:51 AM	36.43	57399078	102314	35.2	
10/27/16 10:54	10/27/2016	10:54 AM	36.33	57452635	53557	35.6	
10/31/16 10:49	10/31/2016	10:49 AM	35.67	57655232	202597	35.2	
11/1/16 13:06	11/1/2016	1:06 PM	32.88	57710440	55208	35.0	
11/2/16 9:05	11/2/2016	9:05 AM	32.82	57751415	40975	34.2	
11/3/16 10:22	11/3/2016	10:22 AM	32.83	57804244	52829	34.8	
11/0/10 10.22	11/7/2016	1:49 PM	35.05	58014023	209779	35.2	
11/7/16 13:49			<u> </u>				
	11/9/2016 11/9/2016 11/10/2016	11:00 AM 11:58 AM	36.11 35.36	58107147 58159330	93124 52183	34.4 34.8	





	Flow Meas.	Elow Moss	Instantaneous Flow	Totalizer	Flow since	Calculated	
Date and Time	Date	Flow Meas.	Reading (gpm)	Reading (gal)	last reading	Flow Rate	Notes
			<b>V</b> (V)		(gal)	(gpm)	
11/17/16 11:07	11/17/2016	11:07 AM	32.82	58506368	146611	34.2	
11/21/16 11:13	11/21/2016	11:13 AM	35.76	58704904	198536	34.4	
11/23/16 10:24	11/23/2016	10:24 AM	32.67	58801516	96612	34.1	
11/28/16 11:34	11/28/2016	11:34 AM	35.17	59051578	250062	34.4	
11/29/16 9:50	11/29/2016	9:50 AM	35.01	59097150	45572	34.1	
12/1/16 11:30	12/1/2016	11:30 AM	35.09	59198939	101789	34.2	
12/5/16 9:16	12/5/2016	9:16 AM	31.30	59391312	192373	34.2	
12/8/16 10:48	12/8/2016	10:48 AM	30.73	59541287	149975	34.0	
12/12/16 9:00	12/12/2016	9:00 AM	34.72	59733517	192230	34.0	
12/14/16 10:00	12/14/2016	10:00 AM	34.09	59832546	99029	33.7	
12/15/16 9:40	12/15/2016	9:40 AM	34.84	59879867	47321	33.3	
12/19/16 15:05	12/19/2016	3:05 PM	35.24	60084195	204328	33.6	
12/21/16 9:42	12/21/2016	9:42 AM	34.67	60168288	84093	32.9	
12/23/16 11:33	12/23/2016	11:33 AM	34.10	60267435	99147	33.1	
12/27/16 10:24	12/27/2016	10:24 AM	34.17	60455226	187791	33.0	
1/3/17 10:50	1/3/2017	10:50 AM	33.85	60787783	332557	32.9	
	1/5/2017	<del> </del>	33.15	<b> </b>	92367	32.9	
1/5/17 10:18		10:18 AM	<b></b>	60880150			
1/9/17 11:08	1/9/2017	11:08 AM	33.73	61069694	189544	32.6	
1/11/17 9:27	1/11/2017	9:27 AM	34.18	61160600	90906	32.7	
1/12/17 8:47	1/12/2017	8:47 AM	33.89	61206844	46244	33.0	
1/16/17 9:58	1/16/2017	9:58 AM	34.13	61395783	188939	32.4	
1/19/17 10:15	1/19/2017	10:15 AM	30.18	61537428	141645	32.7	
1/23/17 10:03	1/23/2017	10:03 AM	33.77	61724689	187261	32.6	
1/25/17 12:24	1/25/2017	12:24 PM	31.50	61822697	98008	32.4	
1/26/17 11:48	1/26/2017	11:48 AM	34.03	61867848	45151	32.2	
1/30/17 11:04	1/30/2017	11:04 AM	34.18	62053829	185981	32.5	
1/31/17 9:20	1/31/2017	9:20 AM	29.88	62097631	43802	32.8	
2/2/17 10:34	2/2/2017	10:34 AM	33.74	62193515	95884	32.5	
2/6/17 10:19	2/6/2017	10:19 AM	33.51	62381002	187487	32.6	
2/8/17 13:04	2/8/2017	1:04 PM	34.70	62478280	97278	31.9	
2/9/17 12:20	2/9/2017	12:20 PM	33.55	62522961	44681	32.0	
2/13/17 9:36	2/13/2017	9:36 AM	29.93	62706304	183343	32.8	
2/16/17 10:26	2/16/2017	10:26 AM	30.01	62847604	141300	32.3	
2/20/17 9:51	2/20/2017	9:51 AM	31.79	63037961	190357	33.3	
2/23/17 9:25	2/23/2017	9:25 AM	30.34	63178377	140416	32.7	
2/27/17 10:25	2/27/2017	10:25 AM	35.63	63371664	193287	33.2	
		·					
2/28/17 13:19	2/28/2017	1:19 PM	32.95	63426182	54518	33.8	
3/1/17 9:00	3/1/2017	9:00 AM	30.67	63465795	39613	33.5	
3/2/17 10:32	3/2/2017	10:32 AM	31.06	63514996	49201	32.1	
3/6/17 11:05	3/6/2017	11:05 AM	30.52	63704952	189956	32.8	
3/9/17 9:10	3/9/2017	9:10 AM	30.96	63841045	136093	32.4	
3/13/17 9:38	3/13/2017	9:38 AM	36.93	64026700	185655	32.1	
3/15/17 9:37	3/15/2017	9:37 AM	35.18	64124969	98269	34.1	
3/16/17 9:45	3/16/2017	9:45 AM	35.18	64174897	49928	34.5	
3/20/17 9:33	3/20/2017	9:33 AM	35.15	64375863	200966	35.0	
3/21/17 9:34	3/21/2017	9:34 AM	35.09	64426433	50570	35.1	
3/22/17 9:54	3/22/2017	9:54 AM	35.04	64477562	51129	35.0	
3/23/17 10:39	3/23/2017	10:39 AM	35.20	64529412	51850	34.9	
3/27/17 9:31	3/27/2017	9:31 AM	35.04	64728222	198810	34.9	
4/3/17 10:58	4/3/2017	10:58 AM	35.19	65084109	355887	35.0	
4/4/17 13:34	4/4/2017	1:34 PM	35.00	65139862	55753	34.9	
4/5/17 11:27	4/5/2017	11:27 AM	35.10	65185540	45678	34.8	
4/10/17 9:40	4/10/2017	9:40 AM	35.18	65431332	245792	34.7	
4/11/17 10:29	4/11/2017	10:29 AM	35.77	65482679	51347	34.5	
4/12/17 9:55	4/12/2017	9:55 AM	34.76	65531160	48481	34.5	
4/13/17 12:44	4/13/2017	12:44 PM	35.00	65586700	55540	34.5	
4/17/17 9:15	4/17/2017	9:15 AM	34.74	65779660	192960	34.8	
		<del> </del>	<b> </b>			<b> </b>	
4/18/17 11:52	4/18/2017	11:52 AM	35.83 34.16	65835041	55381	34.7	
4/19/17 10:40	4/19/2017	10:40 AM	34.16	65882763	47722	34.9	
4/20/17 11:30	4/20/2017	11:30 AM	34.48	65934135	51372	34.5	
4/24/17 9:26	4/24/2017	9:26 AM	34.45	66129131	194996	34.6	
4/27/17 11:25	4/27/2017	11:25 AM	36.22	66282757	153626	34.6	
5/1/17 9:14	5/1/2017	9:14 AM	34.63	66476953	194196	34.5	
5/3/17 10:33	5/3/2017	10:33 AM	34.32	66578725	101772	34.4	
5/8/17 12:56	5/8/2017	12:56 PM	34.21	66831694	252969	34.5	
5/9/17 10:02	5/9/2017	10:02 AM	35.65	66875207	43513	34.4	
5/10/17 9:15	5/10/2017	9:15 AM	35.63	66923283	48076	34.5	
5/11/17 11:47	5/11/2017	11:47 AM	34.33	66978100	54817	34.4	
5/15/17 9:45	5/15/2017	9:45 AM	35.04	67172391	194291	34.5	
5/17/17 10:57	5/17/2017	10:57 AM	33.78	67272753	100362	34.0	
5/18/17 11:51	5/18/2017	11:51 AM	33.66	67323849	51096	34.2	
5/22/17 12:59	5/22/2017	12:59 PM	33.85	67522105	198256	34.0	
5/25/17 9:42	5/25/2017	9:42 AM	35.28	67662861	140756	34.1	
5/30/17 14:46	5/30/2017	2:46 PM	33.51	67918964	256103	34.1	
6/1/17 9:43	6/1/2017	9:43 AM	33.61	68006328	87364	33.9	
6/5/17 9:00	6/5/2017	9:00 AM	33.67	68200702	194374	34.0	
6/6/17 9:44	6/6/2017	9:44 AM	34.19	68250968	50266	33.9	
6/7/17 11:32	6/7/2017	11:32 AM	33.88	68303751	52783	34.1	
		<del> </del>		<b> </b>			
6/8/17 10:32	6/8/2017	10:32 AM	34.07	68350852	47101	34.1	
6/13/17 9:36	6/13/2017	9:36 AM	34.12	68593467	242615	34.0	
6/14/17 9:46	6/14/2017	9:46 AM	35.18	68642658	49191	33.9	
6/15/17 15:34	6/15/2017	3:34 PM	36.70	68647326	4668	2.6	
6/19/17 9:27	6/19/2017	9:27 AM	36.63	68842707	195381	36.2	
6/20/17 10:48	6/20/2017	10:48 AM	35.82	68897211	54504	35.8	
6/21/17 9:09	6/21/2017	9:09 AM	35.32	68945374	48163	35.9	
6/22/17 12:46	6/22/2017	12:46 PM	36.02	69004560	59186	35.7	
6/26/17 9:54	6/26/2017	9:54 AM	36.21	69204160	199600	35.7	
6/27/17 10:22	6/27/2017	10:22 AM	36.18	69256223	52063	35.5	
6/29/17 9:28	6/29/2017	9:28 AM	35.47	69356066	99843	35.3	
7/6/17 10:32	7/6/2017	10:32 AM	34.58	69712851	356785	35.2	
7/10/17 10:53	7/10/2017	10:53 AM	35.17	69915147	202296	35.0	
7/12/17 10:15	7/12/2017	10:15 AM	34.03	70013566	98419	34.6	
7/13/17 9:57	7/13/2017	9:57 AM	34.15	70062390	48824	34.3	
	1	1 2.27 7 11/1			.5027		1



Page 9 of 14

			***************************************	·			
Data and Time	Flow Meas.	Flow Meas.	Instantaneous Flow	Totalizer	Flow since	Calculated	Natas
Date and Time	Date	Time	Reading (gpm)	Reading (gal)	last reading (gal)	Flow Rate (gpm)	Notes
7/17/17 9:41	7/17/2017	9:41 AM	34.49	70258075	195685	34.1	
7/19/17 14:56	7/19/2017	2:56 PM	36.21	70366892	108817	34.1	
7/20/17 9:34	7/20/2017	9:34 AM	34.26	70404697	37805	33.8	
7/24/17 9:08	7/24/2017	9:08 AM	35.20	70596464	191767	33.4	
7/25/17 10:10	7/25/2017	10:10 AM	33.70	70646728	50264	33.5	
7/27/17 9:45	7/27/2017	9:45 AM	33.15	70742261	95533	33.5	
7/31/17 9:29	7/31/2017	9:29 AM	33.59	70934032	191771	33.4	
8/1/17 9:18	8/1/2017	9:18 AM	34.43	70981541	47509	33.2	
8/2/17 13:10	8/2/2017	1:10 PM	33.65	71037018	55477	33.2	
8/3/17 9:28	8/3/2017	9:28 AM	33.58	71077375	40357	33.1	
8/7/17 9:46	8/7/2017	9:46 AM	35.51	71268576	191201	33.1	
8/8/17 10:27	8/8/2017	10:27 AM	34.11	71311463	42887	29.0	
8/9/17 9:32	8/9/2017	9:32 AM	33.44	71363002	51539	37.2	
8/10/17 8:57	8/10/2017	8:57 AM	33.03	71408952	45950	32.7	
8/14/17 11:26	8/14/2017	11:26 AM	34.30	71601121	192169	32.5	
8/15/17 9:26	8/15/2017	9:26 AM	32.77	71643712	42591	32.3	
8/16/17 14:13 8/17/17 10:47	8/16/2017 8/17/2017	2:13 PM 10:47 AM	35.21 32.14	71699571 71739188	55859 39617	32.3 32.1	
8/17/17 10:47	8/17/2017	10:47 AM	32.14	71739188	183992	32.1	
8/22/17 8:38	8/22/2017	8:38 AM	32.14	71965536	42356	31.8	
8/23/17 10:22	8/23/2017	10:22 AM	36.39	72005752	40216	26.0	
8/24/17 13:28	8/24/2017	1:28 PM	34.16	72060261	54509	33.5	
8/28/17 9:36	8/28/2017	9:36 AM	33.18	72240784	180523	32.7	
8/30/17 10:53	8/30/2017	10:53 AM	32.44	72336600	95816	32.4	
8/31/17 9:31	8/31/2017	9:31 AM	32.67	72380644	44044	32.4	
9/5/17 9:42	9/5/2017	9:42 AM	32.01	72612043	231399	32.1	
9/6/17 9:32	9/6/2017	9:32 AM	32.03	72657641	45598	31.9	
9/7/17 13:26	9/7/2017	1:26 PM	31.96	72710860	53219	31.8	
9/11/17 9:57	9/11/2017	9:57 AM	33.10	72885719	174859	31.5	
9/12/17 8:36	9/12/2017	8:36 AM	31.52	72928468	42749	31.5	
9/13/17 10:13	9/13/2017	10:13 AM	31.68	72976956	48488	31.5	
9/14/17 9:32	9/14/2017	9:32 AM	31.37	73021037	44081	31.5	
9/18/17 9:42	9/18/2017	9:42 AM	30.68	73199413	178376	30.9	
9/19/17 10:43	9/19/2017	10:43 AM	31.73	73245194	45781	30.5	
9/21/17 9:40	9/21/2017	9:40 AM	30.65	73331240	86046	30.5	
9/25/17 9:50	9/25/2017	9:50 AM	31.19	73507310	176070	30.5	
9/26/17 10:14	9/26/2017	10:14 AM	30.19	73551853	44543	30.4	
9/27/17 9:39	9/27/2017	9:39 AM	33.60	73594478	42625	30.3	
9/28/17 10:00 10/2/17 10:50	9/28/2017 10/2/2017	10:00 AM 10:50 AM	30.54 30.88	73638621 73813230	44143 174609	30.2 30.1	
10/3/17 9:49	10/2/2017	9:49 AM	31.77	73854401	41171	29.9	
10/5/17 9:43	10/5/2017	9:43 AM	31.21	73940315	85914	29.9	
10/9/17 10:43	10/9/2017	10:43 AM	29.96	74114433	174118	29.9	
10/10/17 10:00	10/10/2017	10:00 AM	32.60	74156080	41647	29.8	
10/11/17 13:20	10/11/2017	1:20 PM	30.36	74204894	48814	29.8	
10/12/17 12:46	10/12/2017	12:46 PM	29.81	74246823	41929	29.8	
10/16/17 9:30	10/16/2017	9:30 AM	29.99	74412035	165212	29.7	
10/18/17 9:20	10/18/2017	9:20 AM	30.83	74496929	84894	29.6	
10/19/17 10:54	10/19/2017	10:54 AM	30.59	74542243	45314	29.5	
10/23/17 9:28	10/23/2017	9:28 AM	30.30	74710161	167918	29.6	
10/25/17 10:26	10/25/2017	10:26 AM	29.96	74797315	87154	29.7	
10/26/17 10:20	10/26/2017	10:20 AM	30.12	74839622	42307	29.5	
10/30/17 10:20	10/30/2017	10:20 AM	30.52	75010611	170989	29.7	
10/31/17 10:07	10/31/2017	10:07 AM	31.11	75053084	42473	29.8	
11/2/17 10:35	11/2/2017	10:35 AM	30.01	75139900	86816	29.9	
11/6/17 9:45	11/6/2017	9:45 AM	30.60	75312031	172131	30.1	
11/7/17 10:03	11/7/2017	10:03 AM	30.19	75355510	43479	29.8	
11/9/17 11:50	11/9/2017	11:50 AM	30.08	75444980	89470	30.0	
11/13/17 11:16 11/14/17 8:13	11/13/2017 11/14/2017	11:16 AM	31.40	75616822 75654748	171842 37926	30.0 30.2	
11/14/17 8:13	11/14/2017	8:13 AM 11:10 AM	30.35 30.21	75703295	37926 48547	30.2	
11/16/17 9:51	11/15/2017	9:51 AM	30.21	75744166	48547	30.0	
11/20/17 9:57	11/16/2017	9:57 AM	29.68	75744 166	201086	34.9	
11/20/17 9:37	11/21/2017	9:33 AM	29.63	75956900	11648	8.2	
11/27/17 10:50	11/27/2017	10:50 AM	30.13	76214600	257700	29.6	
11/28/17 9:40	11/28/2017	9:40 AM	29.95	76254940	40340	29.4	
11/30/17 9:57	11/30/2017	9:57 AM	29.90	76340620	85680	29.6	
12/4/17 13:09	12/4/2017	1:09 PM	29.28	76515552	174932	29.4	
12/6/17 9:27	12/6/2017	9:27 AM	29.30	76593752	78200	29.4	
12/7/17 9:58	12/7/2017	9:58 AM	32.73	76629508	35756	24.3	
12/11/17 10:03	12/11/2017	10:03 AM	31.03	76805984	176476	30.6	
12/12/17 10:17	12/12/2017	10:17 AM	30.96	76850512	44528	30.6	
12/13/17 9:28	12/13/2017	9:28 AM	30.16	76892349	41837	30.1	
12/14/17 12:50	12/14/2017	12:50 PM	30.59	76941606	49257	30.0	
12/18/17 9:55	12/18/2017	9:55 AM	30.77	77110916	169310	30.3	
12/19/17 9:30	12/19/2017	9:30 AM	30.71	77154215	43299	30.6	
12/21/17 10:10	12/21/2017	10:10 AM	30.51	77243546	89331	30.6	
12/27/17 10:10	12/27/2017	10:10 AM	30.34	77507792	264246	30.6	
12/28/17 10:26	12/28/2017	10:26 AM	30.51	77552199	44407	30.5	
1/2/18 10:29	1/2/2018	10:29 AM	31.16	77773360	221161	30.7	
1/3/18 9:22	1/3/2018	9:22 AM	31.12	77815436	42076	30.6	
1/8/18 9:20	1/8/2018	9:20 AM	31.28	78033026	217590	30.2	
1/9/18 11:20	1/9/2018	11:20 AM	31.38	78080271	47245	30.3	
1/11/18 10:46	1/11/2018	10:46 AM	31.12	78165804 78344858	85533 179054	30.1	
1/15/18 14:21 1/18/18 10:18	1/15/2018 1/18/2018	2:21 PM 10:18 AM	30.56 30.52	78344858 78468540	179054 123682	30.0 30.3	
1/18/18 10:18	<b></b>	10:18 AM 12:54 PM		78468540 78648869		30.3 30.5	
1/22/18 12:54	1/22/2018 1/25/2018	12:54 PM 10:26 AM	30.84	78648869 78776504	180329 127635	30.5	
1/25/18 10:26	1/25/2018	9:44 AM	31.25 30.85	78776504 78949999		<b> </b>	
1/29/18 9:44	1/29/2018	9:44 AM 10:20 AM	30.85 29.57	78949999 79037293	173495 87294	30.3 29.9	
2/1/18 8:52	2/1/2018	8:52 AM	29.57	79037293	40348	29.9	
2/5/18 12:06	2/5/2018	12:06 PM	30.09	79077641	176146	29.6	
2/8/18 11:13	2/8/2018	11:13 AM	29.51	79379857	126070	29.5	
		1					



Page 10 of 14

	Ι	T	I	I	F1	Calaulatad	
Date and Time	Flow Meas. Date	Flow Meas. Time	Instantaneous Flow Reading (gpm)	Totalizer Reading (gal)	Flow since last reading	Calculated Flow Rate	Notes
					(gal)	(gpm)	
2/12/18 9:52 2/14/18 10:25	2/12/2018 2/14/2018	9:52 AM 10:25 AM	29.94 30.83	79549664 79636642	169807 86978	29.9 29.9	
2/15/18 9:42	2/15/2018	9:42 AM	30.83	79678593	41951	30.0	
2/19/18 9:47	2/19/2018	9:47 AM	30.02	79851710	173117	30.0	
2/20/18 9:42	2/20/2018	9:42 AM	30.13	79894827	43117	30.0	
2/22/18 10:48	2/22/2018	10:48 AM	30.31	79983569	88742	30.1	
2/26/18 10:14	2/26/2018	10:14 AM	30.64	80156123	172554	30.1	
2/27/18 11:24	2/27/2018	11:24 AM	30.10	80201746	45623	30.2	
2/28/18 8:56 3/1/18 14:23	2/28/2018 3/1/2018	8:56 AM 2:23 PM	31.24 33.53	80240669 80292222	38923 51553	30.1 29.2	Pump was pulled and cleaned
3/5/18 9:58	3/5/2018	9:58 AM	34.02	80471872	179650	32.7	rump was pulled and cleaned
3/8/18 10:26	3/8/2018	10:26 AM	34.23	80614387	142515	32.8	
3/12/18 13:30	3/12/2018	1:30 PM	32.21	80805125	190738	32.1	
3/13/18 9:53	3/13/2018	9:53 AM	32.18	80844585	39460	32.3	PW-1(U) was redeveloped and chemically swabbed 3/13/18 - 3/15/18
3/15/18 15:39	3/15/2018	3:39 PM	35.28	80848038	3453	1.1	
3/19/18 9:45	3/19/2018	9:45 AM	34.32	81037103	189065	35.0	
3/20/18 11:11 3/22/18 11:48	3/20/2018 3/22/2018	11:11 AM 11:48 AM	34.44 34.12	81089575 81190181	52472 100606	34.4 34.5	
3/26/18 10:09	3/26/2018	10:09 AM	33.53	81383665	193484	34.2	
3/29/18 10:10	3/29/2018	10:10 AM	34.17	81529217	145552	33.7	
4/2/18 9:30	4/2/2018	9:30 AM	33.60	81721559	192342	33.6	
4/3/18 9:32	4/3/2018	9:32 AM	35.01	81770138	48579	33.7	
4/4/18 10:18	4/4/2018	10:18 AM	33.48	81819958	49820	33.5	
4/5/18 9:49 4/9/18 9:51	4/5/2018	9:49 AM	33.42	81867083	47125 192217	33.4	
4/9/18 9:51 4/11/18 11:08	4/9/2018 4/11/2018	9:51 AM 11:08 AM	35.03 32.50	82059300 82156800	192217 97500	33.4 33.0	
4/11/18 11:08	4/11/2018	12:08 PM	35.20	82206929	50129	33.4	
4/16/18 10:07	4/16/2018	10:07 AM	32.92	82394154	187225	33.2	
4/17/18 9:32	4/17/2018	9:32 AM	32.48	82440052	45898	32.7	
4/18/18 9:30	4/18/2018	9:30 AM	35.09	82487183	47131	32.8	
4/19/18 8:57	4/19/2018	8:57 AM	35.40	82532855	45672	32.5	
4/23/18 10:03 4/26/18 13:53	4/23/2018	10:03 AM 1:53 PM	32.77 35.18	82724180 82874029	191325 149849	32.8 32.9	
4/26/18 13:53 4/30/18 9:35	4/26/2018 4/30/2018	9:35 AM	35.18	82874029 83054078	149849 180049	32.9	
5/3/18 10:50	5/3/2018	10:50 AM	32.27	83197348	143270	32.6	
5/7/18 9:58	5/7/2018	9:58 AM	35.10	83384682	187334	32.8	
5/9/18 9:47	5/9/2018	9:47 AM	32.05	83477710	93028	32.4	
5/10/18 9:27	5/10/2018	9:27 AM	32.06	83523581	45871	32.3	
5/14/18 10:30	5/14/2018	10:30 AM	35.65	83720709	197128	33.9	
5/15/18 13:17 5/16/18 10:43	5/15/2018 5/16/2018	1:17 PM 10:43 AM	32.54 32.55	83772591 83814507	51882 41916	32.3 32.6	
5/17/18 11:04	5/17/2018	11:04 AM	35.18	83862724	48217	33.0	
5/21/18 9:32	5/21/2018	9:32 AM	32.60	84048622	185898	32.8	
5/22/18 9:03	5/22/2018	9:03 AM	37.54	84091206	42584	30.2	
5/23/18 9:46	5/23/2018	9:46 AM	36.33	84144985	53779	36.3	
5/24/18 9:30	5/24/2018	9:30 AM	36.16	84194414	49429	34.7	
5/29/18 9:17	5/29/2018	9:17 AM	32.60	84436235	241821	33.6	
5/30/18 9:15 5/31/18 9:27	5/30/2018 5/31/2018	9:15 AM 9:27 AM	35.61 33.17	84484541 84533613	48306 49072	33.6 33.8	
6/4/18 9:57	6/4/2018	9:57 AM	35.90	84731156	197543	34.1	
6/5/18 13:42	6/5/2018	1:42 PM	32.61	84786947	55791	33.5	
6/6/18 10:30	6/6/2018	10:30 AM	32.69	84829296	42349	33.9	
6/11/18 10:53	6/11/2018	10:53 AM	32.45	85070396	241100	33.4	
6/14/18 9:13	6/14/2018	9:13 AM	34.72	85209311	138915	32.9	
6/18/18 9:30 6/21/18 10:50	6/18/2018 6/21/2018	9:30 AM 10:50 AM	35.25 34.53	85400764 85546760	191453 145996	33.1 33.2	
6/25/18 9:32	6/25/2018	9:32 AM	34.53	85734817	188057	33.2	
6/26/18 9:18	6/26/2018	9:18 AM	32.87	85781469	46652	32.7	
6/28/18 9:35	6/28/2018	9:35 AM	33.08	85876578	95109	32.8	
7/2/18 9:53	7/2/2018	9:53 AM	33.21	86066706	190128	32.9	
7/5/18 9:14	7/5/2018	9:14 AM	33.13	86206980	140274	32.8	
7/9/18 9:48	7/9/2018	9:48 AM	32.23	86396111	189131	32.6	
7/10/18 8:47 7/11/18 9:39	7/10/2018 7/11/2018	8:47 AM 9:39 AM	33.40 32.28	86440903 86489129	44792 48226	32.5 32.3	
7/11/18 9:39	7/11/2018	9:39 AM 8:57 AM	32.28	86716429	227300	32.3	
7/17/18 9:35	7/17/2018	9:35 AM	31.44	86762786	46357	31.4	
7/19/18 10:01	7/19/2018	10:01 AM	31.41	86853386	90600	31.2	
7/23/18 8:51	7/23/2018	8:51 AM	31.31	87029775	176389	31.0	
7/24/18 10:21	7/24/2018	10:21 AM	31.61	87077093	47318	30.9	
7/26/18 12:33	7/26/2018	12:33 PM	31.40	87170297	93204	30.9	
8/6/18 10:23 8/7/18 10:13	8/6/2018 8/7/2018	10:23 AM 10:13 AM	30.71	87652179 87695669	481882 43490	30.7 30.4	
8/9/18 9:32	8/9/2018	9:32 AM	30.43	87781777	86108	30.4	
8/13/18 9:54	8/13/2018	9:54 AM	31.05	87956149	174372	30.2	
8/16/18 10:25	8/16/2018	10:25 AM	11gpm-60gpm	87996440	40291	9.3	Pump and pipe cleaned
8/20/18 9:06	8/20/2018	9:06 AM	17 gpm-43 gpm	88166543	170103	29.9	
8/21/18 9:11	8/21/2018	9:11 AM	26.00	88205544	39001	27.0	
8/23/18 9:17	8/23/2018	9:17 AM	26.30	88283366	77822	27.0	
8/29/18 9:03 8/30/18 10:22	8/29/2018 8/30/2018	9:03 AM 10:22 AM	26.06 29.17	88517446 88558452	234080 41006	27.1 27.0	
9/4/18 9:29	9/4/2018	9:29 AM	29.17	88558452 88753061	41006 194609	27.0 27.2	
9/5/18 9:33	9/4/2018	9:33 AM	26.69	88793671	40610	28.1	
9/6/18 13:22	9/6/2018	1:22 PM	27.99	88841615	47944	28.7	
9/10/18 10:07	9/10/2018	10:07 AM	30.51	89005721	164106	29.5	
9/12/18 10:10	9/12/2018	10:10 AM	30.21	89091528	85807	29.8	
9/13/18 11:39	9/13/2018	11:39 AM	30.81	89136838	45310	29.6	
9/17/18 9:40	9/17/2018	9:40 AM	30.28	89303754	166916	29.6	
9/19/18 9:01	9/19/2018 9/20/2018	9:01 AM 9:37 AM	30.21 30.60	89387456 89430911	83702 43455	29.5 29.4	
9/20/18 9:37	9/20/2018	9:37 AM 11:14 AM	31.36	89430911 89780086	43455 349175	30.1	
10/1/18 9:52	10/1/2018	9:52 AM	31.06	89909740	129654	30.6	
10/2/18 15:52	10/2/2018	3:52 PM	30.34	89964686	54946	30.5	
10/3/18 14:28	10/3/2018	2:28 PM	31.48	90005970	41284	30.4	



Page 11 of 14

				-			
	Flow Meas.	Flow Meas.	Instantaneous Flow	Totalizer	Flow since	Calculated	
Date and Time	Date	Time	Reading (gpm)	Reading (gal)	last reading	Flow Rate	Notes
10/4/10 10/41	10/4/2010	10,44 AM	24.00	00040075	(gal)	(gpm)	
10/4/18 10:41 10/8/18 9:45	10/4/2018 10/8/2018	10:41 AM 9:45 AM	31.00 30.67	90042875 90216280	36905 173405	30.4 30.4	
10/8/18 9:45	10/8/2018	9:45 AW 9:31 AM	31.75	90259507	43227	30.4	
10/9/18 9:31	10/11/2018	10:00 AM	31.33	90347695	88188	30.3	
10/15/18 11:04	10/11/2018	11:04 AM	31.17	90523859	176164	30.2	
10/16/18 9:27	10/16/2018	9:27 AM	31.31	90564340	40481	30.1	
10/17/18 9:15	10/17/2018	9:15 AM	30.52	90607483	43143	30.2	
10/18/18 10:27	10/18/2018	10:27 AM	30.61	90653075	45592	30.2	
10/22/18 10:22	10/22/2018	10:22 AM	30.20	90825154	172079	29.9	
10/25/18 11:55	10/25/2018	11:55 AM	29.72	90956058	130904	29.7	
10/29/18 10:26	10/29/2018	10:26 AM	29.19	91123490	167432	29.5	
10/30/18 10:25	10/30/2018	10:25 AM	29.77	91165088	41598	28.9	
11/1/18 7:50	11/1/2018	7:50 AM	29.48	91246394	81306	29.8	
11/5/18 10:57	11/5/2018	10:57 AM	29.80	91424317	177923	29.9	
11/8/18 11:18	11/8/2018	11:18 AM	30.16	91543160	118843	27.4	
11/12/18 9:55	11/12/2018	9:55 AM	30.01	91713909	170749	30.1	
11/14/18 10:26	11/14/2018	10:26 AM	29.92	91800853	86944	29.9	
11/19/18 9:19	11/19/2018	9:19 AM	29.26	92011920	211067	29.6	
11/20/18 11:29	11/20/2018	11:29 AM	30.29	92057963	46043	29.3	
11/21/18 9:52	11/21/2018	9:52 AM	30.51	92097900	39937	29.7	
11/26/18 12:26	11/26/2018	12:26 PM	29.21	92315100	217200	29.5	
11/27/18 9:05	11/27/2018	9:05 AM	29.24	92351330	36230	29.2	
11/28/18 9:46 11/29/18 9:20	11/28/2018 11/29/2018	9:46 AM 9:20 AM	33.63 29.58	92394577 92436324	43247 41747	29.2 29.5	
12/3/18 11:22	12/3/2018	9:20 AW 11:22 AM	30.43	92436324	174781	29.5	
12/4/18 9:17	12/4/2018	9:17 AM	30.43	92650177	39072	29.7	
12/6/18 13:25	12/6/2018	1:25 PM	31.25	92741827	91650	29.3	
12/10/18 9:56	12/10/2018	9:56 AM	31.35	92915445	173618	31.3	
12/12/18 11:49	12/12/2018	11:49 AM	31.77	93007892	92447	30.9	
12/13/18 9:39	12/13/2018	9:39 AM	30.84	93048036	40144	30.6	
12/17/18 9:52	12/17/2018	9:52 AM	31.14	93224930	176894	30.6	
12/18/18 9:41	12/18/2018	9:41 AM	31.30	93268747	43817	30.7	
12/19/18 8:36	12/19/2018	8:36 AM	31.00	93310866	42119	30.6	-
12/20/18 13:12	12/20/2018	1:12 PM	33.08	93365575	54709	31.9	
12/26/18 13:42	12/26/2018	1:42 PM	32.36	93643388	277813	32.0	
12/27/18 10:06	12/27/2018	10:06 AM	31.60	93682183	38795	31.7	
12/31/18 11:59	12/31/2018	11:59 AM	32.25	93868713	186530	31.8	
1/3/19 9:22	1/3/2019	9:22 AM	31.43	94000649	131936	30.5	
1/7/19 9:40	1/7/2019	9:40 AM	31.81	94183356	182707	31.7	
1/10/19 10:38	1/10/2019	10:38 AM	31.83	94320890	137534	31.8	
1/14/19 10:44	1/14/2019	10:44 AM	31.70	94502035	181145	31.4	
1/16/19 9:14 1/17/19 9:48	1/16/2019	9:14 AM	31.92	94590281	88246	30.6	
1/1//19 9.48	1/17/2019 1/21/2019	9:48 AM 12:48 PM	31.96 32.27	94636767 94824469	46486 187702	32.3 32.6	
1/23/19 9:51	1/23/2019	9:51 AM	32.56	94909503	85034	29.5	
1/28/19 10:49	1/28/2019	10:49 AM	31.55	95136044	226541	31.5	
1/30/19 10:30	1/30/2019	10:30 AM	31.49	95224579	88535	30.7	
1/31/19 10:37	1/31/2019	10:37 AM	31.27	95269110	44531	30.9	
2/4/19 10:32	2/4/2019	10:32 AM	31.25	95446289	177179	30.8	
2/6/19 14:32	2/6/2019	2:32 PM	31.66	95542893	96604	33.5	
2/7/19 10:07	2/7/2019	10:07 AM	31.53	95583349	40456	28.1	
2/19/19 13:45	2/19/2019	1:45 PM	31.89	96127405	544056	31.5	
2/21/19 9:45	2/21/2019	9:45 AM	32.29	96209495	82090	28.5	
2/25/19 9:45	2/25/2019	9:45 AM	31.89	96387814	178319	31.0	
2/26/19 11:16	2/26/2019	11:16 AM	31.29	96434896	47082	32.7	
2/27/19 11:18	2/27/2019	11:18 AM	32.79	96479188	44292	30.8	
2/28/19 10:06	2/28/2019	10:06 AM	31.92	96521396	42208	29.3	
3/4/19 11:03	3/4/2019	11:03 AM	31.09	96700290	178894	31.1	
3/5/19 10:06	3/5/2019	10:06 AM	31.34	96742874	42584	29.6	
3/6/19 10:56	3/6/2019	10:56 AM	30.73	96788759	45885	31.9	
3/7/19 9:24	3/7/2019	9:24 AM	31.17	96829892	41133 175752	28.6	
3/11/19 10:55 3/12/19 11:46	3/11/2019 3/12/2019	10:55 AM 11:46 AM	31.27 30.21	97005644 97050525	175752 44881	30.5 31.2	
3/12/19 11:46	3/12/2019	10:48 AM	31.19	97050525	84733	29.4	
3/18/19 10:48	3/18/2019	10:05 AM	29.87	97306100	170842	29.7	
3/20/19 12:53	3/20/2019	12:53 PM	30.68	97396245	90145	31.3	
3/21/19 11:31	3/21/2019	11:31 AM	30.73	97436721	40476	28.1	
3/25/19 9:43	3/25/2019	9:43 AM	30.65	97606498	169777	29.5	
3/28/19 10:59	3/28/2019	10:59 AM	31.83	97737433	130935	30.3	
4/1/19 10:28	4/1/2019	10:28 AM	29.83	97907627	170194	29.5	
4/2/19 11:28	4/2/2019	11:28 AM	30.11	97951938	44311	30.8	
4/4/19 10:23	4/4/2019	10:23 AM	30.12	98035328	83390	29.0	
4/8/19 9:52	4/8/2019	9:52 AM	30.26	98204110	168782	29.3	
4/10/19 11:19	4/10/2019	11:19 AM	30.51	98291465	87355	30.3	
4/11/19 10:40	4/11/2019	10:40 AM	30.21	98332630	41165	28.6	
4/15/19 12:14	4/15/2019	12:14 PM	29.90	98504128	171498	29.8	
4/16/19 8:25	4/16/2019	8:25 AM	29.77	98539547	35419	24.6	
4/17/19 8:26	4/17/2019	8:26 AM	29.17	98581890	42343	29.4	
4/18/19 9:59	4/18/2019	9:59 AM	29.84	98627218	45328	31.5	
4/22/19 13:25	4/22/2019	1:25 PM	29.71	98802594	175376	30.4	
4/23/19 9:45	4/23/2019	9:45 AM	29.91	98837916	35322 44102	24.5	
4/24/19 10:53 4/25/19 9:54	4/24/2019 4/25/2019	10:53 AM	29.50	98882018 98921183	44102 39165	30.6	
4/25/19 9:54 4/29/19 10:00	4/25/2019 4/29/2019	9:54 AM 10:00 AM	27.34 30.20	98921183 99090552	39165 169369	27.2 29.4	
4/29/19 10:00	4/29/2019	9:51 AM	30.20	99090552	42189	29.4	
5/2/19 10:51	5/2/2019	10:51 AM	30.44	99132741	86649	30.1	
5/6/19 10:51	5/6/2019	11:08 AM	29.88	99389398	170008	29.5	
5/7/19 11:14	5/7/2019	11:08 AW	30.15	99431899	42501	29.5	
5/8/19 9:58	5/8/2019	9:58 AM	29.41	99431899	0	0.0	
5/9/19 12:58	5/9/2019	12:58 PM	30.89	99519584	87685	60.9	
5/14/19 11:22	5/14/2019	11:22 AM	30.63	99728955	209371	29.1	
5/15/19 9:39	5/15/2019	9:39 AM	30.64	99768457	39502	27.4	
5/16/19 10:09	5/16/2019	10:09 AM	30.82	99811889	43432	30.2	
	·			<del>-</del>	· –		



Page 12 of 14

Date and Time	Flow Meas. Date	Flow Meas. Time	Instantaneous Flow Reading (gpm)	Totalizer Reading (gal)	Flow since last reading (gal)	Calculated Flow Rate (gpm)	Notes
5/20/19 10:39	5/20/2019	10:39 AM	30.74	99982850	170961	29.7	
5/21/19 10:06	5/21/2019	10:06 AM	30.38	100024179	41329	28.7	
5/23/19 10:39 5/28/19 9:24	5/23/2019 5/28/2019	10:39 AM 9:24 AM	29.82 30.30	100109025 100316680	84846 207655	29.5 28.8	
5/29/19 14:17	5/29/2019	2:17 PM	32.45	100310080	43314	30.1	
5/30/19 10:11	5/30/2019	10:11 AM	30.31	100397686	37692	26.2	
6/3/19 10:29	6/3/2019	10:29 AM	31.36	100570908	173222	30.1	
6/4/19 11:03	6/4/2019	11:03 AM	30.59	100615241	44333	30.8	
6/5/19 13:43	6/5/2019	1:43 PM	31.83	100663554	48313	33.6	
6/6/19 11:11	6/6/2019	11:11 AM	31.13	100703100	39546	27.5	
6/10/19 10:52	6/10/2019	10:52 AM	31.33	100878285	175185	30.4	
6/11/19 11:42 6/12/19 11:01	6/11/2019 6/12/2019	11:42 AM 11:01 AM	31.41 31.86	100923756 100966290	45471 42534	31.6 29.5	
6/13/19 12:46	6/13/2019	12:46 PM	31.39	101013310	47020	32.7	
6/17/19 10:15	6/17/2019	10:15 AM	31.26	101183899	170589	29.6	
6/18/19 10:46	6/18/2019	10:46 AM	30.75	101228403	44504	30.9	
6/20/19 14:18	6/20/2019	2:18 PM	29.15	101318993	90590	31.5	
6/24/19 11:22	6/24/2019	11:22 AM	28.23	101478116	159123	27.6	
6/25/19 10:41	6/25/2019	10:41 AM	31.16	101520264	42148	29.3	
6/27/19 10:06	6/27/2019	10:06 AM	30.22	101604762	84498	29.3	
7/1/19 14:18 7/2/19 13:09	7/1/2019 7/2/2019	2:18 PM 1:09 PM	30.78 30.43	101780350 101821277	175588 40927	30.5 28.4	
7/3/19 13.09	7/3/2019	8:50 AM	30.43	101821277	35291	24.5	
7/8/19 10:52	7/8/2019	10:52 AM	30.30	102075189	218621	30.4	
7/11/19 10:23	7/11/2019	10:23 AM	34.57	102201253	126064	29.2	
7/15/19 9:48	7/15/2019	9:48 AM	30.57	102372117	170864	29.7	
7/18/19 11:07	7/18/2019	11:07 AM	35.26	102379111	6994	1.6	
7/22/19 9:48	7/22/2019	9:48 AM	28.05	102544767	165656	28.8	
7/24/19 10:00	7/24/2019	10:00 AM	32.36	102635016	90249	31.3	
7/25/19 9:11	7/25/2019	9:11 AM	33.01	102680277	45261	31.4	
8/1/19 10:44 8/5/19 9:54	8/1/2019 8/5/2019	10:44 AM 9:54 AM	30.07 29.30	102999673 103166248	319396 166575	31.7 28.9	
8/6/19 10:30	8/6/2019	10:30 AM	29.84	103166246	85142	59.1	
8/7/19 10:30	8/7/2019	10:30 AM	29.84	103251390	0	0.0	
8/8/19 10:06	8/8/2019	10:06 AM	32.21	103295854	44464	30.9	
8/12/19 15:05	8/12/2019	3:05 PM	30.02	103477485	181631	31.5	
8/13/19 9:32	8/13/2019	9:32 AM	29.69	103510254	32769	22.8	
8/14/19 11:12	8/14/2019	11:12 AM	29.62	103555545	45291	31.5	
8/15/19 11:17	8/15/2019	11:17 AM	29.13	103599694	44149	30.7	
8/19/19 8:48	8/19/2019	8:48 AM	29.20	103760270	160576	27.9	
8/20/19 8:30 8/21/19 10:30	8/20/2019 8/21/2019	8:30 AM 10:30 AM	30.70 32.69	103802789 103844411	42519 41622	29.5 28.9	
8/22/19 10:48	8/22/2019	10:30 AW 10:48 AM	33.21	103890859	46448	32.3	
8/28/19 9:25	8/28/2019	9:25 AM	30.56	104153454	262595	30.4	
8/29/19 10:36	8/29/2019	10:36 AM	30.83	104199240	45786	31.8	
9/3/19 11:18	9/3/2019	11:18 AM	31.82	104427027	227787	31.6	
9/4/19 11:04	9/4/2019	11:04 AM	32.15	104472117	45090	31.3	
9/5/19 10:59	9/5/2019	10:59 AM	32.25	104517282	45165	31.4	
9/9/19 11:39	9/9/2019	11:39 AM	31.51	104697965	180683	31.4	
9/12/19 10:47 9/16/19 9:59	9/12/2019 9/16/2019	10:47 AM 9:59 AM	31.29 31.58	104829669 105005253	131704 175584	30.5 30.5	
9/18/19 10:11	9/18/2019	10:11 AM	31.00	105003233	88694	30.8	
9/19/19 10:34	9/19/2019	10:34 AM	30.71	105138107	44160	30.7	
9/23/19 9:23	9/23/2019	9:23 AM	30.56	105308121	170014	29.5	
9/24/19 13:48	9/24/2019	1:48 PM	30.55	105359423	51302	35.6	
9/25/19 10:07	9/25/2019	10:07 AM	30.18	105395968	36545	25.4	
9/26/19 12:25	9/26/2019	12:25 PM	30.50	105443243	47275	32.8	
9/30/19 13:57	9/30/2019	1:57 PM	30.55	105619906	176663	30.7	
10/1/19 9:35 10/2/19 10:13	10/1/2019 10/2/2019	9:35 AM 10:13 AM	30.92 30.76	105655592 105700487	35686 44895	24.8 31.2	
10/2/19 10:13	10/2/2019	10:13 AW 12:37 PM	30.76	105700487	48101	33.4	
10/3/19 12:3/	10/7/2019	9:54 AM	30.18	105917873	169285	29.4	
10/8/19 13:52	10/8/2019	1:52 PM	30.51	105968577	50704	35.2	
10/9/19 12:30	10/9/2019	12:30 PM	30.31	106009252	40675	28.2	
10/10/19 10:46	10/10/2019	10:46 AM	30.10	106049200	39948	27.7	
10/15/19 11:38	10/15/2019	11:38 AM	28.55	106261531	212331	29.5	
10/16/19 9:32	10/16/2019	9:32 AM	30.05	106300812	39281	27.3	
10/17/19 13:07	10/17/2019	1:07 PM	29.07	106349811	48999	34.0	
10/21/19 12:53 10/22/19 9:23	10/21/2019 10/22/2019	12:53 PM 9:23 AM	30.64 30.57	106515793 106552611	165982 36818	28.8 25.6	
10/22/19 9:23	10/22/2019	9:23 AM 11:52 AM	30.57	106552611	36818 47445	32.9	
10/24/19 11:15	10/23/2019	11:15 AM	29.65	106641923	41867	29.1	
10/28/19 11:42	10/28/2019	11:42 AM	29.93	106813876	171953	29.9	
10/29/19 9:36	10/29/2019	9:36 AM	31.21	106853535	39659	27.5	
10/30/19 10:32	10/30/2019	10:32 AM	30.12	106898885	45350	31.5	
10/31/19 10:53	10/31/2019	10:53 AM	29.40	106942708	43823	30.4	
11/4/19 9:54	11/4/2019	9:54 AM	29.60	107114463	171755	29.8	
11/5/19 9:02	11/5/2019	9:02 AM	29.88	107155738	41275	28.7	
11/7/19 11:30	11/7/2019	11:30 AM	0.00	107156336	598	0.2	
11/11/19 9:19 11/14/19 14:21	11/11/2019 11/14/2019	9:19 AM	7.03 4.27	107178603 107208340	22267 29737	3.9 6.9	
11/14/19 14:21	11/14/2019	2:21 PM 10:27 AM	4.27 11.53	107208340	29737 47454	6.9 8.2	
11/19/19 10:52	11/19/2019	10:52 AM	12.07	107253794	17489	12.1	
1.1710/10/10/02	1	1 .0.02 / 11/1	12.01		17 100	12.1	



Date and Time	Flow Meas. Date	Flow Meas. Time	Instantaneous Flow Reading (gpm)	Totalizer Reading (gal)	Flow since last reading (gal)	Calculated Flow Rate (gpm)	Notes
11/20/19 10:18	11/20/2019	10:18 AM	11.61	107289055	15772	11.0	
11/21/19 11:40	11/21/2019	11:40 AM	11.44	107306513	17458	12.1	
11/25/19 11:21	11/25/2019	11:21 AM	15.21	107370544	64031	11.1	
12/2/19 9:06	12/2/2019	9:06 AM	11.72	107508478	137934	13.7	
12/3/19 13:35	12/3/2019	1:35 PM	19.44	107542350	33872	23.5	
12/4/19 13:48	12/4/2019	1:48 PM	16.53	107569969	27619	19.2	
12/5/19 11:00	12/5/2019	11:00 AM	17.16	107593670	23701	16.5	
12/9/19 11:41	12/9/2019	11:41 AM	17.10	107697224	103554	18.0	
12/10/19 11:05	12/10/2019	11:05 AM	16.82	107721322	24098	16.7	
12/12/19 11:41	12/12/2019	11:41 AM	13.99	107767269	45947	16.0	
12/17/19 10:23	12/17/2019	10:23 AM	18.12	107901025	133756	18.6	
12/23/19 10:36	12/23/2019	10:36 AM	24.12	108045362	144337	16.7	
12/26/19 10:30	12/26/2019	10:30 AM	23.63	108149873	104511	24.2	
12/30/19 10:53	12/30/2019	10:53 AM	21.27	108286889	137016	23.8	

¹⁾ Flow readings and rates based on flow logs provided by DS&G Remedial Trust

3) gal = gallons

4) OM&M = Operating, Maintenance, and Monitoring

Prepared by: BPC Checked by: ERW Reviewed by: TAM



²⁾ gpm = gallons per minute

## **APPENDIX E**

Groundwater Gradient Trend Plots





Elevations revised based on December 2012 re-survey

Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly
  maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExS.

Specific events with reduced positive gradients or slightly negative gradients include:

- March 5, 2012: System off for maintenance and well B-4DR connection (March 2-6, 2012)
- April 15, 2013: System off for quarterly maintenance (April 9-11, 2013) and running at reduced rates until discharge pump repair on April 15, 2013.
- September 30, 2013: Suspected erroneous measurement. Well BG-1 extracting at the time of measurement and the calculated groundwater elevation in well BG-1 (+1.78 ft-msl) was several feet higher than the groundwater elevations observed in nearby DDA monitoring wells (-1.57 to -1.82 ft-msl in wells B-2D, B-3D, and C-3D).

Vert	ical Head I	Differ	ence	- BG-1
	Project Number:		013-6052	FIGURE E-1
	Prepared by:	BPC	02/20/20	FIGURE E-1
VZZA cerriatee	Checked by:	TK	02/20/20	Notes:
AMMA Y WYDLD A S. W.	Reviewed by:	TAM	02/25/20	





Elevations revised based on December 2012 re-survey

 $Reduced\ positive\ gradients\ or\ slightly\ negative\ gradients\ are\ generally\ associated\ with\ water\ level\ events\ conducted:$ 

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExS.

Specific events with reduced positive gradients or slightly negative gradients include:

- March 5, 2012: System off for maintenance and well B-4DR connection (March 2-6, 2012)
- September 14, 2012: System off intermittently for quarterly maintenance (September 9, 2012 September 13, 2012)
- April 15, 2013: System off for quarterly maintenance (April 9-11, 2013) and running at reduced rates until discharge pump repair on April 15, 2013.

#### **Vertical Head Difference - C-18D** Project Number: 013-6052 FIGURE E-2 Prepared by: BPC 02/20/20 Golder Checked by: TK 02/20/20 Notes: Associates Reviewed by: TAM 02/25/20





Elevations revised based on December 2012 re-survey

Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance,

- addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps
- Before, during, or soon after routine, quarterly maintenance of the LFExS.

C-20D connected to LFExS in December 2012

Specific events with reduced positive gradients or slightly negative gradients include:

September 30, 2013: Suspected erroneous measurement. Well C-20D extracting at the time of measurement and the calculated groundwater elevation in well C-20D (+0.47 ft-msl) was over one foot higher than the groundwater elevations observed in nearby DDA monitoring wells (-0.97 to -2.00 ft-msl in wells B-2D, C-21D, MHW-1S, or MHW-1M).

March 24, 2014: Suspected erroneous measurement. Well C-20D extracting at the time of measurement and the calculated groundwater elevation in well C-20D (+0.32 ft-msl) was almost one foot

 $higher than the groundwater elevations observed in nearby DDA monitoring wells \ \{-0.49\ to -2.14\ ft-msl\ in\ wells\ B-2D, C-21D,\ MHW-1S,\ or\ MHW-1M\}.$ April 22, 2019: Suspected erroneous measurement. Well C-20D extracting at the time of measurement and the calculated groundwater elevation in well C-20D (+1.27 ft-msl) was more than one

foot higher than the groundwater elevations observed in nearby DDA monitoring wells (-0.048 to -2.39 ft-msl in wells B-2D, C-21D, MHW-1S, or MHW-1M).



Project Number:		013-6052	FIGURE E-3
Prepared by:	BPC	02/20/20	FIGURE E-3
Checked by:	TK	02/20/20	Notes:
Reviewed by:	TAM	02/25/20	





Elevations revised based on December 2012 re-survey

 $Reduced\ positive\ gradients\ or\ slightly\ negative\ gradients\ are\ generally\ associated\ with\ water\ level\ events\ conducted:$ 

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
  - Before, during, or soon after routine, quarterly maintenance of the LFExS.

Specific events with reduced positive gradients or slightly negative gradients include:

- March 5, 2012: System off for maintenance and well B-4DR connection (March 2-6, 2012)
- September 14, 2012: System off intermittently for quarterly maintenance (September 9, 2012 September 13, 2012)
- April 15, 2013: System off for quarterly maintenance (April 9-11, 2013) and running at reduced rates until discharge pump repair on April 15, 2013.

Vertical Head Difference - B-2D					
	Project Number:		013-6052	FIGURE E-4	
	Prepared by:	BPC	02/20/20	FIGURE L-4	
	Checked by:	TK	02/20/20	Notes:	
A 1 - 1 20 20 20 20 20 20 20 20 20 20 20 20 20	Reviewed by:	TAM	02/25/20		





Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExS.

Specific events with reduced positive gradients or slightly negative gradients include:

- March 5, 2012: System off for maintenance and well B-4DR connection (March 2-6, 2012)
- September 15, 2012: System off intermittently for quarterly maintenance (September 9, 2012 September 13, 2012)

  April 15, 2013: System off for quarterly maintenance (April 9-11, 2013) and running at reduced rates until discharge pump repair on April 15, 2013.

#### **Vertical Head Difference - C-1D** Project Number: 013-6052 FIGURE E-5 Prepared by: BPC 02/20/20 Golder Checked by: TK 02/20/20 Notes: Associates Reviewed by: TAM 02/25/20





Elevations revised based on December 2012 re-survey

Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExS.

Specific events with reduced positive gradients or slightly negative gradients include:

April 15, 2013: System off for quarterly maintenance (April 9-11, 2013) and running at reduced rates until discharge pump repair on April 15, 2013.

Vertical Head Difference - C-3D					
	Project Number:		013-6052	FIGURE E-6	
Golder	Prepared by:	BPC	02/20/20	FIGURE E-6	
	Checked by:	TK	02/20/20	Notes:	
Allen V. W. D. D. L. D. Str. C. St. C. C. D.	Reviewed by:	TAM	02/25/20		





Elevations revised based on December 2012 re-survey

Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExs.

  The fluctuating vertical head differences calculated for well C-6 since 2011 are related to performance/operational issues associated with extraction well B-4DR, and indicate that well C-6 is at the eastern periphery of the well B-4DR and LFExS influence. Well C-6 is located in a portion of the containment area where thick UPCU is present and VOC and SVOC concentrations are low (e.g., BCEE was detected at 0.021 micrograms per liter [ug/l] in 2008, prior to LFExS startup).

Vertical Head Difference - C-6					
	Project Number:		013-6052	FIGURE E-7	
/ 10 C 12 10 00 00 00 00 00 00 00 00 00 00 00 00	Prepared by:	BPC	02/20/20	FIGURE L-7	
	Checked by:	TK	02/20/20	Notes:	
Anne Valladada grange per 12.	Reviewed by:	TAM	02/25/20		





Elevations revised based on December 2012 re-survey

Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExS.

Vertical Head Difference - B-3D						
	Project Number:		013-6052	FIGURE E-8		
	Prepared by:	BPC	02/20/20	FIGURE E-0		
17 rilli	Checked by:	TK	02/20/20	Notes:		
Allen . " W. M. L. L. L. W.	Reviewed by:	TAM	02/25/20			





Elevations revised based on December 2012 re-survey

Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine,
- quarterly maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExS.

Specific events with reduced positive gradients or slightly negative gradients include:

- March 5, 2012: System off for maintenance and well B-4DR connection (March 2-6, 2012)
- September 14, 2012: System off intermittently for quarterly maintenance (September 9, 2012 September 13, 2012)
- April 15, 2013: System off for quarterly maintenance (April 9-11, 2013) and running at reduced rates until discharge pump repair on April 15, 2013.

#### **Vertical Head Difference - MHW-1M** Project Number: 013-6052 FIGURE E-9 Prepared by: BPC 02/20/20 Golder Checked by: TK 02/20/20 Notes: Associates Reviewed by: TAM 02/25/20





Elevations revised based on December 2012 re-survey

Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance, addition of Redux 620 to wells 8-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExS.

Specific events with reduced positive gradients or slightly negative gradients include:

• The fluctuating vertical head differences calculated for well C-16 since 2011 indicate that well C-16 suggesting that well C-16 is at the periphery of the LFExS influence and that gradients can temporarily reverse when UPA groundwater elevations are low. Well C-16 is located in a portion of the containment area where thick UPCU is present and VOC and SVOC concentrations are low (e.g., VOCs were non-detect and BCEE was detected at 0.053 micrograms per liter [ug/l] in 2008, prior to LFExS startup).

Vertical Head Difference - C-16					
	Project Number:		013-6052	FIGURE E-10	
	Prepared by:	BPC	02/20/20	FIGURE E-10	
	Checked by:	TK	02/20/20	Notes:	
James 7 97535745 dr. 100 200 472	Reviewed by:	TAM	02/25/20		





Elevations revised based on December 2012 re-survey

Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExS.
- April 22, 2019 Suspected erroneous measurement: The groundwater elevation in well PZ-2-EXT is typically greater than -1 ft-msl. In April 2019, the calculated groundwater elevation in PZ-2-EXT was -2.53 ft-msl.

Horizontal Head Difference - PZ-2					
	Project Number:		013-6052	FIGURE E-11	
1 Decar	Prepared by:	BPC	02/20/20	FIGURE E-11	
VZZ acominate	Checked by:	TK	02/20/20	Notes:	
All 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Reviewed by:	TAM	02/25/20		





Elevations revised based on December 2012 re-survey

Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExS.
- August 2012: Decreased extraction from nearby well C-4D due to restricted discharge capacity of the line.

#### 





Elevations revised based on December 2012 re-survey

Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExS.
- March 24, 2014: Decreased extraction from nearby well C-30 due to restricted discharge capacity of the line.

#### 





Elevations revised based on December 2012 re-survey

Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExS.
- March 5, 2012: System off for maintenance and well B-4DR connection (March 2-6, 2012)
- September 14, 2012: System off intermittently for quarterly maintenance (September 9, 2012 September 13, 2012)
- March 30, 2015 Suspected erroneous measurement: the groundwater elevation in well PZ-11-EXT is typically less than one foot different from nearby well GA-101. In March 2015, the calculated groundwater elevation in PZ-11-EXT (-1.81 ft-msl) was more than two feet lower than well GA-101 (+0.63 ft-msl).
- October 2, 2018 Suspected erroneous measurement: the groundwater elevation in well PZ-11-INT is typically less than 0.2 ft different from nearby well C-1D. In October 2018,

## **Horizontal Head Difference - PZ-11**



Project Number:		013-6052	FIGURE F-14
Prepared by:	BPC	02/20/20	
Checked by:	TK	02/20/20	Notes:
Reviewed by:	TAM	02/25/20	





Elevations revised based on December 2012 re-survey

Reduced positive gradients or slightly negative gradients are generally associated with water level events conducted:

- During brief well, pump, or system performance declines between quarterly events due to iron fouling. The duration of these issues has been reduced due to routine, quarterly maintenance, addition of Redux 620 to wells B-4DR and C-2D, and maintaining spare parts for pumps.
- Before, during, or soon after routine, quarterly maintenance of the LFExS.

#### 

**APPENDIX F** 

**Analytical Chemistry Trend Plots** 





BCEE - DDA Groundwater - LFExS Extraction Wells					
	Project Number:	013-	6052	FIGURE F-1A	
	Prepared by:	TK	1/8/2020	I IOUNE I - IA	
(all Golder	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel	
<b>V</b> /Associates	Reviewed by:	TAM	2/24/2020	Superfund Site	





## **BCEE - DDA Groundwater - LFExS Monitoring Wells**



Project Number:	013-6052		ľ
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	l

FIGURE F-2A

Delaware Sand and Gravel
Superfund Site





## **BCEE - DDA Groundwater - Columbia Monitoring Wells**



Project Number:	013-6052		Γ
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	ľ
Reviewed by:	TAM	2/24/2020	l

FIGURE F-3A

Delaware Sand and Gravel
Superfund Site





## BCEE - DDA to Well PW-1(U) UPCUTZ - Western and Central Monitoring Wells



Project Number:	013-6052			
Prepared by:	TK	1/8/2020		
Checked by:	BPC	1/8/2020		
Reviewed by:	TAM	2/24/2020		

FIGURE F-4.1A

Delaware Sand and Gravel
Superfund Site





				3
	Project Number:	013-	-6052	FIGURE F-4.2A
	Prepared by:	TK	1/8/2020	FIGURE F-4.2A
<b>Z</b> Associates	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
m. 8 W. D. D. S. A. S. M. W. W. W. W. C. S.	Reviewed by:	TAM	2/24/2020	Superfund Site

BCEE - DDA to Well PW-1(U) UPCUTZ - Eastern Monitoring Wells





## BCEE - DDA to Well PW-1(U) UPA - Western and Central Monitoring Wells



Project Number:	013-6052		ľ
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	l

FIGURE F-5.1A

Delaware Sand and Gravel

Superfund Site





## BCEE - DDA to Well PW-1(U) UPA - Eastern Monitoring Wells



Project Number:	013-6052		Γ
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	ľ
Reviewed by:	TAM	2/24/2020	l

FIGURE F-5.2A

Delaware Sand and Gravel
Superfund Site





## BCEE - Downgradient of Well PW-1(U) - Columbia Monitoring Wells



Project Number:	013-6052	
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-6.1A

Delaware Sand and Gravel
Superfund Site





## BCEE - Downgradient of Well PW-1(U) - UPCUTZ and UPA - UPA-01 Area Monitoring Wells



	Project Number:	013-	6052
	Prepared by:	TK	1/8/2020
	Checked by:	BPC	1/8/2020
	Reviewed by:	TAM	2/24/2020

FIGURE F-6.2A

Delaware Sand and Gravel
Superfund Site





BCEE - Downgradient of Well PW-1(U) - UPCUTZ - P-6 Area Monitoring Wells				
	Project Number:	013-	-6052	FIGURE F-6.3A
/ Decailed	Prepared by:	TK	1/8/2020	FIGURE F-0.3A
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
	Reviewed by:	TAM	2/24/2020	Superfund Site





# BCEE - Downgradient of Well PW-1(U) - UPA Upper Sand - P-6 Area Monitoring Wells



Project Number:	013-6052		ľ
Prepared by:	TK	1/8/2020	
Checked by:	BPC	1/8/2020	ľ
Reviewed by:	TAM	2/24/2020	

FIGURE F-6.4A

Delaware Sand and Gravel

Superfund Site





# BCEE - Downgradient of Well PW-1(U) - UPA Lower Sand - P-6 Area Monitoring Wells



Project Number:	013-6052		ľ
Prepared by:	TK	1/8/2020	
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	

FIGURE F-6.5A

Delaware Sand and Gravel
Superfund Site





## BCEE - Downgradient of Well PW-1(U) - UPA - MW-18/34 Area Monitoring Wells



Project Number:	013-6052		Γ
Prepared by:	TK	1/8/2020	
Checked by:	BPC	1/8/2020	ľ
Reviewed by:	TAM	2/24/2020	

FIGURE F-7.1A

Delaware Sand and Gravel
Superfund Site





#### BCEE - Downgradient of Well PW-1(U) - UPA - BW-2 Area **Monitoring Wells** Project Number: 013-6052 FIGURE F-7.2A Prepared by: ΤK 1/8/2020 Golder **Delaware Sand and Gravel** Checked by: BPC 1/8/2020 Associates Reviewed by: **Superfund Site** TAM 2/24/2020





### **BCEE - UPA Downgradient - Western Lobe NCC Monitoring Wells**



Project Number:	013-6052		
Prepared by:	TK	1/8/2020	
Checked by:	BPC	1/8/2020	ľ
Reviewed by:	TAM	2/24/2020	

FIGURE F-8A

Delaware Sand and Gravel
Superfund Site





#### **BCEE - UPA Downgradient - Well Trends in Front of AWC Wellfield**



Project Number:	013-6052		Γ
Prepared by:	TK	1/8/2020	
Checked by:	BPC	1/8/2020	Г
Reviewed by:	TAM	2/24/2020	

FIGURE F-9A

Delaware Sand and Gravel

Superfund Site





### BCEE - UPA Downgradient - AWC Well Trends



Project Number:	013-6052	
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-10A

Delaware Sand and Gravel
Superfund Site





#### 1,4-Dioxane - DDA Groundwater - LFExS Extraction Wells



Project Number:	013-6052		Г
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	

FIGURE F-1B

Delaware Sand and Gravel
Superfund Site





#### 1,4-Dioxane - DDA Groundwater - LFExS Monitoring Wells



Project Number:	013-6052		Γ
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	

FIGURE F-2B

Delaware Sand and Gravel
Superfund Site





### 1,4-Dioxane - DDA Groundwater - Columbia Monitoring Wells



Project Number:	013-6052	
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-3B

Delaware Sand and Gravel
Superfund Site





#### 1,4-Dioxane - DDA to Well PW-1(U) UPCUTZ - Western and Central Monitoring Wells



Project Number:	013-6052	
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-4.1B

Delaware Sand and Gravel
Superfund Site





### 1,4-Dioxane - DDA to Well PW-1(U) UPCUTZ - Eastern Monitoring Wells



-	Project Number:	013-	6052
	Prepared by:	TK	1/8/2020
	Checked by:	BPC	1/8/2020
	Reviewed by:	TAM	2/24/2020

FIGURE F-4.2B

Delaware Sand and Gravel
Superfund Site





#### 1,4-Dioxane - DDA to Well PW-1(U) UPA - Western and Central Monitoring Wells



Project Number:	013-6052	
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-5.1A

Delaware Sand and Gravel
Superfund Site





#### 1,4-Dioxane - DDA to Well PW-1(U) UPA - Eastern Monitoring Wells



Project Number:	013-6052	
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-5.2B

Delaware Sand and Gravel
Superfund Site





# 1,4-Dioxane - UPA Downgradient of Well PW-1(U) Trends Well P-6 Area Project Number: 013-6052 FIGURE F-6.1B Prepared by: TK 1/8/2020 Delaware Sand and Gravel

TAM

2/24/2020

Reviewed by:

Superfund Site





### 1,4-Dioxane - Downgradient of Well PW-1(U) - UPCUTZ and UPA - UPA-01 Area Monitoring Wells



_				
	Project Number:	013-	6052	Г
	Prepared by:	TK	1/8/2020	
	Checked by:	BPC	1/8/2020	Γ
	Reviewed by:	TAM	2/24/2020	

FIGURE F-6.2B

Delaware Sand and Gravel
Superfund Site





### 1,4-Dioxane - Downgradient of Well PW-1(U) - UPCUTZ - P-6 Area Monitoring Wells



Project Number:	013-	6052	Γ	
Prepared by:	TK	1/8/2020	L	
Checked by:	BPC	1/8/2020	Γ	
Reviewed by:	TAM	2/24/2020	ı	

FIGURE F-6.3B

Delaware Sand and Gravel
Superfund Site





### 1,4-Dioxane - Downgradient of Well PW-1(U) - UPA Upper Sand - P-6 Area Monitoring Wells



7 1 2 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Project Number:	013-6052		Γ
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	ı

FIGURE F-6.4B

Delaware Sand and Gravel
Superfund Site





### 1,4-Dioxane - Downgradient of Well PW-1(U) - UPA Lower Sand - P-6 Area Monitoring Wells



7 1 2 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Project Number:	013-6052		Γ
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	ı

FIGURE F-6.5B

Delaware Sand and Gravel
Superfund Site





### 1,4-Dioxane - Downgradient of Well PW-1(U) - UPA - MW-18/34 Area Monitoring Wells



Project Number:	013-	6052	Γ
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	ı

FIGURE F-7.1B

Delaware Sand and Gravel
Superfund Site





#### 1,4-Dioxane - Downgradient of Well PW-1(U) - UPA - BW-2 Area **Monitoring Wells** 013-6052 Project Number: FIGURE F-7.2B Prepared by: ΤK Golder **Delaware Sand and Gravel** Checked by: BPC

TAM

2/24/2020

Reviewed by:

Associates

Superfund Site





### 1,4-Dioxane - UPA Downgradient - Western Lobe NCC Monitoring Wells



Project Number:	013-6052		
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	

FIGURE F-8B

Delaware Sand and Gravel

Superfund Site





On May 4 2016, AWC collected a combined sample from the shallow and deep aquifer at AWC-E1 via a 3x purge of the entire screen length.

### 1,4-Dioxane - UPA Downgradient - Well Trends in Front of AWC Wellfield



***************************************				
	Project Number:	013	3-6052	FIGURE F-9B
	Prepared by:	TK	1/8/2020	FIGURE F-3D
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
	Reviewed by:	TAM	2/24/2020	Superfund Site





### 1,4-Dioxane - UPA Downgradient - AWC Well Trends



Project Number:	013-	6052	Γ
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	ı

FIGURE F-10B

Delaware Sand and Gravel

Superfund Site





#### **Benzene - DDA Groundwater - LFExS Extraction Wells**



Project Number:	013-6052		
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	

FIGURE F-1C

Delaware Sand and Gravel
Superfund Site





	Project Number:	013-	6052	FIGURE F-2C
	Prepared by:	TK	1/8/2020	FIGURE F-2C
V Zacociatec	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
Amor 7 2072 (24.72.72 (19.00 (19.00 (1).00 (1).00 (1).00 (1).00 (1).00 (1).00 (1).00 (1).00 (1).00 (1).00 (1)	Reviewed by:	TAM	2/24/2020	Superfund Site

Benzene - DDA Groundwater - LFExS Monitoring Wells





### **Benzene - DDA Groundwater - Columbia Monitoring Wells**



Project Number:	013-6052	
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-3C

Delaware Sand and Gravel
Superfund Site





#### Benzene - DDA to Well PW-1(U) UPCUTZ - Western and Central Monitoring Wells



Project Number:	013-6052		l
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	

FIGURE F-4.1C

Delaware Sand and Gravel
Superfund Site





#### Benzene - DDA to Well PW-1(U) UPCUTZ - Eastern Monitoring Wells 013-6052 Project Number: FIGURE F-4.2C Prepared by: ΤK 1/8/2020 Golder **Delaware Sand and Gravel** Checked by: BPC 1/8/2020 Associates Reviewed by: TAM 2/24/2020 **Superfund Site**





#### Benzene - DDA to Well PW-1(U) UPA - Western and Central Monitoring Wells



Project Number:	013-6052	
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	MAT	2/24/2020

FIGURE F-5.1C

Delaware Sand and Gravel
Superfund Site





### Benzene - DDA to Well PW-1(U) UPA - Eastern Monitoring Wells



Project Number:	013-6052	
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-5.2C

Delaware Sand and Gravel
Superfund Site





### Benzene - Downgradient of Well PW-1(U) - Columbia Monitoring Wells



Project Number:	013-6052		Γ
Prepared by:	TK	1/8/2020	
Checked by:	BPC	1/8/2020	ſ
Reviewed by:	TAM	2/24/2020	

FIGURE F-6.1C

Delaware Sand and Gravel
Superfund Site





### Benzene - Downgradient of Well PW-1(U) - UPCUTZ and UPA - UPA-01 Area Monitoring Wells



 Project Number:
 013-6052

 Prepared by:
 TK
 1/8/2020

 Checked by:
 BPC
 1/8/2020

 Reviewed by:
 TAM
 2/24/2020

FIGURE F-6.2C

Delaware Sand and Gravel
Superfund Site





### Benzene - Downgradient of Well PW-1(U) - UPCUTZ - P-6 Area Monitoring Wells



			_
Project Number:	013-6052		Γ
Prepared by:	TK	1/8/2020	
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	

FIGURE F-6.3C

Delaware Sand and Gravel Superfund Site





### Benzene - Downgradient of Well PW-1(U) - UPA Upper Sand - P-6 Area Monitoring Wells



N NN CO CON NO 1 CO N N I	x x x x x x x x x x x x x x x x x x	0000110	
Project Number:	013-6052		Γ
Prepared by:	TK	1/8/2020	
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	

FIGURE F-6.4C

Delaware Sand and Gravel
Superfund Site





# Benzene - Downgradient of Well PW-1(U) - UPA Lower Sand - P-6 Area Monitoring Wells



 2 42 49 49 1 10 1 49 1 1 1		
Project Number:	013-	6052
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-6.5C

Delaware Sand and Gravel
Superfund Site





# Benzene - Downgradient of Well PW-1(U) - UPA - MW-18/34 Area Monitoring Wells



 Project Number:
 013-6052

 Prepared by:
 TK
 1/8/2020

 Checked by:
 BPC
 1/8/2020

 Reviewed by:
 TAM
 2/24/2020

FIGURE F-7.1C

Delaware Sand and Gravel Superfund Site





# Benzene - Downgradient of Well PW-1(U) - UPA - BW-2 Area Monitoring Wells



Project Number:	013-6052		
Prepared by:	TK	1/8/2020	
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	

FIGURE F-7.2C

Delaware Sand and Gravel
Superfund Site





# Benzene - UPA Downgradient - Western Lobe NCC Monitoring Wells



Project Number:	013-	6052
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-8C

Delaware Sand and Gravel
Superfund Site





On May 4 2016, AWC collected a combined sample from the shallow and deep aquifer at AWC-E1 via a 3x purge of the entire screen length.

## Benzene - UPA Downgradient - Well Trends in Front of AWC Wellfield



Project Number:	013-6	052	
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	L

FIGURE F-9C

Delaware Sand and Gravel
Superfund Site





# **Benzene - UPA Downgradient - AWC Well Trends**



Project Number:	Number: 013-6052		Γ
Prepared by:	TK	1/8/2020	
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	MAT	2/24/2020	

FIGURE F-10C

Delaware Sand and Gravel
Superfund Site





Iron - DDA Groundwater - LFExS Extraction Wells				
	Project Number:	013	-6052	FIGURE F-1D
/ Decoration	Prepared by:	TK	1/8/2020	FIGURE F-ID
VZA Servicine	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
AMMA T. W. T. M. M. M. M. W.	Reviewed by:	TAM	2/24/2020	Superfund Site





Iron - DDA Groundwater - LFExS Monitoring Wells					
	Project Number:	013	-6052	FIGURE F-2D	
a coldon	Prepared by:	TK	1/8/2020	11001(1-20	
<b>7</b> Accestes	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel	
m. THEN SALATOR STATE	Reviewed by:	TAM	2/24/2020	Superfund Site	





# Iron - DDA Grounwater - Columbia Monitoring Wells



Project Number:	013-	6052
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-3D

Delaware Sand and Gravel
Superfund Site





#### Iron - DDA to Well PW-1(U) UPCUTZ - Western and Central Monitoring Wells



Project Number:	013-	6052	
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	
Reviewed by:	TAM	2/24/2020	L

FIGURE F-4.1D

Delaware Sand and Gravel
Superfund Site





### Iron - DDA to Well PW-1(U) UPCUTZ - Eastern Monitoring Wells



Project Number:	013-	6052
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-4.2D

Delaware Sand and Gravel
Superfund Site





#### Iron - DDA to Well PW-1(U) UPA - Western and Central Monitoring Wells



Project Number:	013-	6052
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-5.1D

Delaware Sand and Gravel
Superfund Site





# Iron - DDA to Well PW-1(U) UPA - Eastern Monitoring Wells



Project Number:	013-	6052
Prepared by:	TK	1/8/2020
Checked by:	BPC	1/8/2020
Reviewed by:	TAM	2/24/2020

FIGURE F-5.2D

Delaware Sand and Gravel
Superfund Site





### Iron - Downgradient of Well PW-1(U) - Columbia Monitoring Wells



Project Number:	013-6052			
Prepared by:	TK	1/8/2020		
Checked by:	BPC	1/8/2020		
Reviewed by:	TAM	2/24/2020		

FIGURE F-6.1D

Delaware Sand and Gravel
Superfund Site





iron - Downgradient of Well PW-1(U) - UPCU12 and UPA - UPA-01							
	Area Moni	toring	ı Wells				
	Project Number:	013	-6052	FIGURE F-6.2D			
(Elejenation	Prepared by:	TK	1/8/2020	FIGURE F-6.2D			
V. Z.	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel			
soldings. "I WE SELECT STORY WATER STATES."	Reviewed by:	TAM	2/24/2020	Superfund Site			





#### Iron - Downgradient of Well PW-1(U) - UPCUTZ - P-6 Area Monitoring Wells 013-6052 Project Number: FIGURE F-6.3D Prepared by: TK 1/8/2020 Golder **Delaware Sand and Gravel** Checked by: BPC 1/8/2020 Associates Reviewed by: **Superfund Site** TAM 2/24/2020





Monitoring Wells								
	Project Number:	013	-6052	FIGURE F-6.4D				
	Prepared by:	TK	1/8/2020	FIGURE F-0.4D				
V Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel				
soften. "I Wat so have droot cond-to	Reviewed by:	TAM	2/24/2020	Superfund Site				





#### Iron - Downgradient of Well PW-1(U) - UPA Lower Sand - P-6 Area **Monitoring Wells** Project Number: 013-6052 FIGURE F-6.5D Prepared by: TK 1/8/2020 Golder **Delaware Sand and Gravel** Checked by: BPC 1/8/2020 Associates Reviewed by: **Superfund Site** TAM 2/24/2020





iron - Downgradient of Well PW-1(U) - UPA - WW-18/34 Area								
Monitoring Wells								
	Project Number:	013	6052	FIGURE F-7.1D				
	Prepared by:	TK	1/8/2020	FIGURE F-7.1D				
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel				
some " water har a droot and the	Reviewed by:	TAM	2/24/2020	Superfund Site				





iron - Downgra	alent of we	HEAA	-1(U) - I	UPA - BW-z Area
	Monito	ring V	/ells	
	Project Number:	013-	6052	FIGURE F-7.2D
( Secolar	Prepared by:	TK	1/8/2020	FIGURE F-7.2D
VZZA concistro	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
softon. " Week to have direct constitution."	Reviewed by:	TAM	2/24/2020	Superfund Site





# Iron - UPA Downgradient - Western Lobe NCC Monitoring Wells



Project Number:	013-6052		
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	L

FIGURE F-8D

Delaware Sand and Gravel
Superfund Site





#### Iron - UPA Downgradient - Well Trends in Front of AWC Wellfield



Project Number:	013-6052			
Prepared by:	TK	1/8/2020		
Checked by:	BPC	1/8/2020		
Reviewed by:	TAM	2/24/2020		

FIGURE F-9D

Delaware Sand and Gravel Superfund Site





# Iron - UPA Downgradient - AWC Well Trends



Project Number:	013-	6052	FIGURE F-10D
Prepared by:	TK	1/8/2020	FIGURE F-10D
Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
Reviewed by:	TAM	2/24/2020	Superfund Site





Manganese - DDA Groundwater - LFExS Extraction Wells						
	Project Number:	013-	6052	FIGURE F-1E		
	Prepared by:	TK	1/8/2020	FIGURE F-1E		
l VZ/Accomatec	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel		
	Reviewed by:	TAM	2/24/2020	Superfund Site		





Manganese - DDA Groundwater - LFExS Monitoring Wells							
	Project Number:	<u> </u>	6052	FIGURE F-2E			
	Prepared by:	TK	1/8/2020	X 2 420 420 K 4, 2000 0 , 2000 20000			
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel			
- 40000 TV 1005 TV 10 10 10 10 10 10 10 10 10 10 10 10 10	Reviewed by:	TAM	2/24/2020	Superfund Site			





# Manganese - DDA Groundwater - Columbia Monitoring Wells



Project Number:	013-6052		FIGURE F-3F
Prepared by:	TK	1/8/2020	FIGURE F-3E
Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
Reviewed by:	TAM	2/24/2020	Superfund Site





Manganese - DDA to Well PW-1(U) UPCUTZ - Western and Central Monitoring Wells							
	Project Number:	013-	6052	FIGURE F-4.1E			
	Prepared by:	TK	1/8/2020	11001/1 7.11			
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel			
	Reviewed by:	TAM	2/24/2020	Superfund Site			





# Manganese - DDA to Well PW-1(U) UPCUTZ - Eastern Monitoring Wells

	Project Number:	013-	6052	EIGHDE E 4 2E
/30-c.v.	Prepared by:	TK	1/8/2020	FIGURE F-4.2E
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
Allen 7 1073/74/54 "1074/104-72	Reviewed by:	TAM	2/24/2020	Superfund Site





## Manganese - DDA to Well PW-1(U) UPA - Western and Central Monitoring Wells

	Project Number:	013-	6052	EIGHDE E E 1E
	Prepared by:	TK	1/8/2020	FIGURE F-5. IE
<b>V</b> JASOCIAICS	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
AMIN T 873/34/4/18/4/4/73	Reviewed by:	TAM	2/24/2020	Superfund Site





Manganese - DDA to Well PW-1(U) UPA - Eastern Monitoring Wells					
	Project Number:	umber: 013-6052		FIGURE F-5.2E	
	Prepared by:	TK	1/8/2020	FIGURE 1-5.2E	
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel	
-4000. X 385 L D d D 4 - 100 - 100 - 100	Reviewed by:	TAM	2/24/2020	Superfund Site	





Manganese - Downgradient of Well PW-1(U) - Columbia Monitoring						
Wells						
	Project Number:	013-	6052	FIGURE F-6.1E		
/BBECOMA	Prepared by:	TK	1/8/2020	FIGURE F-0.1E		
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel		
# 2007.17.47.47.404.404.47.4	Reviewed by:	TAM	2/24/2020	Superfund Site		





Manganese - Downgradient of Well PW-1(U) - UPCUTZ and UPA -					
UPA-01 Area Monitoring Wells					
	Project Number:	013-6052		FIGURE F-6.2E	
	Prepared by:	TK	1/8/2020	FIGURE F-0.2E	
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel	
AMME. T. W. L.	Reviewed by:	TAM	2/24/2020	Superfund Site	





Manganese - Downgradient of Well PW-1(U) - UPCUTZ - P-6 Area  Monitoring Wells					
	Project Number:	013-	-6052	FIGURE F-6.3E	
	Prepared by:	TK	1/8/2020	11001/11-0.31	
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel	
20000. T 38T & D. 4"-10T (1000-T)	Reviewed by:	TAM	2/24/2020	Superfund Site	





Manganese - Downgradient of Well PW-1(U) - UPA Upper Sand - P-6					
Area Monitoring Wells					
	Project Number:	013-	6052	FIGURE F-6.4E	
/300 malan	Prepared by:	TK	1/8/2020	FIGURE F-0.4E	
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel	
######################################	Reviewed by:	TAM	2/24/2020	Superfund Site	





wanganese - Downgradient of Well PW-1(U) - UPA Lower Sand - P-6					
Area Monitoring Wells					
	Project Number:	013-	-6052	FIGURE F-6.5E	
	Prepared by:	TK	1/8/2020	FIGURE F-0.5E	
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel	
	Reviewed by:	TAM	2/24/2020	Superfund Site	





Manganese - Downgradient of Well PW-1(U) - UPA - MW-18/34  Area Monitoring Wells					
	Project Number:	013-6052		FIGURE F-7.1E	
	Prepared by:	TK	1/8/2020	FIGURE F-7.1E	
<b>V</b> ZASSOCIAIES	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel	
AMM. T.W. L. D. L. J. W. W. W. W. V.	Reviewed by:	TAM	2/24/2020	Superfund Site	





**Note:** Prior to January 2008, routine groundwater samples for the DS&G site were analyzed for total metals only; therefore, data presented for samples collected prior to January 2008 are based on total manganese results.

#### Manganese - Downgradient of Well PW-1(U) - UPA - BW-2 Area **Monitoring Wells** Project Number: 013-6052 FIGURE F-7.2E Prepared by: ΤK 1/8/2020 Golder Checked by: BPC Delaware Sand and Gravel 1/8/2020 Reviewed by: TAM 2/24/2020 **Superfund Site**





**Note:** Prior to January 2008, routine groundwater samples for the DS&G site were analyzed for total metals only; therefore, data presented for samples collected prior to January 2008 are based on total manganese results..

# Manganese - UPA Downgradient - Western Lobe NCC Monitoring Wells

	Project Number:	013-	6052	EIGHDE E OE
	Prepared by:	TK	1/8/2020	FIGURE F-OE
VI Accordance	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
	Reviewed by:	TAM	2/24/2020	Superfund Site





**Notes:** Prior to January 2008, routine groundwater samples for the DS&G site were analyzed for total metals only; therefore, data presented for samples collected prior to January 2008 are based on total manganese results.

On May 4 2016, AWC collected a combined sample from the shallow and deep aquifer at AWC-E1 via a 3x purge of the entire screen.

Manganese - UP	•	ent - W ellfield	/ell Tre	nds in Front of AWC
	Project Number:	013-	6052	FIGURE F-9E
	Prepared by:	TK	1/8/2020	FIGURE F-3E
	Checked by: BPC Reviewed by: TAM		1/8/2020	Delaware Sand and Gravel
			2/24/2020	Superfund Site





**Note:** Prior to January 2008, routine groundwater samples for the DS&G site were analyzed for total metals only; therefore, data presented for samples collected prior to January 2008 are based on total manganese results.

	Manganese - l	JPA Down	gradie	nt - A	WC Well Trends
		Project Number:	013-	6052	FIGURE F-10E
1 1		Prepared by:	TK	1/8/2020	FIGURE F-10E
"		Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
		Reviewed by:	TAM	2/24/2020	Superfund Site





# **Cobalt - DDA Groundwater - LFExS Extraction Wells**



 Project Number:	013-	6052	FIGURE F-1F
Prepared by:	TK	1/8/2020	FIGURE F-IF
Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
Reviewed by:	TAM	2/24/2020	Superfund Site





#### Cobalt - DDA Groundwater - LFExS Monitoring Wells Project Number: 013-6052 FIGURE F-2F Prepared by: ΤK 1/8/2020 Golder Checked by: **Delaware Sand and Gravel** BPC 1/8/2020 Reviewed by: **Superfund Site** TAM 2/24/2020





# Cobalt - DDA Groundwater - Columbia Monitoring Wells



Project Number:	013-	6052	FIGI		
Prepared by:	TK	1/8/2020	FIG		
Checked by:	BPC	1/8/2020	Delaware :		
Reviewed by:	TAM	2/24/2020	Supe		

FIGURE F-3F Delaware Sand and Gravel Superfund Site





#### Cobalt - DDA to Well PW-1(U) UPCUTZ - Western and Central Monitoring Wells



Project Number:	013-6052		I
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	

FIGURE F-4.1F

Delaware Sand and Gravel
Superfund Site





# Cobalt - DDA to Well PW-1(U) UPCUTZ - Eastern Monitoring Wells



-	Project Number:	013-	6052	FIGURE F-4.2F
	Prepared by:	TK	1/8/2020	FIGURE F-4.2F
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
	Reviewed by:	TAM	2/24/2020	Superfund Site





### Cobalt - DDA to Well PW-1(U) UPA - Western and Central Monitoring Wells



Project Number:	013-6052		Γ
Prepared by:	TK	1/8/2020	L
Checked by:	BPC	1/8/2020	Γ
Reviewed by:	TAM	2/24/2020	

FIGURE F-5.1F

Delaware Sand and Gravel
Superfund Site





# Cobalt - DDA to Well PW-1(U) UPA - Eastern Monitoring Wells



Project Number:	013-	6052	FIGURE F-5.2F	
Prepared by:	TK	1/8/2020	FIGURE F-3.2F	
Checked by:	BPC	1/8/2020	Delaware Sand and Gravel	
Reviewed by:	TAM	2/24/2020	Superfund Site	





# Cobalt - Downgradient of Well PW-1(U) - Columbia Monitoring Wells



Project Number:	013-		
Prepared by:	TK	1/8/2020	
Checked by:	BPC	1/8/2020	
Reviewed by:	TAM	2/24/2020	

FIGURE F-6.1F

Delaware Sand and Gravel

Superfund Site





# Cobalt - Downgradient of Well PW-1(U) - UPCUTZ and UPA - UPA-01 Area Monitoring Wells IProject Number: I 013-6052 I FIGURE 5-0.05



FIGURE F-6 2F	013-6052		Project Number:		
FIGURE F-0.2F	1/8/2020	TK	Prepared by:		
Delaware Sand and Gravel	1/8/2020	BPC	Checked by:		
Superfund Site	2/24/2020	TAM	Reviewed by:		





#### Cobalt - Downgradient of Well PW-1(U) - UPCUTZ - P-6 Area **Monitoring Wells** Project Number: 013-6052 FIGURE F-6.3F Prepared by: ΤK 1/8/2020 Golder Checked by: Delaware Sand and Gravel BPC 1/8/2020 'Associates Reviewed by: Superfund Site TAM 2/24/2020





# Cobalt - Downgradient of Well PW-1(U) - UPA Upper Sand - P-6 Area Monitoring Wells



	w.:.w	11.0111011119 110110			
FIGURE F-6.4F	013-6052		Project Number:		
FIGURE F-0.4F	1/8/2020	TK	Prepared by:		
Delaware Sand and Gravel	1/8/2020	BPC	Checked by:		
Superfund Site	2/24/2020	TAM	Reviewed by:		





# Cobalt - Downgradient of Well PW-1(U) - UPA Lower Sand - P-6 Area Monitoring Wells



 IVIUITIO	IIIIY VV	CIIS	
 Project Number:	013-	6052	FIGURE F-6.5F
Prepared by:	TK	1/8/2020	FIGURE F-0.3F
Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
Reviewed by:	TAM	2/24/2020	Superfund Site





# Cobalt - Downgradient of Well PW-1(U) - UPA - MW-18/34 Area Monitoring Wells Project Number: 013-6052 FIGURE F-7.1F



Project Number:	013-	6052	FIGURE F-7.1F
Prepared by:	TK	1/8/2020	FIGURE F-7.1F
Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
Reviewed by:	TAM	2/24/2020	Superfund Site





#### Cobalt - Downgradient of Well PW-1(U) - UPA - BW-2 Area **Monitoring Wells** Project Number: FIGURE F-7.2F Prepared by: ΤK 1/8/2020 Golder Checked by BPC Delaware Sand and Gravel 1/8/2020 Superfund Site Reviewed by TAM 2/24/2020





# **Cobalt - UPA Downgradient - Western Lobe NCC Monitoring Wells**



 Project Number:	013-	6052	FIGURE F-8F
Prepared by:	TK	1/8/2020	FIGURE F-0F
Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
Reviewed by:	TAM	2/24/2020	Superfund Site





# Cobalt - UPA Downgradient - Well Trends in Front of AWC Wellfield



0000	Project Number:	013-	6052	FIGURE F-9F
	Prepared by:	TK	1/8/2020	FIGURE F-3F
	Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
	Reviewed by:	TAM	2/24/2020	Superfund Site





# **Cobalt - UPA Downgradient - AWC Well Trends**



 Project Number:	013-	6052	FIGURE F-10F
Prepared by:	TK	1/8/2020	FIGURE F-10F
Checked by:	BPC	1/8/2020	Delaware Sand and Gravel
 Reviewed by:	TAM	2/24/2020	Superfund Site

### **APPENDIX G**

Effluent Analytical Reports and Mass Loading Estimates

February 2020 013-6052

#### Appendix Table G-1 PW-1 (U) and TTO Metals Mass Loading Estimate Delaware Sand & Gravel Superfund Site New Castle County, Delaware

PW-1 (U) DISCHARGE	Permit Limit (lb/day) Based on Flow Rate (gpm) of	Permit Limit (ug/l) Based on Permitted Flow Rate																					
	(3)	Analytical Date		9/30/201	6		3/27/2017			10/9/2017			4/12/2018			10/8/2018			5/14/2019	l .		10/28/2019	3
Total Metals (ug/L)	39	Method Number	E200.7	E245.1	ISM01.3	E200.7	E245.1	ISM01.3	E200.7	E245.1	ISM02.3	E200.7	E245.1	ISM02.3	E200.7	E245.1	ISM02.4	E200.8	E245.1	ISM02.4	E200.8	E245.1	ISM02.4
Arsenic	0.04215	90	<3.1		2.8	<3.1		2.8	<3.1		2.9	<4.2		2.1	<4.2		2.4	<2.5		2.4	3.4		4.2
Cadmium	0.00141	3	<1.6		<0.22	<1.6		<0.22	<1.6		<0.15	<2.1		<0.08	<2.1		<0.08	<2.5		<1	<2.5		0.084 J
Chromium	0.02342	50	<4.6		<0.13	<4.6		<0.13	<4.6		<0.13	<5.9		<0.46	<5.9		<0.46	<5		<2	<5		<2
Copper	0.04684	100	<5.6		1.3 J	2.4 J		38.7	<5.6		7.9	<5.5		1.2 J	<5.5		6.5 ⁽¹⁾	9		11.2	111		5.6
Lead	0.02295	49	<4.3		2.2 B	0.38		4.1	<4.3		1.1	<3.8		0.98 J	<3.8		0.31 J	<1.5		1.6	2.5		0.66 J
Mercury	0.00014	0.3		<0.17	<0.044	3.3	<0.17	<0.075		<0.17	<0.075		<0.17	<0.075		<0.12	<0.075			<0.2		<0.2	<0.2
Molybdenum*	0.00000	0.0	-45			3.7			-4.5			-47									. 6	1	
Nickel	0.35128	751	<5.5		3.9	<5.5		5.1	<5.5		5.3	<6.3		3.4	<6.3		3.4	<5		4.1	<5		3
Selenium	0.23419	500	<4.6		3.4 J	<4.6		3.9 J	<4.6		3.4 J	<4.2		1.8 J	<4.2		2.5 J	<2.5		3.5 J	<2.5		11.4
Zinc	0.08197	175	14.5 J		11.5	58.1		62	<5.2		22.4	33.4		30.2	<5.4		25.9	66.8		59.4	34.6		30.3

LFExS Discharge TTO	Permit Limit (lb/day) Based on Flow Rate (gpm) of	Permit Limit (ug/l) Based on Permitted Flow Rate														
	(3),	Analytical Date		2016	3/27/	2017	10/9	2017	4/12	2018	10/8/	2018	5/13/	2019	10/28	3/2019
Total Metals (ug/L)	12	Method Number	E200.7	E245.1	E200.7	E245.1	E200.7	E245.1	E200.7	E245.1	E200.7	E245.1	E200.8	E245.1	E200.8	E245.1
Arsenic	0.012970	90	6.8		4.3 J		7.1		6.4		6.9		4.2		3.4	
Cadmium	0.000432	3	<1.6		<1.6		<1.6		<2.1		<2.1		<2.5		<2.5	
Chromium	0.007206	15	<4.6		<4.6		<4.6		<5.9		<5.9		<5		2.1 J	
Copper	0.014412	31	12.4 J		15.7 J		<5.6		11.8 J		<5.5		7.6		12.5	
Lead	0.007062	15	6.9		<4.3		4.7 J		<3.8		<3.8		<1.5		1.1 J	
Mercury	0.000043	0.1		×0.17		+0.17		<0.17		+0.17		40 IQ		×0.2		40.2
Molybdenum*	0.000000	0.0	e4.5		54.5		e4.5		-4		<4.1		- 5		8.7 B	
Nickel	0.108086	231	15.5 J		11.9 J		8.6 J		11 J		9.8 J		12.2		6.2	
Selenium	0.072058	154	<4.6		<4.6		<4.6		<4.2		<4.2		<2.5		0.45 J	
Zinc	0.025220	54	10.8 J		17.2 J		8.4 J		15.4 J		6.5 J		9.8 J		10 J	

Notes:

lb/day = pounds per day

gpm = gallons per minute ug/L = micrograms per liter

NA = Not Available

Detection limits use method detection limit (MDL) values

#### Detection limits exceed permit limit

J = estimated result

B = blank contamination

TTO = total toxic organics

Bold text indicates result exceeding permit limit

* Permit limit for molybdenum confirmed to be '0.000000 lb/day' based on review of discharge permit titled "Wastewater Discharge Permit WDP 04-107, Permit Revision 5"

(1) Duplicate analysis not within control limits.

Checked by: CH Reviewed by: TAM

Prepared by: KNG



# Appendix Table G-2 PW-1 (U) and TTO Wet Chemistry Mass Loading Estimate Delaware Sand & Gravel Superfund Site New Castle County, Delaware

PW-1 (U) DISCHARGE	Permit Limit (lb/day) Based on	Permit Limit (mg/l) Based on							
Wet Chemistry (mg/L)	Flow Rate (gpm) of	Permitted Flow Rate							
wet Chemistry (mg/L)	39	Analytical Date	9/30/2016	3/27/2017	10/9/2017	4/12/2018	10/8/2018	5/14/2019	10/22/2019
Cyanide, Total	0.2295	0.49	<0.01	<0.01	0.0019 J	0.0042 J	0.0015 J	2.4 J	<10
Ammonia (SM4500-NH3)	16.393	35	0.65	0.6	0.49	0.23	0.41	0.38	0.4
Biochemical Oxygen Demand (SM5210B)	234.187	500	4.1	3.5	3.2	1.6	2.4	3.3	2.6
Total Suspended Solids (SM2540D)	234.187	500	13.5	17	13.1	14	23.1	6.7	<6.6

LFExS Discharge TTO	LFExS Discharge TTO Permit Limit (lb/day) Based on								
Wet Chemistry (mg/L)	Flow Rate (gpm) of	Permitted Flow Rate							
Wet Offernish y (mg/L)	12	Analytical Date	9/30/2016	3/27/2017	10/9/2017	4/12/2018	10/8/2018	5/13/2019	10/22/2019
Cyanide, Total	0.070616	0.49	0.0036 J	<0.01	<0.002	<0.002	0.0034 J	<0.01	<0.01
Ammonia (SM4500-NH3)	5.044	35	1.3	1	0.54	0.89	0.99 B	0.91	0.61
Biochemical Oxygen Demand (SM5210B)	72.058	500	2.1	3.1	1.8	<1.5	2.6	< 1	1.5
Total Suspended Solids (SM2540D)	72.058	500	55.6	58.8	56.4	49.2	53.2	40.7	38

Notes:

lb/day = pounds per day

gpm = gallons per minute

mg/L = milligrams per liter

Detection limits use method detection limit (MDL) values

J = estimated result

B = blank contamination

TTO = total toxic organics

Prepared by: KNG

Checked by: CH

Reviewed by: TAM



Client: Golder Associates Inc. Project/Site: DS&G/TTO

Lab Sample ID: 460-195117-1

Matrix: Water

Job ID: 460-195117-1

Client Sample ID: TTO Date Collected: 10/28/19 12:25

Dibromofluoromethane (Surr)

Date Received: 10/28/19 20:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	0.45	U	1.0	0.45	ug/L			10/30/19 11:04	1
Vinyl chloride	0.34	U	1.0	0.34	ug/L			10/30/19 11:04	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/30/19 11:04	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/30/19 11:04	1
1,1-Dichloroethene	0.12	U	1.0	0.12	ug/L			10/30/19 11:04	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/30/19 11:04	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/30/19 11:04	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/30/19 11:04	1
1,2-Dichloroethane	0.84	U	1.0	0.84	ug/L			10/30/19 11:04	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/30/19 11:04	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/30/19 11:04	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/30/19 11:04	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/30/19 11:04	1
Trichloroethene	0.36	J	1.0	0.31	ug/L			10/30/19 11:04	1
Dibromochloromethane	0.13	U	1.0	0.13	ug/L			10/30/19 11:04	1
1,1,2-Trichloroethane	0.15	U	1.0	0.15	ug/L			10/30/19 11:04	1
Benzene	2.9		1.0	0.43	ug/L			10/30/19 11:04	1
trans-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/30/19 11:04	1
2-Chloroethyl vinyl ether	0.91	U	1.0	0.91	ug/L			10/30/19 11:04	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/30/19 11:04	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/30/19 11:04	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/30/19 11:04	1
Toluene	0.38	U	1.0	0.38	ug/L			10/30/19 11:04	1
Chlorobenzene	2.2		1.0	0.38	ug/L			10/30/19 11:04	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/30/19 11:04	1
Acrolein	1.1	U	4.0	1.1	ug/L			10/30/19 11:04	1
Acrylonitrile	0.77	U	2.0	0.77	ug/L			10/30/19 11:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		60 - 140					10/30/19 11:04	1
Toluene-d8 (Surr)	99		60 - 140					10/30/19 11:04	1
Bromofluorobenzene	102		60 - 140					10/30/19 11:04	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenol	1.2	U	10	1.2	ug/L		10/30/19 09:28	10/30/19 22:06	1
2-Chlorophenol	0.38	U	10	0.38	ug/L		10/30/19 09:28	10/30/19 22:06	1
2-Nitrophenol	0.75	U	10	0.75	ug/L		10/30/19 09:28	10/30/19 22:06	1
2,4-Dimethylphenol	0.66	U	10	0.66	ug/L		10/30/19 09:28	10/30/19 22:06	1
2,4-Dichlorophenol	1.2	U	10	1.2	ug/L		10/30/19 09:28	10/30/19 22:06	1
4-Chloro-3-methylphenol	1.2	U	10	1.2	ug/L		10/30/19 09:28	10/30/19 22:06	1
2,4,6-Trichlorophenol	0.70	U	10	0.70	ug/L		10/30/19 09:28	10/30/19 22:06	1
2,4-Dinitrophenol	2.0	U	20	2.0	ug/L		10/30/19 09:28	10/30/19 22:06	1
4-Nitrophenol	1.7	U	20	1.7	ug/L		10/30/19 09:28	10/30/19 22:06	1
4,6-Dinitro-2-methylphenol	3.4	U	20	3.4	ug/L		10/30/19 09:28	10/30/19 22:06	1
Pentachlorophenol	3.0	U	20	3.0	ug/L		10/30/19 09:28	10/30/19 22:06	1
N-Nitrosodimethylamine	1.4	U	10	1.4	ug/L		10/30/19 09:28	10/30/19 22:06	1
Bis(2-chloroethyl)ether	7.0		1.0	0.69	ug/L		10/30/19 09:28	10/30/19 22:06	1
1,3-Dichlorobenzene	2.0	U	10	2.0	ug/L		10/30/19 09:28	10/30/19 22:06	1

60 - 140

Eurofins TestAmerica, Edison

10/30/19 11:04

11/12/2019

Client: Golder Associates Inc. Project/Site: DS&G/TTO

Lab Sample ID: 460-195117-1

Matrix: Water

Job ID: 460-195117-1

### Client Sample ID: TTO

Date Collected: 10/28/19 12:25 Date Received: 10/28/19 20:20

Method: 625.1 - Semivolati Analyte		Qualifier	GC/IVIS) (COII RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	1.3		10		ug/L		10/30/19 09:28		1
1,2-Dichlorobenzene			10		ug/L		10/30/19 09:28	10/30/19 22:06	
N-Nitrosodi-n-propylamine	0.43		1.0		ug/L		10/30/19 09:28	10/30/19 22:06	1
Hexachloroethane	1.2		2.0		ug/L		10/30/19 09:28		1
Nitrobenzene	1.6		2.0		ug/L ug/L		10/30/19 09:28	10/30/19 22:06	
	0.80		10		-		10/30/19 09:28	10/30/19 22:06	1
Isophorone		_			ug/L				
Bis(2-chloroethoxy)methane	0.64		10		ug/L		10/30/19 09:28		
1,2,4-Trichlorobenzene	1.3		2.0		ug/L		10/30/19 09:28		1
Naphthalene	1.1		10		ug/L		10/30/19 09:28		1
Hexachlorobutadiene	0.44		1.0		ug/L		10/30/19 09:28		1
Hexachlorocyclopentadiene	1.7		10		ug/L		10/30/19 09:28		1
2-Chloronaphthalene	1.2		10		ug/L		10/30/19 09:28	10/30/19 22:06	1
Dimethyl phthalate	0.77		10		ug/L		10/30/19 09:28		1
Acenaphthylene	0.82	U	10		ug/L		10/30/19 09:28	10/30/19 22:06	1
2,6-Dinitrotoluene	0.53	U	2.0	0.53	ug/L		10/30/19 09:28	10/30/19 22:06	1
Acenaphthene	1.1	U	10	1.1	ug/L		10/30/19 09:28	10/30/19 22:06	1
2,4-Dinitrotoluene	1.0	U	2.0	1.0	ug/L		10/30/19 09:28	10/30/19 22:06	1
Diethyl phthalate	0.98	U	10	0.98	ug/L		10/30/19 09:28	10/30/19 22:06	1
4-Chlorophenyl phenyl ether	1.3	U	10	1.3	ug/L		10/30/19 09:28	10/30/19 22:06	1
Fluorene	0.91	U	10	0.91	ug/L		10/30/19 09:28	10/30/19 22:06	1
N-Nitrosodiphenylamine	0.89	U	10	0.89	ug/L		10/30/19 09:28	10/30/19 22:06	1
1-Bromophenyl phenyl ether	0.75	U	10	0.75	ug/L		10/30/19 09:28	10/30/19 22:06	1
Hexachlorobenzene	0.91	U	1.0		ug/L		10/30/19 09:28	10/30/19 22:06	1
Phenanthrene	0.58	U	10		ug/L		10/30/19 09:28	10/30/19 22:06	1
Anthracene	0.63	U	10		ug/L		10/30/19 09:28	10/30/19 22:06	1
Di-n-butyl phthalate	0.75	U	10		ug/L		10/30/19 09:28	10/30/19 22:06	1
Fluoranthene	0.84		10		ug/L		10/30/19 09:28	10/30/19 22:06	1
Pyrene	1.6		10		ug/L		10/30/19 09:28	10/30/19 22:06	1
Benzidine	5.9		10		ug/L		10/30/19 09:28	10/30/19 22:06	1
Butyl benzyl phthalate	0.85		10		ug/L		10/30/19 09:28	10/30/19 22:06	. 1
3,3'-Dichlorobenzidine	1.6		10		ug/L		10/30/19 09:28	10/30/19 22:06	. 1
Benzo[a]anthracene	0.59		1.0		ug/L		10/30/19 09:28	10/30/19 22:06	· · · · · · · · · · · · · · · · · · ·
Chrysene	0.91		2.0	0.91	_		10/30/19 09:28		1
Bis(2-ethylhexyl) phthalate	1.0		2.0		Ü			10/30/19 22:06	1
					ug/L				
Di-n-octyl phthalate	1.4		10		ug/L		10/30/19 09:28	10/30/19 22:06	1
Benzo[b]fluoranthene	1.4		2.0		ug/L		10/30/19 09:28		1
Benzo[a]pyrene	0.68		1.0		ug/L		10/30/19 09:28		
Indeno[1,2,3-cd]pyrene	1.3		2.0		ug/L		10/30/19 09:28		1
Dibenz(a,h)anthracene	0.74		1.0		ug/L		10/30/19 09:28		1
Benzo[g,h,i]perylene	1.3		10		ug/L		10/30/19 09:28		
1,2-Diphenylhydrazine	0.37		10		ug/L		10/30/19 09:28		1
2,3,7,8-TCDD	1.0		1.0		ug/L		10/30/19 09:28	10/30/19 22:06	1
ois (2-chloroisopropyl) ether	0.63	U	10	0.63	ug/L		10/30/19 09:28	10/30/19 22:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	116		15 - 314				10/30/19 09:28		1
Phenol-d5	45		8 - 424				10/30/19 09:28	10/30/19 22:06	1
Terphenyl-d14	118		28 - 150				10/30/19 09:28	10/30/19 22:06	1
2-Fluorophenol	65		10-76				10/30/19 09:28	10/30/19 22:06	

Eurofins TestAmerica, Edison

10/30/19 09:28 10/30/19 22:06

11/12/2019

14 - 149

132

2,4,6-Tribromophenol

Client: Golder Associates Inc. Project/Site: DS&G/TTO

Lab Sample ID: 460-195117-1

Matrix: Water

Job ID: 460-195117-1

Client Sample ID: TTO

Selenium Zinc

Date Collected: 10/28/19 12:25

Method: 625.1 - Semivola	itile Organic Cor	npounas (	GC/MS) (Co	ntinuea)					
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	105		44 - 129				10/30/19 09:28	10/30/19 22:06	
Method: 608.3 - Organocl	hlorine Pesticide	es/PCBs in	ı Water						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aldrin	0.012	U	0.020	0.012	ug/L		10/29/19 17:13	10/30/19 12:16	
alpha-BHC	0.013	U *	0.020	0.013	ug/L		10/29/19 17:13	10/30/19 12:16	•
beta-BHC	0.015	U	0.030	0.015	ug/L		10/29/19 17:13	10/30/19 12:16	
delta-BHC	0.0090	U	0.020	0.0090	ug/L		10/29/19 17:13	10/30/19 12:16	
gamma-BHC (Lindane)	0.013	U	0.030	0.013	ug/L		10/29/19 17:13	10/30/19 12:16	•
Chlordane	0.093	U	0.50	0.093	ug/L		10/29/19 17:13	10/30/19 12:16	
4,4'-DDD	0.018	U	0.040	0.018	ug/L		10/29/19 17:13	10/30/19 12:16	
4,4'-DDE	0.018	U	0.030	0.018	ug/L		10/29/19 17:13	10/30/19 12:16	1
4,4'-DDT	0.025	U	0.030	0.025	ug/L		10/29/19 17:13	10/30/19 12:16	
Dieldrin	0.016	U	0.020	0.016	ug/L		10/29/19 17:13	10/30/19 12:16	
Endosulfan I	0.014	U	0.030	0.014	ug/L		10/29/19 17:13	10/30/19 12:16	
Endosulfan II	0.017	U	0.030	0.017	ug/L		10/29/19 17:13	10/30/19 12:16	
Endosulfan sulfate	0.015	U *	0.030	0.015	ug/L		10/29/19 17:13	10/30/19 12:16	
Endrin	0.021	U *	0.030	0.021	ug/L		10/29/19 17:13	10/30/19 12:16	
Endrin aldehyde	0.024	U	0.030	0.024	ug/L		10/29/19 17:13	10/30/19 12:16	
Heptachlor	0.014	U	0.030	0.014	ug/L		10/29/19 17:13	10/30/19 12:16	
Heptachlor epoxide	0.014	U	0.030	0.014	ug/L		10/29/19 17:13	10/30/19 12:16	
Toxaphene	0.20	U	0.50	0.20	ug/L		10/29/19 17:13	10/30/19 12:16	
Aroclor 1016	0.030	U	1.0	0.030	ug/L		10/29/19 17:13	10/30/19 12:16	
Aroclor 1221	0.030	U	1.0	0.030	ug/L		10/29/19 17:13	10/30/19 12:16	
Aroclor 1232	0.030	U	1.0	0.030	ug/L		10/29/19 17:13	10/30/19 12:16	
Aroclor 1242	0.030	U	1.0	0.030	ug/L		10/29/19 17:13	10/30/19 12:16	
Aroclor 1248	0.030	U	1.0	0.030	ug/L		10/29/19 17:13	10/30/19 12:16	
Aroclor 1254	0.037	U	1.0	0.037			10/29/19 17:13	10/30/19 12:16	
Aroclor 1260	0.037	U	1.0	0.037	_		10/29/19 17:13	10/30/19 12:16	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	<del></del>		10 - 150					10/30/19 12:16	-
Tetrachloro-m-xylene	88		10 - 150				10/29/19 17:13	10/30/19 12:16	•
DCB Decachlorobiphenyl	60		10 - 150				10/29/19 17:13	10/30/19 12:16	
DCB Decachlorobiphenyl	62		10 - 150				10/29/19 17:13	10/30/19 12:16	
Blicthad, 200 C. Blictala /I/	CD/88C) Total D	المحدد	_						
Method: 200.8 - Metals (K Analyte		Qualifier	e RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	3.4		2.5		ug/L		10/31/19 21:00	11/01/19 16:19	į
Cadmium	0.89	U	2.5	0.89	ug/L		10/31/19 21:00	11/01/19 16:19	
Chromium	2.1	J	5.0	0.54	ug/L		10/31/19 21:00	11/01/19 16:19	;
Copper	12.5		5.0	2.6	ug/L		10/31/19 21:00	11/01/19 16:19	
Lead	1.1	J	1.5		ug/L		10/31/19 21:00	11/01/19 16:19	;
Molybdenum	8.7		5.0		ug/L			11/01/19 16:19	
Nickel	6.2		5.0	1.5	ug/L		10/31/19 21:00	11/01/19 16:19	į
	_								

Eurofins TestAmerica, Edison 11/12/2019

5

10/31/19 21:00 11/01/19 16:19

10/31/19 21:00 11/01/19 16:19

2.5

20.0

0.45 ug/L

3.4 ug/L

0.45 J

10.0 J

Client: Golder Associates Inc. Project/Site: DS&G/TTO

Job ID: 460-195117-1

Lab Sample ID: 460-195117-1 Client Sample ID: TTO

Date Collected: 10/28/19 12:25 Date Received: 10/28/19 20:20

Matrix: Water

Method: 245.1 - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.12	U	0.20	0.12	ug/L		10/30/19 11:38	10/30/19 14:59	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.0040	U	0.010	0.0040	mg/L		10/31/19 10:21	10/31/19 14:40	1
Ammonia (as N)	0.61		0.10	0.068	mg/L			10/31/19 10:35	1
рН	7.8	HF			SU			11/01/19 12:38	1
Total Suspended Solids	38.0		10.0	10.0	mg/L			11/01/19 08:31	1
Biochemical Oxygen Demand	1.5		1.0	1.0	mg/L			10/30/19 09:28	1

Client Sample ID: TBGW_102819 Lab Sample ID: 460-195117-2

Date Collected: 10/28/19 00:00 Date Received: 10/28/19 20:20

Dibromofluoromethane (Surr)

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	0.45	U	1.0	0.45	ug/L			10/30/19 09:04	1
Vinyl chloride	0.34	U	1.0	0.34	ug/L			10/30/19 09:04	1
Chloroethane	0.32	U	1.0	0.32	ug/L			10/30/19 09:04	1
Methylene Chloride	0.32	U	1.0	0.32	ug/L			10/30/19 09:04	1
1,1-Dichloroethene	0.12	U	1.0	0.12	ug/L			10/30/19 09:04	1
1,1-Dichloroethane	0.26	U	1.0	0.26	ug/L			10/30/19 09:04	1
trans-1,2-Dichloroethene	0.24	U	1.0	0.24	ug/L			10/30/19 09:04	1
Chloroform	0.33	U	1.0	0.33	ug/L			10/30/19 09:04	1
1,2-Dichloroethane	0.84	U	1.0	0.84	ug/L			10/30/19 09:04	1
1,1,1-Trichloroethane	0.24	U	1.0	0.24	ug/L			10/30/19 09:04	1
Carbon tetrachloride	0.21	U	1.0	0.21	ug/L			10/30/19 09:04	1
Bromodichloromethane	0.34	U	1.0	0.34	ug/L			10/30/19 09:04	1
1,2-Dichloropropane	0.35	U	1.0	0.35	ug/L			10/30/19 09:04	1
Trichloroethene	0.31	U	1.0	0.31	ug/L			10/30/19 09:04	1
Dibromochloromethane	0.13	U	1.0	0.13	ug/L			10/30/19 09:04	1
1,1,2-Trichloroethane	0.15	U	1.0	0.15	ug/L			10/30/19 09:04	1
Benzene	0.43	U	1.0	0.43	ug/L			10/30/19 09:04	1
trans-1,3-Dichloropropene	0.22	U	1.0	0.22	ug/L			10/30/19 09:04	1
2-Chloroethyl vinyl ether	0.91	U	1.0	0.91	ug/L			10/30/19 09:04	1
Bromoform	0.54	U	1.0	0.54	ug/L			10/30/19 09:04	1
Tetrachloroethene	0.25	U	1.0	0.25	ug/L			10/30/19 09:04	1
1,1,2,2-Tetrachloroethane	0.37	U	1.0	0.37	ug/L			10/30/19 09:04	1
Toluene	0.38	U	1.0	0.38	ug/L			10/30/19 09:04	1
Chlorobenzene	0.38	U	1.0	0.38	ug/L			10/30/19 09:04	1
Ethylbenzene	0.30	U	1.0	0.30	ug/L			10/30/19 09:04	1
Acrolein	1.1	U	4.0	1.1	ug/L			10/30/19 09:04	1
Acrylonitrile	0.77	U	2.0	0.77	ug/L			10/30/19 09:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		60 - 140			-		10/30/19 09:04	1
Toluene-d8 (Surr)	99		60 - 140					10/30/19 09:04	1
Bromofluorobenzene	102		60 - 140					10/30/19 09:04	1

Eurofins TestAmerica, Edison 11/12/2019

10/30/19 09:04

60 - 140

112

Client: Golder Associates Inc. Job ID: 460-194625-1

Project/Site: Delaware Sand and Gravel Superfund Site

Client Sample ID: PW-1(U) Discharge

Lab Sample ID: 460-194625-1 Date Collected: 10/22/19 15:20

Matrix: Water

Date Received: 10/22/19 20:40

Method: Trace VOA - 2.4/Trace Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	0.50	U	0.50		ug/L			10/29/19 01:23	
Chloromethane	0.50	U	0.50		ug/L			10/29/19 01:23	
Vinyl chloride	0.50	U	0.50		ug/L			10/29/19 01:23	
Bromomethane	0.50	U	0.50		ug/L			10/29/19 01:23	
Chloroethane	0.50	U	0.50		ug/L			10/29/19 01:23	
Trichlorofluoromethane	0.50	U	0.50		ug/L			10/29/19 01:23	
1,1-Dichloroethene	0.50	U	0.50		ug/L			10/29/19 01:23	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U	0.50		ug/L			10/29/19 01:23	
Acetone	5.0	U	5.0		ug/L			10/29/19 01:23	
Carbon disulfide	0.50	U	0.50		ug/L			10/29/19 01:23	
Methyl acetate	0.50	U	0.50		ug/L			10/29/19 01:23	
Methylene chloride	0.50	U	0.50		ug/L			10/29/19 01:23	
trans-1,2-Dichloroethene	0.50	U	0.50		ug/L			10/29/19 01:23	
Methyl tert-butyl ether	0.32	J	0.50		ug/L			10/29/19 01:23	
1,1-Dichloroethane	0.098	J	0.50		ug/L			10/29/19 01:23	
cis-1,2-Dichloroethene	0.31	JB	0.50		ug/L			10/29/19 01:23	
2-Butanone	5.0	U	5.0		ug/L			10/29/19 01:23	
Bromochloromethane	0.50	U	0.50		ug/L			10/29/19 01:23	
Chloroform	0.50	U	0.50		ug/L			10/29/19 01:23	
1,1,1-Trichloroethane	0.50	U	0.50		ug/L			10/29/19 01:23	
Cyclohexane	0.51		0.50		ug/L			10/29/19 01:23	
Carbon tetrachloride	0.50	U	0.50		ug/L			10/29/19 01:23	
Benzene	11		0.50		ug/L			10/29/19 01:23	
1,2-Dichloroethane	0.50	U	0.50		ug/L			10/29/19 01:23	
Trichloroethene	0.18		0.50		ug/L			10/29/19 01:23	
Methylcyclohexane	1.3		0.50		ug/L			10/29/19 01:23	
1,2-Dichloropropane	0.50	U	0.50		ug/L			10/29/19 01:23	
Bromodichloromethane	0.50		0.50		ug/L			10/29/19 01:23	
cis-1,3-Dichloropropene	0.50		0.50		ug/L			10/29/19 01:23	
4-Methyl-2-pentanone	5.0		5.0		ug/L			10/29/19 01:23	
Toluene	0.057		0.50		ug/L			10/29/19 01:23	
trans-1,3-Dichloropropene	0.50		0.50		ug/L			10/29/19 01:23	
1.1.2-Trichloroethane	0.50		0.50		ug/L			10/29/19 01:23	
Tetrachloroethene	2.1		0.50		ug/L			10/29/19 01:23	
2-Hexanone	5.0	U	5.0		ug/L			10/29/19 01:23	
Dibromochloromethane	0.50		0.50		ug/L			10/29/19 01:23	
1,2-Dibromoethane	0.50		0.50		ug/L			10/29/19 01:23	
Chlorobenzene	1.7		0.50		ug/L			10/29/19 01:23	
Ethylbenzene	2.8		0.50		ug/L			10/29/19 01:23	
o-Xylene	0.083		0.50		ug/L			10/29/19 01:23	
m,p-Xylene	16	•	0.50		ug/L			10/29/19 01:23	
Styrene	0.50	U	0.50		ug/L			10/29/19 01:23	
Bromoform	0.50		0.50		ug/L			10/29/19 01:23	
Isopropylbenzene	1.3	•	0.50		ug/L			10/29/19 01:23	
1,1,2,2-Tetrachloroethane	0.50	11	0.50		ug/L			10/29/19 01:23	
1,3-Dichlorobenzene	0.50		0.50					10/29/19 01:23	
,	0.30		0.50		ug/L			10/29/19 01:23	
1,4-Dichlorobenzene			0.50		ug/L			10/29/19 01:23	
<b>1,2-Dichlorobenzene</b> 1,2-Dibromo-3-chloropropane	<b>0.20</b> 0.50		0.50		ug/L ug/L			10/29/19 01:23	

Eurofins TestAmerica, Edison

Client: Golder Associates Inc. Job ID: 460-194625-1

Project/Site: Delaware Sand and Gravel Superfund Site

Method: Trace VOA - 2.4/Trace Volatiles (Continued)

Client Sample ID: PW-1(U) Discharge

Lab Sample ID: 460-194625-1 Date Collected: 10/22/19 15:20

Matrix: Water

Date Received: 10/22/19 20:40

Result	Qualifier	RL		MDL U	nit	D	Prepared	Analyzed	Dil Fac
0.50	U	0.50			g/L			10/29/19 01:23	-
0.50	U	0.50		นดู	g/L			10/29/19 01:23	
Est. Result	Qualifier	Unit	D	RT	CA	S No.	Prepared	Analyzed	Dil Fa
2.4	J	ug/L		11.52				10/29/19 01:23	-
4.8	JN	ug/L		11.64	611	1-14-3		10/29/19 01:23	•
2.4	JN	ug/L		11.75	526	6-73-8		10/29/19 01:23	•
2.7	JN	ug/L		11.99	622	2-96-8		10/29/19 01:23	
10	JN	ug/L		12.21	108	3-67-8		10/29/19 01:23	1
2.3	JN	ug/L		12.72	620	)-14-4		10/29/19 01:23	1
3.3	JN	ug/L		12.95	496	5-11-7		10/29/19 01:23	
		ug/L			STL	00989		10/29/19 01:23	1
%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
104		40 - 130				-		10/29/19 01:23	
112		65 ₋ 130						10/29/19 01:23	1
90		60 - 125						10/29/19 01:23	7
127		40 - 130						10/29/19 01:23	1
113		70 - 125						10/29/19 01:23	1
116		70 - 130						10/29/19 01:23	1
97		70 - 125						10/29/19 01:23	1
89		60 - 140						10/29/19 01:23	1
96		70 - 130						10/29/19 01:23	
90									
103		55 ₋ 130						10/29/19 01:23	1
	*	55 ₋ 130 45 ₋ 130						10/29/19 01:23 10/29/19 01:23	1
103	*								
	0.50 0.50  Est. Result 2.4 4.8 2.4 2.7 10 2.3 3.3  %Recovery 104 112 90 127 113 116 97	0.50 U 0.50 U  Est. Result Qualifier  2.4 J 4.8 J N 2.4 J N 2.7 J N 10 J N 2.3 J N 3.3 J N  **Recovery Qualifier  104 112 90 127 113 116 97	0.50         U         0.50           0.50         U         0.50           Est. Result         Qualifier         Unit           2.4         J         ug/L           4.8         J         N         ug/L           2.4         J         N         ug/L           2.7         J         N         ug/L           10         J         N         ug/L           2.3         J         N         ug/L           3.3         J         N         ug/L           ug/L         ug/L         ug/L           WRecovery         Qualifier         Limits           104         40 - 130         40 - 130           90         60 - 125         40 - 130           113         70 - 125         70 - 125           116         70 - 130         70 - 125           116         70 - 125         70 - 125	0.50 U 0.50  0.50 U 0.50  Est. Result Qualifier Unit D  2.4 J ug/L  4.8 J N ug/L  2.4 J N ug/L  2.7 J N ug/L  10 J N ug/L  2.3 J N ug/L  3.3 J N ug/L  WRecovery Qualifier Limits  104 40 - 130  112 65 - 130  90 60 - 125  127 40 - 130  113 70 - 125  116 70 - 130  97 70 - 125	0.50         U         0.50         ug           Est. Result         Qualifier         Unit         D         RT           2.4         J         ug/L         11.52           4.8         J         ug/L         11.64           2.4         J         ug/L         11.75           2.7         J         ug/L         11.99           10         J         ug/L         12.21           2.3         J         ug/L         12.72           3.3         J         ug/L         12.95           ug/L         12.95         12.95           40-130         65-130         66-125           127         40-130         40-130           113         70-125         70-130           97         70-125         70-125	0.50       U       0.50       ug/L         0.50       U       0.50       ug/L         Est. Result       Qualifier       Unit       D       RT       CA         2.4       J       ug/L       11.52         4.8       J       ug/L       11.64       613         2.4       J       ug/L       11.99       622         2.7       J       ug/L       11.99       622         10       J       ug/L       12.21       108         2.3       J       ug/L       12.72       620         3.3       J       ug/L       12.95       496         ug/L       ug/L       STL6         **Recovery       Qualifier       Limits         104       40 - 130         90       60 - 125         127       40 - 130         113       70 - 125         116       70 - 130         97       70 - 125	0.50       U       0.50       ug/L         0.50       U       0.50       ug/L         Est. Result       Qualifier       Unit       D       RT       CAS No.         2.4       J       ug/L       11.52         4.8       J       ug/L       11.64       611-14-3         2.4       J       ug/L       11.75       526-73-8         2.7       J       ug/L       11.99       622-96-8         10       J       ug/L       12.21       108-67-8         2.3       J       ug/L       12.72       620-14-4         3.3       J       ug/L       12.95       496-11-7         ug/L       STL00989         **Recovery       Qualifier       Limits         104       40 - 130         112       65 - 130         90       60 - 125         127       40 - 130         113       70 - 125         116       70 - 130         97       70 - 125	0.50   U   0.50   Ug/L   Ug/L   Ug/L	0.50 U 0.50 U 0.50 ug/L 10/29/19 01:23 0.50 U 0.50 ug/L 10/29/19 01:23  Est. Result Qualifier Unit D RT CAS No. Prepared 10/29/19 01:23 4.8 J N ug/L 11.52 10/29/19 01:23 2.4 J N ug/L 11.75 526-73-8 10/29/19 01:23 2.7 J N ug/L 11.99 622-96-8 10/29/19 01:23 10 J N ug/L 12.21 108-67-8 10/29/19 01:23 2.3 J N ug/L 12.72 620-14-4 10/29/19 01:23 3.3 J N ug/L 12.95 496-11-7 10/29/19 01:23 3.3 J N ug/L 57L00989 10/29/19 01:23  **Recovery Qualifier Limits Prepared Analyzed 10/29/19 01:23 112 65 - 130 10/29/19 01:23 127 40 - 130 10/29/19 01:23 113 70 - 125 10/29/19 01:23 114 70 - 130 10/29/19 01:23 115 70 - 125 10/29/19 01:23 116 70 - 130 10/29/19 01:23 117 40 - 130 10/29/19 01:23 118 70 - 125 10/29/19 01:23 119 70 - 125 10/29/19 01:23

Method: SVOA - 2.4/Semivolatile:	S								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	26		2.1		ug/L		10/25/19 16:00	10/31/19 14:45	1
Benzaldehyde	11	U	11		ug/L		10/25/19 16:00	10/31/19 14:45	1
Phenol	11	U	11		ug/L		10/25/19 16:00	10/31/19 14:45	1
Bis(2-chloroethyl) ether	6.2	J	11		ug/L		10/25/19 16:00	10/31/19 14:45	1
2-Chlorophenol	5.3	U	5.3		ug/L		10/25/19 16:00	10/31/19 14:45	1
2-Methylphenol	11	U	11		ug/L		10/25/19 16:00	10/31/19 14:45	1
2,2'-Oxybis(1-chloropropane)	11	U	11		ug/L		10/25/19 16:00	10/31/19 14:45	1
Acetophenone	11	U	11	i	ug/L		10/25/19 16:00	10/31/19 14:45	1
4-Methylphenol	11	U	11		ug/L		10/25/19 16:00	10/31/19 14:45	1
N-Nitroso-di-n propylamine	5.3	U	5.3		ug/L		10/25/19 16:00	10/31/19 14:45	1
Hexachloroethane	5.3	U	5.3	i	ug/L		10/25/19 16:00	10/31/19 14:45	1
Nitrobenzene	5.3	U	5.3		ug/L		10/25/19 16:00	10/31/19 14:45	1
Isophorone	5.3	U	5.3		ug/L		10/25/19 16:00	10/31/19 14:45	1
2-Nitrophenol	5.3	U	5.3	i	ug/L		10/25/19 16:00	10/31/19 14:45	1
2,4-Dimethylphenol	5.3	U	5.3		ug/L		10/25/19 16:00	10/31/19 14:45	1
Bis(2-chloroethoxy)methane	5.3	U	5.3		ug/L		10/25/19 16:00	10/31/19 14:45	1
2,4-Dichlorophenol	5.3	U	5.3	i	ug/L		10/25/19 16:00	10/31/19 14:45	1
Naphthalene	5.3	U	5.3		ug/L		10/25/19 16:00	10/31/19 14:45	1
4-Chloroaniline	11	U	11	ı	ug/L		10/25/19 16:00	10/31/19 14:45	1
Hexachlorobutadiene	5.3	U	5.3	ı	ug/L		10/25/19 16:00	10/31/19 14:45	1

Eurofins TestAmerica, Edison

11/06/2019

Client: Golder Associates Inc. Job ID: 460-194625-1

Project/Site: Delaware Sand and Gravel Superfund Site

Client Sample ID: PW-1(U) Discharge

Lab Sample ID: 460-194625-1 Date Collected: 10/22/19 15:20

Matrix: Water

Date Received: 10/22/19 20:40

Method: SVOA - 2.4/Semivola Analyte	`Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Caprolactam	11		11	ug/L		10/25/19 16:00	10/31/19 14:45	
4-Chloro-3-methylphenol	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
2-Methylnaphthalene	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
Hexachlorocyclo-pentadiene	11	-	11	ug/L		10/25/19 16:00	10/31/19 14:45	
2,4,6-Trichlorophenol	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
2,4,5-Trichlorophenol	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
1,1'-Biphenyl	5.3		5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
2-Chloronaphthalene	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
2-Nitroaniline	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
Dimethylphthalate	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
2,6-Dinitrotoluene	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
Acenaphthylene	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
3-Nitroaniline	11	U	11	ug/L		10/25/19 16:00	10/31/19 14:45	
Acenaphthene	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
2,4-Dinitrophenol	11	U	11	ug/L		10/25/19 16:00	10/31/19 14:45	
4-Nitrophenol	11	U	11	ug/L		10/25/19 16:00	10/31/19 14:45	
Dibenzofuran	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
2,4-Dinitrotoluene	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
Diethylphthalate	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
Fluorene	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
4-Chlorophenyl-phenyl ether	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
4-Nitroaniline	11	U	11	ug/L		10/25/19 16:00	10/31/19 14:45	
4,6-Dinitro-2-methylphenol	11	U	11	ug/L		10/25/19 16:00	10/31/19 14:45	
N-Nitrosodiphenylamine	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
1,2,4,5-Tetrachlorobenzene	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
4-Bromophenyl-phenylether	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
Hexachlorobenzene	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
Atrazine	11	U	11	ug/L		10/25/19 16:00	10/31/19 14:45	
Pentachlorophenol	11	U	11	ug/L		10/25/19 16:00	10/31/19 14:45	
Phenanthrene	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
Anthracene	5.3		5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
Carbazole		U	11	ug/L		10/25/19 16:00		
Di-n-butylphthalate	5.3		5.3	ug/L		10/25/19 16:00		
Fluoranthene	11		11	ug/L		10/25/19 16:00	10/31/19 14:45	
Pyrene	5.3	U	5.3	ug/L		10/25/19 16:00	10/31/19 14:45	
Butylbenzylphthalate	5.3		5.3	ug/L			10/31/19 14:45	
3,3'-Dichlorobenzidine	11		11	ug/L		10/25/19 16:00		
Benzo(a)anthracene	5.3		5.3	ug/L			10/31/19 14:45	
Chrysene	5.3		5.3	ug/L			10/31/19 14:45	
Bis(2-ethylhexyl)phthalate	5.3		5.3	ug/L			10/31/19 14:45	
Di-n-octylphthalate	11		11	ug/L			10/31/19 14:45	
Benzo(b)fluoranthene	5.3		5.3	ug/L			10/31/19 14:45	
Benzo(k)fluoranthene	5.3		5.3	ug/L		10/25/19 16:00		
Benzo(a)pyrene	5.3		5.3	ug/L			10/31/19 14:45	
Indeno(1,2,3-cd)pyrene	5.3		5.3	ug/L			10/31/19 14:45	
Dibenzo(a,h)anthracene	5.3		5.3	ug/L			10/31/19 14:45	
Benzo(g,h,i)perylene	5.3		5.3	ug/L			10/31/19 14:45	
2,3,4,6-Tetrachlorophenol	5.3		5.3	ug/L			10/31/19 14:45	

Eurofins TestAmerica, Edison 11/06/2019

Client: Golder Associates Inc. Job ID: 460-194625-1

Project/Site: Delaware Sand and Gravel Superfund Site

Client Sample ID: PW-1(U) Discharge

Lab Sample ID: 460-194625-1 Date Collected: 10/22/19 15:20

Matrix: Water

Date Received: 10/22/19 20:40

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	7.6	JB	ug/L	_	2.17		10/25/19 16:00	10/31/19 14:45	
Butane, 2-methoxy-2-methyl-	140	JNB	ug/L		2.66	994-05-8	10/25/19 16:00	10/31/19 14:45	
Benzene, 1-ethyl-4-methyl-	3.0	JN	ug/L		6.41	622-96-8	10/25/19 16:00	10/31/19 14:45	
Benzene, 1-ethyl-2-methyl-	2.8	JN	ug/L		6.64	611-14-3	10/25/19 16:00	10/31/19 14:45	
Benzene, 1,2,3-trimethyl-	4.7	JN	ug/L		6.80	526-73-8	10/25/19 16:00	10/31/19 14:45	
Unknown	8.3	J	ug/L		1.08		10/25/19 16:00	10/31/19 14:45	
Phenol, 4,4'-(1-methylethylidene)bis-	4.5	JN	ug/L		5.53	80-05-7	10/25/19 16:00	10/31/19 14:45	
Total Alkanes			ug/L			STL00989	10/25/19 16:00	10/31/19 14:45	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,4-Dioxane-d8	53		40 - 110				10/25/19 16:00	10/31/19 14:45	-
Phenol-d5	56		10-130				10/25/19 16:00	10/31/19 14:45	
3is(2-chloroethyl)ether-d8	51		25 - 120				10/25/19 16:00	10/31/19 14:45	
2-Chlorophenol-d4	72		20 - 130				10/25/19 16:00	10/31/19 14:45	
4-Methylphenol-d8	51		25 - 125				10/25/19 16:00	10/31/19 14:45	
Nitrobenzene-d5	56		20 - 125					10/31/19 14:45	
2-Nitrophenol-d4	56		20 - 130				10/25/19 16:00	10/31/19 14:45	
2,4-Dichlorophenol-d3	58		20 - 120				10/25/19 16:00		
4-Chloroaniline-d4	35		1 - 146					10/31/19 14:45	
Dimethylphthalate-d6	62		25 - 130					10/31/19 14:45	
Acenaphthylene-d8	57		10 - 130					10/31/19 14:45	
4-Nitrophenol-d4	60		10 - 150					10/31/19 14:45	
	57		25 - 125					10/31/19 14:45	
Fluorene-d10									
1,6-Dinitro-2-methylphenol-d2	47		10 - 130					10/31/19 14:45	
Anthracene-d10	64		25 - 130					10/31/19 14:45	
Pyrene-d10	54		15 - 130					10/31/19 14:45	
Benzo(a)pyrene-d12	57		20 - 130				10/25/19 16:00	10/31/19 14:45	
Method: 200.8 - Metals (ICP/M		ecoverab Qualifier	le RL	BAD	L Unit		Dranarad	Anabaad	Dil Co
Analyte		Qualifier	2.5				Prepared 10/31/19 21:00	Analyzed 11/01/19 15:53	Dil Fac
Arsenic	3.4				2 ug/L				
Cadmium	2.5	U	2.5		9 ug/L		10/31/19 21:00	11/01/19 15:53	
Chromium	5.0	U	5.0		4 ug/L		10/31/19 21:00	11/01/19 15:53	
Copper	111		5.0		6 ug/L		10/31/19 21:00		
Lead	2.5		1.5		7 ug/L		10/31/19 21:00	11/01/19 15:53	
Molybdenum	5.0		5.0		5 ug/L			11/01/19 15:53	
Nickel	5.0		5.0		5 ug/L			11/01/19 15:53	
Selenium	2.5	U	2.5	0.4	5 ug/L		10/31/19 21:00	11/01/19 15:53	
Zinc	34.6		20.0	3	4 ug/L		10/31/19 21:00	11/01/19 15:53	;
Method: 245.1 - Mercury (CVA									
Analyte		Qualifier	RL		L Unit		Prepared	Analyzed	Dil Fa
Mercury	0.20	U	0.20	0.1	2 ug/L		10/30/19 11:29	10/30/19 13:59	•
Method: CVAA - 2.4/CVAA			<u></u> .			_			<b></b>
Analyte		Qualifier	RL		L Unit		Prepared	Analyzed	Dil Fa
Mercury	0.20	U	0.20	0.1	3 ug/L		10/30/19 09:37	10/30/19 15:23	•
Method: ICP-MS - 2.4/ICP-MS						W0.00			
Analyte	Result 20.0	Qualifier	RL		$\frac{L}{2} \frac{\text{Unit}}{\text{ug/L}}$		Prepared	Analyzed	Dil Fa
Aluminum			20.0				10/25/19 12:08	10/29/19 18:38	

Eurofins TestAmerica, Edison

11/06/2019

Client: Golder Associates Inc. Job ID: 460-194625-1

Project/Site: Delaware Sand and Gravel Superfund Site

Client Sample ID: PW-1(U) Discharge

Lab Sample ID: 460-194625-1 Date Collected: 10/22/19 15:20

Matrix: Water

Date Received: 10/22/19 20:40

Method: ICP-MS - 2.4/I	CP-MS (Continued)	)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	2.0	U	2.0	0.21	ug/L		10/25/19 12:08	10/30/19 17:25	1
Arsenic	4.2		1.0	0.39	ug/L		10/25/19 12:08	10/28/19 18:50	1
Barium	391		10.0	0.82	ug/L		10/25/19 12:08	10/29/19 18:38	1
Beryllium	1.0	U	1.0	0.095	ug/L		10/25/19 12:08	10/28/19 18:50	1
Cadmium	0.084	J	1.0	0.080	ug/L		10/25/19 12:08	10/29/19 18:38	1
Calcium	16900		500	123	ug/L		10/25/19 12:08	10/29/19 18:38	1
Chromium	2.0	U	2.0	0.46	ug/L		10/25/19 12:08	10/28/19 18:50	1
Cobalt	22.9		1.0	0.029	ug/L		10/25/19 12:08	10/28/19 18:50	1
Copper	5.6		2.0	0.33	ug/L		10/25/19 12:08	10/30/19 17:25	1
Iron	26600		200	28.1	ug/L		10/25/19 12:08	10/28/19 18:50	1
Lead	0.66	J	1.0	0.25	ug/L		10/25/19 12:08	10/30/19 17:25	1
Magnesium	9260		500	31.1	ug/L		10/25/19 12:08	10/28/19 18:50	1
Manganese	2090		1.0	0.35	ug/L		10/25/19 12:08	10/28/19 18:50	1
Nickel	3.0		1.0	0.17	ug/L		10/25/19 12:08	10/28/19 18:50	1
Potassium	3000		500	1.7	ug/L		10/25/19 12:08	10/28/19 18:50	1
Selenium	11.4		5.0	1.2	ug/L		10/25/19 12:08	10/28/19 18:50	1
Silver	1.0	U	1.0	0.031	ug/L		10/25/19 12:08	10/28/19 18:50	1
Sodium	27300		500	38.7	ug/L		10/25/19 12:08	10/29/19 18:38	1
Thallium	0.22	J	1.0	0.14	ug/L		10/25/19 12:08	10/30/19 17:25	1
Vanadium	0.21	J	5.0	0.16	ug/L		10/25/19 12:08	10/28/19 18:50	1
Zinc	30.3		2.0	0.98	ug/L		10/25/19 12:08	10/30/19 17:25	1

General Chemistry  Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ammonia (as N)	0.40		0.10	0.068	mg/L			10/25/19 16:54	1
рН	6.66				SU			10/30/19 13:57	1
Corrosivity	6.66				SU			10/30/19 13:57	1
Total Suspended Solids	6.6	U	6.6	6.6	mg/L			10/28/19 07:33	1
Biochemical Oxygen Demand	2.6		1.0	1.0	mg/L			10/23/19 21:20	1
Cyanide	10.0	U	10.0	5.0	ug/L		11/01/19 13:00	11/01/19 15:57	1

Client Sample ID: TBGW_102219 Lab Sample ID: 460-194625-2

Date Collected: 10/22/19 15:20 Date Received: 10/22/19 20:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	0.50	U	0.50		ug/L			10/29/19 01:55	1
Chloromethane	0.50	U	0.50		ug/L			10/29/19 01:55	1
Vinyl chloride	0.50	U	0.50		ug/L			10/29/19 01:55	1
Bromomethane	0.50	U	0.50		ug/L			10/29/19 01:55	1
Chloroethane	0.50	U	0.50		ug/L			10/29/19 01:55	1
Trichlorofluoromethane	0.50	U	0.50		ug/L			10/29/19 01:55	1
1,1-Dichloroethene	0.50	U	0.50		ug/L			10/29/19 01:55	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U	0.50		ug/L			10/29/19 01:55	1
Acetone	5.4		5.0		ug/L			10/29/19 01:55	1
Carbon disulfide	0.50	U	0.50		ug/L			10/29/19 01:55	1
Methyl acetate	0.50	U	0.50		ug/L			10/29/19 01:55	1
Methylene chloride	0.50	U	0.50		ug/L			10/29/19 01:55	1
trans-1,2-Dichloroethene	0.50	U	0.50		ug/L			10/29/19 01:55	1

Eurofins TestAmerica, Edison

11/06/2019

Matrix: Water

Client: Golder Associates Inc. Job ID: 460-194625-1

Project/Site: Delaware Sand and Gravel Superfund Site

Client Sample ID: TBGW_102219

Lab Sample ID: 460-194625-2 Date Collected: 10/22/19 15:20

Matrix: Water

Date	Received:	10/22/19	20:40

Method: Trace VOA - 2.4/Trac Analyte		Qualifier	-, RL	М	DL Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	0.50	U	0.50		ug/L		<u>-</u>	10/29/19 01:55	
1,1-Dichloroethane	0.50	U	0.50		ug/L			10/29/19 01:55	
cis-1,2-Dichloroethene	0.14	JB	0.50		ug/L			10/29/19 01:55	
2-Butanone	5.0	U	5.0		ug/L			10/29/19 01:55	
Bromochloromethane	0.50	U	0.50		ug/L			10/29/19 01:55	
Chloroform	0.50	U	0.50		ug/L			10/29/19 01:55	
1,1,1-Trichloroethane	0.50	U	0.50		ug/L			10/29/19 01:55	
Cyclohexane	0.50	U	0.50		ug/L			10/29/19 01:55	
Carbon tetrachloride	0.50	U	0.50		ug/L			10/29/19 01:55	
Benzene	0.50	U	0.50		ug/L			10/29/19 01:55	
1,2-Dichloroethane	0.50	U	0.50		ug/L			10/29/19 01:55	
Trichloroethene	0.085	JB	0.50		ug/L			10/29/19 01:55	
Methylcyclohexane	0.50		0.50		ug/L			10/29/19 01:55	
1,2-Dichloropropane	0.50	U	0.50		ug/L			10/29/19 01:55	
Bromodichloromethane	0.50		0.50		ug/L			10/29/19 01:55	
cis-1,3-Dichloropropene	0.50		0.50		ug/L			10/29/19 01:55	
4-Methyl-2-pentanone	5.0	U	5.0		ug/L			10/29/19 01:55	
Toluene	0.50		0.50		ug/L			10/29/19 01:55	
trans-1,3-Dichloropropene	0.50	U	0.50		ug/L			10/29/19 01:55	
1,1,2-Trichloroethane	0.50		0.50		ug/L			10/29/19 01:55	
Tetrachloroethene	0.50		0.50		ug/L			10/29/19 01:55	
2-Hexanone	5.0		5.0		ug/L			10/29/19 01:55	
Dibromochloromethane	0.50		0.50		ug/L			10/29/19 01:55	
1,2-Dibromoethane	0.50		0.50		ug/L			10/29/19 01:55	
Chlorobenzene	0.50		0.50		ug/L			10/29/19 01:55	
Ethylbenzene	0.50	U	0.50		ug/L			10/29/19 01:55	
o-Xylene	0.50	U	0.50		ug/L			10/29/19 01:55	
m,p-Xylene	0.50		0.50		ug/L			10/29/19 01:55	
Styrene	0.50	U	0.50		ug/L			10/29/19 01:55	
Bromoform	0.50	U	0.50		ug/L			10/29/19 01:55	
Isopropylbenzene	0.50	U	0.50		ug/L			10/29/19 01:55	
1,1,2,2-Tetrachloroethane	0.50	U	0.50		ug/L			10/29/19 01:55	
1,3-Dichlorobenzene	0.50	U	0.50		ug/L			10/29/19 01:55	
1,4-Dichlorobenzene	0.50		0.50		ug/L			10/29/19 01:55	
1,2-Dichlorobenzene	0.50	U	0.50		ug/L			10/29/19 01:55	
1,2-Dibromo-3-chloropropane	0.50	U	0.50		ug/L			10/29/19 01:55	
1,2,4-Trichlorobenzene	0.50		0.50		ug/L			10/29/19 01:55	
1,2,3-Trichlorobenzene	0.50		0.50		ug/L			10/29/19 01:55	
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa
Unknown	0.63	$\overline{J}$	ug/L		2.79			10/29/19 01:55	
Total Alkanes			ug/L			STL00989		10/29/19 01:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Vinyl chloride-d3	105		40 - 130					10/29/19 01:55	
Chloroethane-d5	102		65 - 130					10/29/19 01:55	
1,1-Dichloroethene-d2	86		60 - 125					10/29/19 01:55	
2-Butanone-d5	117		40 - 130					10/29/19 01:55	
Chloroform-d	105		70 - 125					10/29/19 01:55	
1,2-Dichloroethane-d4	115		70 ₋ 130					10/29/19 01:55	

Eurofins TestAmerica, Edison

11/06/2019

Client: Golder Associates Inc. Job ID: 460-194625-1

Project/Site: Delaware Sand and Gravel Superfund Site

Client Sample ID: TBGW_102219

Lab Sample ID: 460-194625-2 Date Collected: 10/22/19 15:20

Matrix: Water

Date Received: 10/22/19 20:40

	Method:	Trace	VOA -	- 2.4	I/Trace	Volatiles	(Continued)
--	---------	-------	-------	-------	---------	-----------	-------------

Surrogate	%Recovery Qu	ıalifier Limit	s	Prepared	Analyzed	Dil Fac	
Benzene-d6	112	70 - 1	25				
1,2-Dichloropropane-d6	98	60 - 1	40		10/29/19 01:55	1	
Toluene-d8	109	70 - 1	30		10/29/19 01:55	1	
trans-1,3-Dichloropropene-d4	110	55 - 1	30		10/29/19 01:55	1	
2-Hexanone-d5	130	45 - 1	30		10/29/19 01:55	1	
1,1,2,2-Tetrachloroethane-d2	102	65 - 1	20		10/29/19 01:55	1	
1,2-Dichlorobenzene-d4	109	80 - 1	20		10/29/19 01:55	1	

Client Sample ID: VHBLK01 Lab Sample ID: 460-194625-3

Date Collected: 10/24/19 00:00 Matrix: Water Date Received: 10/22/19 20:40

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	0.50	U	0.50	ug/L			10/29/19 13:08	1
Chloromethane	0.50	U	0.50	ug/L			10/29/19 13:08	1
Vinyl chloride	0.50	U	0.50	ug/L			10/29/19 13:08	1
Bromomethane	0.50	U	0.50	ug/L			10/29/19 13:08	1
Chloroethane	0.50	U	0.50	ug/L			10/29/19 13:08	1
Trichlorofluoromethane	0.50	U	0.50	ug/L			10/29/19 13:08	1
1,1-Dichloroethene	0.50	U	0.50	ug/L			10/29/19 13:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.50	U	0.50	ug/L			10/29/19 13:08	1
Acetone	5.0	U	5.0	ug/L			10/29/19 13:08	1
Carbon disulfide	0.50	U	0.50	ug/L			10/29/19 13:08	1
Methyl acetate	0.50	U	0.50	ug/L			10/29/19 13:08	1
Methylene chloride	0.50	U	0.50	ug/L			10/29/19 13:08	1
trans-1,2-Dichloroethene	0.50	U	0.50	ug/L			10/29/19 13:08	1
Methyl tert-butyl ether	0.50	U	0.50	ug/L			10/29/19 13:08	1
1,1-Dichloroethane	0.50	U	0.50	ug/L			10/29/19 13:08	1
cis-1,2-Dichloroethene	0.099	JB	0.50	ug/L			10/29/19 13:08	1
2-Butanone	5.0	U	5.0	ug/L			10/29/19 13:08	1
Bromochloromethane	0.50	U	0.50	ug/L			10/29/19 13:08	1
Chloroform	0.50	U	0.50	ug/L			10/29/19 13:08	1
1,1,1-Trichloroethane	0.50	U	0.50	ug/L			10/29/19 13:08	1
Cyclohexane	0.50		0.50	ug/L			10/29/19 13:08	1
Carbon tetrachloride	0.50	U	0.50	ug/L			10/29/19 13:08	1
Benzene	0.50	U	0.50	ug/L			10/29/19 13:08	1
1,2-Dichloroethane	0.50	U	0.50	ug/L			10/29/19 13:08	1
Trichloroethene	0.15	JB	0.50	ug/L			10/29/19 13:08	1
Methylcyclohexane	0.50	U	0.50	ug/L			10/29/19 13:08	1
1,2-Dichloropropane	0.50	U	0.50	ug/L			10/29/19 13:08	1
Bromodichloromethane	0.50	U	0.50	ug/L			10/29/19 13:08	1
cis-1,3-Dichloropropene	0.50	U	0.50	ug/L			10/29/19 13:08	1
4-Methyl-2-pentanone	5.0	U	5.0	ug/L			10/29/19 13:08	1
Toluene	0.50	U	0.50	ug/L			10/29/19 13:08	1
trans-1,3-Dichloropropene	0.50	U	0.50	ug/L			10/29/19 13:08	1
1,1,2-Trichloroethane	0.50	U	0.50	ug/L			10/29/19 13:08	1
Tetrachloroethene	0.50	U	0.50	ug/L			10/29/19 13:08	1
2-Hexanone	5.0	U	5.0	ug/L			10/29/19 13:08	1

Eurofins TestAmerica, Edison

11/06/2019

Client: Golder Associates Inc.

Job ID: 460-194625-1

Project/Site: Delaware Sand and Gravel Superfund Site

**Client Sample ID: VHBLK01** 

Lab Sample ID: 460-194625-3

Matrix: Water

Date Collected: 10/24/19 00:00 Date Received: 10/22/19 20:40

Analyte	Result	Qualifier	RL	MD	L Unit	D	Prepared	Analyzed	Dil Fac
Dibromochloromethane	0.50	U	0.50		ug/L			10/29/19 13:08	1
1,2-Dibromoethane	0.50	U	0.50		ug/L			10/29/19 13:08	1
Chlorobenzene	0.50	U	0.50		ug/L			10/29/19 13:08	1
Ethylbenzene	0.50	U	0.50		ug/L			10/29/19 13:08	1
o-Xylene	0.50	U	0.50		ug/L			10/29/19 13:08	1
m,p-Xylene	0.50	U	0.50		ug/L			10/29/19 13:08	1
Styrene	0.50	U	0.50		ug/L			10/29/19 13:08	1
Bromoform	0.50	U	0.50		ug/L			10/29/19 13:08	1
Isopropylbenzene	0.50	U	0.50		ug/L			10/29/19 13:08	1
1,1,2,2-Tetrachloroethane	0.50	U	0.50		ug/L			10/29/19 13:08	1
1,3-Dichlorobenzene	0.50	U	0.50		ug/L			10/29/19 13:08	1
1,4-Dichlorobenzene	0.50	U	0.50		ug/L			10/29/19 13:08	1
1,2-Dichlorobenzene	0.50	U	0.50		ug/L			10/29/19 13:08	1
1,2-Dibromo-3-chloropropane	0.50	U	0.50		ug/L			10/29/19 13:08	1
1,2,4-Trichlorobenzene	0.50	U	0.50		ug/L			10/29/19 13:08	1
1,2,3-Trichlorobenzene	0.50	U	0.50		ug/L			10/29/19 13:08	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Cyclotetrasiloxane, octamethyl-	0.69	JN	ug/L		11.54	556-67-2		10/29/19 13:08	1
Total Alkanes			ug/L			STL00989		10/29/19 13:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Vinyl chloride-d3	111		40 - 130			•		10/29/19 13:08	1
Chloroethane-d5	108		65 ₋ 130					10/29/19 13:08	1
1,1-Dichloroethene-d2	89		60 - 125					10/29/19 13:08	1
2-Butanone-d5	124		40 - 130					10/29/19 13:08	1
Chloroform-d	109		70 - 125					10/29/19 13:08	1
1,2-Dichloroethane-d4	117		70 - 130					10/29/19 13:08	1
Benzene-d6	118		70 - 125					10/29/19 13:08	1
1,2-Dichloropropane-d6	100		60 - 140					10/29/19 13:08	1
Toluene-d8	117		70 - 130					10/29/19 13:08	1
trans-1,3-Dichloropropene-d4	120		55 - 130					10/29/19 13:08	1
2-Hexanone-d5	122		45 - 130					10/29/19 13:08	1
1,1,2,2-Tetrachloroethane-d2	99		65 - 120					10/29/19 13:08	1

Eurofins TestAmerica, Edison 11/06/2019

**APPENDIX H** 

PFAS Analytical Results

February 2020 Table H-1 013-6052

		San	nple ID	AWC	-E1(13	32)	AWC	-E1(1	56)	AWC	-E2(1	40)	AWC-	E2(1	65)	Е	3-3D		B	4DR		C-	18D		С	-18D		DE	DA-02	. T	DD	DA-03	
		Sampl	e Date	11/	7/2019	)	11/	7/201	9	11/	7/2019	9	11/	7/201	9	10/2	28/2019	)	10/2	5/2019	)	10/2	5/201	9	10/2	25/201	9	10/2	21/201	19	10/2	2/2019	)
	N=Normal	, FD=Field Du	plicate		N			Ν			N			N			N			N			N			FD			N			N	
Parameter	Unit	CAS	HA	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL F	Result	Qual	RL I	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL
Perfluorohexanoic acid	ng/l	307-24-4	NE	40		2	40		2	26		2	27		2	55		2	78		5	46		5	42		5	23		2	27		2
Perfluoroheptanoic acid	ng/l	375-85-9	NE	26		2	26		2	17		2	17		2	36		2	39		5	29		5	27		5	18		2	22		2
Perfluoro-n-octanoic acid (PFOA)	ng/l	335-67-1	70	110		2	110		2	120		2	140		2	190		2	120		5	130		5	96		5	160		2	270		2
Perfluorononanoic acid	ng/l	375-95-1	NE	11		2	12		2	6.5		2	6.1		2	14		2	9.9		5	8.6	J+	5	8.6	J+	5	7.8	J+	2	6.2		2
Perfluorodecanoic acid	ng/l	335-76-2	NE	2.6		2	3		2	1.6	J	2	1.6	J	2	2.8		2		U	5		U	5		U	5	1.3	J	2	2.6		2
Perfluoroundecanoic acid	ng/l	2058-94-8	NE	0.85	J	2	0.97	J	2		U	2		U	2		U	2		U	5		U	5		U	5		U	2		U	2
Perfluorododecanoic acid	ng/l	307-55-1	NE		U	2		U	2		U	2		U	2		U	2		U	5		U	5		U	5		U	2		U	2
Perfluorotridecanoic acid	ng/l	72629-94-8	NE		U	2		U	2		U	2		U	2		U	2		U	5		U	5		U	5		U	2		U	2
Perfluorotetradecanoic acid	ng/l	376-06-7	NE		U	2		U	2		U	2		U	2		U	2		U	5		U	5		U	5		U	2		U	2
Perfluorobutanesulfonic acid (PFBS)	ng/l	375-73-5	NE	2.4		2	2.4		2	1.6	J	2	1.5	J	2	1.5	J	2	1.5	J	5		U	5	1.3	J	5	1.3	J	2	1	J	2
Perfluorohexanesulfonic acid (PFHxS)	ng/l	355-46-4	NE	7.5		2	7.9		2	12		2	16		2	13		2	1.9	J	5	3.1	J	5	2.1	J	5	15		2	26		2
Perfluoro-1-Octanesulfonate (PFOS)	ng/l	1763-23-1	70	17		2	17		2	9.5		2	14		2	14		2	3.3	J	5	10	J	5	5.9	J	5	18		2	31		2
N-methyl perfluorooctanesulfonamidoacetic Acid	ng/l	2355-31-9	NE		U	2		U	2		U	2		U	2		U	2		U	5		U	5		U	5		U	2		U	2
N-ethyl perfluorooctanesulfonamidoacetic Acid	ng/l	2991-50-6	NE		U	3		U	3		U	3		U	3		U	3		U	7		U	7		U	7		U	3		U	3
Total PFOA + PFOS	ng/l	NA	70	127			127			129.5			154			204			123.3			140			101.9			178			301		

 Table H-1
 013-6052

		Sar	mple ID	DI	DA-06		DDA	\-07-T	ΓZ	DDA	-07-U	S	DDA	-08-T	Z	DDA	-10-U	JS	DDA	-10-L	S	DDA	-11LS	S	DDA	\-12-T	Z	DDA	\-12-L	IS	DDA	4-15-T	2
		Samp	le Date	10/2	22/201	9	10/2	23/201	19	10/2	3/201	9	10/2	3/201	9	10/3	0/201	9	10/3	0/201	9	10/2	2/201	19	10/2	21/201	9	10/2	21/201	9	10/2	28/201	)
	N=Normal	, FD=Field Dເ	uplicate		Ν			Ν			Ν			Ν			Ν			FD			Ν			Ν			Ν			N	
Parameter	Unit	CAS	HA	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL I	Result	Qual	RL
Perfluorohexanoic acid	ng/l	307-24-4	NE	55		5	23		5	27		2	24		5	81		5	97		5	13		2	53		2	46		2	44		5
Perfluoroheptanoic acid	ng/l	375-85-9	NE	39		5	13		5	21		2	20		5	63	J	5	130	J	5	8.8		2	32		2	31		2	31		5
Perfluoro-n-octanoic acid (PFOA)	ng/l	335-67-1	70	290		5	67		5	200		2	230		5	470	J	5	2000	J	50	59		2	190		2	170		2	200		5
Perfluorononanoic acid	ng/l	375-95-1	NE	15		5	6.2		5	10		2	6		5	13	J	5	89	J	5	4.2		2	7		2	8.6		2	12	J+	5
Perfluorodecanoic acid	ng/l	335-76-2	NE	1.3	J	5	1.6	J	5	1.1	J	2		U	5	7	J	5	46	J	5	0.82	J	2	0.61	J	2		U	2		U	5
Perfluoroundecanoic acid	ng/l	2058-94-8	NE		U	5		U	5		U	2		U	5		U	5	3.7	J	5		U	2		U	2		U	2		U	5
Perfluorododecanoic acid	ng/l	307-55-1	NE		U	5		U	5		U	2		U	5		U	5	1.3	J	5		U	2		U	2		U	2		U	5
Perfluorotridecanoic acid	ng/l	72629-94-8	NE		U	5		U	5		U	2		U	5		U	5		U	5		U	2		U	2		U	2		U	5
Perfluorotetradecanoic acid	ng/l	376-06-7	NE		U	5		U	5		U	2		U	5		U	5		U	5		U	2		U	2		U	2		U	5
Perfluorobutanesulfonic acid (PFBS)	ng/l	375-73-5	NE	1.5	J	5		U	5	1.5	J	2		U	5	2	J	5	2.4	J	5	0.67	J	2	0.84	J	2	1.1	J	2	1.4	J	5
Perfluorohexanesulfonic acid (PFHxS)	ng/l	355-46-4	NE	36		5		U	5	9.1		2	22		5	70	J	5	270	J	5	7.9		2	6.9		2	14		2	16		5
Perfluoro-1-Octanesulfonate (PFOS)	ng/l	1763-23-1	70	14		5	25		5	15		2	21		5	51	J	5	350	J	5	10		2	3.1		2	4.3		2	13		5
N-methyl perfluorooctanesulfonamidoacetic Acid	ng/l	2355-31-9	NE		U	5		U	5		U	2		U	5		U	5		U	5		U	2		U	2		U	2		U	5
N-ethyl perfluorooctanesulfonamidoacetic Acid	ng/l	2991-50-6	NE		U	8		U	7		U	3		U	8		U	7		U	7		U	3		U	3		U	3		U	8
Total PFOA + PFOS	ng/l	NA	70	304			92		Τ	215			251			521			2350			69			193.1			174.3			213		

 Table H-1
 013-6052

		Sar	nple ID	DD	A-16T	Z	DD	4-16L	JS	DC	G-10[	)	DC	G-108	s T	DC	GC-2S		DGC	-5 (40	))	GA	\-101		MH	IW-1N	1	MW-1	8	T 1	1W-26N
		Samp	le Date	10/2	22/201	19	10/2	22/20	19	10/	7/2019	9	10/7	7/201	9	10/2	23/201	9	10/2	4/201	9	10/9	9/2019	9	10/2	28/201	9	10/15/2	)19	10	0/9/2019
	N=Normal	, FD=Field Du	uplicate		Ν			Ν			Ν			Ν			Ν			N			Ν			Ν		N			N
Parameter	Unit	CAS	HA	Result	Qual	RL	Result	Qua	l RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL F	Result	Qual	RL	Result	Qual	RL	Result Qu	al RL	. Resu	ılt Qual RL
Perfluorohexanoic acid	ng/l	307-24-4	NE	24		5	29		5	15		2	17		2	36		2	49		5	39		2	47		2	30	2	45	2
Perfluoroheptanoic acid	ng/l	375-85-9	NE	14		5	25		5	10		2	13		2	29		2	34		5	26		2	23		2	23	2	27	2
Perfluoro-n-octanoic acid (PFOA)	ng/l	335-67-1	70	58		5	230		5	74		2	83		2	210		2	330		5	72		2	52		2	170	2	170	2
Perfluorononanoic acid	ng/l	375-95-1	NE	2.9	J	5	10		5	3.8		2	3.5		2	18		2	10		5	13		2	9.6		2	11	2	7.9	2
Perfluorodecanoic acid	ng/l	335-76-2	NE		U	5		TU	5	2.6		2	3.2		2	1.1	J	2	3.4	J	5	1.3	J	2	4.1		2	2.6	2	7.1	2
Perfluoroundecanoic acid	ng/l	2058-94-8	NE		U	5		U	5	0.94	J	2		U	2		U	2		U	5		U	2		U	2	1.2 J	2		U 2
Perfluorododecanoic acid	ng/l	307-55-1	NE		U	5		U	5		U	2		U	2		U	2		U	5		U	2		U	2	U	2		U 2
Perfluorotridecanoic acid	ng/l	72629-94-8	NE		U	5		U	5		U	2		U	2		U	2		U	5		U	2		U	2	U	2		U 2
Perfluorotetradecanoic acid	ng/l	376-06-7	NE		U	5		U	5		U	2		U	2		U	2		U	5		U	2		U	2	U	2		U 2
Perfluorobutanesulfonic acid (PFBS)	ng/l	375-73-5	NE		U	5	1.4	J	5	0.64	J	2	0.53	J	2	1.4	J	2	2.1	J	5	1.2	J	2	2.7		2	3.2	2	1.6	J 2
Perfluorohexanesulfonic acid (PFHxS)	ng/l	355-46-4	NE	1.5	J	5	11		5	18		2	25		2	3.5		2	62		5	1.1	J	2	1.7	J	2	8.7	2	71	2
Perfluoro-1-Octanesulfonate (PFOS)	ng/l	1763-23-1	70	2.2	J	5	13		5	16		2	16		2	12		2	42		5	3		2	6.5		2	87	2	46	2
N-methyl perfluorooctanesulfonamidoacetic Acid	ng/l	2355-31-9	NE		U	5		U	5		U	2		U	2		U	2		U	5		U	2		U	2	0.7 J	2		U 2
N-ethyl perfluorooctanesulfonamidoacetic Acid	ng/l	2991-50-6	NE		U	8		U	8		U	3		U	3		U	3		U	8		U	3		U	3	1.7 J	3		U 3
Total PFOA + PFOS	ng/l	NA	70	60.2			243			90			99			222			372			75			58.5			257		216	

 Table H-1
 013-6052

		San	nple ID	MW-	26N_1	28	MW-	26N_	138	MW-	34 (11	10)	MW-	34 (12	24)	MW	-34 (80	1)	PW	-1 (U)		PZ-1	1-EX	ΤŢ	RT	-1-UF	,	UF	PA-01		UP	'A-02D
		Sampl	e Date	10/1	17/201	9	10/1	17/201	19	10/1	5/201	9	10/1	6/201	19	10/1	15/2019	)	10/2	2/201	9	10/24	1/2019	9	10/2	21/201	9	10/2	1/201	.9	10/1	14/2019
	N=Normal	, FD=Field Du	plicate		Ν			Ν			Ν			Ν			Ν			Ν			N			Ν		i	N			N
Parameter	Unit	CAS	HA	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL I	Result	Qual	RL R	esult	Qual	RL I	Result	Qual	RL	Result	Qual	RL	Result	Qual RL
Perfluorohexanoic acid	ng/l	307-24-4	NE	65		2	61		2	15		2	16		2	15		2	28		5	35		5	2.1		2	37		2	23	2
Perfluoroheptanoic acid	ng/l	375-85-9	NE	40		2	40		2	11		2	11		2	10		2	19		5	23		5	0.51	J	2	24		2	14	2
Perfluoro-n-octanoic acid (PFOA)	ng/l	335-67-1	70	250		2	230		2	75		2	59		2	64		2	150		5	89		5	1	J	2	160		2	140	2
Perfluorononanoic acid	ng/l	375-95-1	NE	11		2	9.8		2	3.6		2	3.4		2	3.6		2	8.4		5	5.5	J+	5		U	2	6.6	J+	2	5.3	2
Perfluorodecanoic acid	ng/l	335-76-2	NE	12		2	12		2	0.93	J	2	0.82	J	2	0.74	J	2	1.5	J	5		U	5		U	2	4.2		2	1.1	J 2
Perfluoroundecanoic acid	ng/l	2058-94-8	NE		U	2		U	2		U	2		U	2		U	2		U	5		U	5		U	2	0.51	J	2		U 2
Perfluorododecanoic acid	ng/l	307-55-1	NE		U	2		U	2		U	2		U	2		U	2		U	5		U	5		U	2		U	2		U 2
Perfluorotridecanoic acid	ng/l	72629-94-8	NE		U	2		U	2		U	2		U	2		U	2		U	5		U	5		U	2		U	2		U 2
Perfluorotetradecanoic acid	ng/l	376-06-7	NE		U	2		U	2		U	2		U	2		U	2		U	5		U	5		U	2		U	2		U 2
Perfluorobutanesulfonic acid (PFBS)	ng/l	375-73-5	NE	1.9		2	1.8		2	1.6	J	2	1.6	J	2	1.9		2		U	5		U	5		U	2	0.83	J	2	1.1	J 2
Perfluorohexanesulfonic acid (PFHxS)	ng/l	355-46-4	NE	120		2	120		2	8.5		2	9		2	8		2	14		5	1.4	J	5		U	2	41		2	12	2
Perfluoro-1-Octanesulfonate (PFOS)	ng/l	1763-23-1	70	72		2	71		2	27		2	22		2	24		2	14		5	5.5		5		U	2	24		2	19	2
N-methyl perfluorooctanesulfonamidoacetic Acid	ng/l	2355-31-9	NE		U	2		U	2		U	2		U	2		U	2		U	5		U	5		U	2		U	2		U 2
N-ethyl perfluorooctanesulfonamidoacetic Acid	ng/l	2991-50-6	NE		U	3		U	3	0.52	J	3		U	3		U	3		U	8		U	8		U	3		U	3	1	J 3
Total PFOA + PFOS	ng/l	NA	70	322			301			102			81			88			164		Ç	94.5			1			184			159	

 February 2020
 Table H-1

		Sar	nple ID	UP	A-02	S	UP	A-03D		UPA	-103-	JS	UPA-	105A-	-LS	UPA-	105A-	LS	UPA-	105A-	US	UPA-	108B-	-LS	UPA-	108B-l	JS	UPA-1	08C-U	S
		Samp	le Date	10/1	14/201	19	10/1	4/2019	9	10/	7/201	9	10/1	8/201	19	10/1	8/201	9	10/1	8/201	9	10/1	0/201	19	10/1	0/2019	9	10/16	6/2019	
N:	=Normal,	, FD=Field Du	uplicate		Ν			Ν			Ν			Ν			FD			Ν			Ν			N			N	
Parameter	Unit	CAS	HA	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL	Result	Qual	RL I	Result (	Qual F	₹L
Perfluorohexanoic acid	ng/l	307-24-4	NE	31		2	32		2	26		2	17		2	15		2	15		2	27		2	35		2	38		2
Perfluoroheptanoic acid	ng/l	375-85-9	NE	22		2	22		2	15		2	11		2	10		2	10		2	18		2	23		2	31		2
Perfluoro-n-octanoic acid (PFOA)	ng/l	335-67-1	70	69		2	170		2	38		2	100		2	100		2	81		2	190		2	150		2	300		2
Perfluorononanoic acid	ng/l	375-95-1	NE	7.3		2	7.6		2	5		2	3.8		2	3.3		2	2.6		2	4.6		2	10		2	15		2
Perfluorodecanoic acid	ng/l	335-76-2	NE		U	2	9.4		2	1.2	J	2	1.7	J	2	1.9		2	2.4		2	1.2	J	2	3.4		2		U	2
Perfluoroundecanoic acid	ng/l	2058-94-8	NE		U	2	0.64	J	2		U	2		U	2		U	2		C	2		U	2	2.2		2		U	2
Perfluorododecanoic acid	ng/l	307-55-1	NE		U	2		U	2		U	2		U	2		U	2		U	2		U	2		U	2		U	2
Perfluorotridecanoic acid	ng/l	72629-94-8	NE		U	2		U	2		U	2		U	2		U	2		U	2		U	2		U	2		U	2
Perfluorotetradecanoic acid	ng/l	376-06-7	NE		U	2		U	2		U	2		U	2		U	2		U	2		U	2		U	2		U	2
Perfluorobutanesulfonic acid (PFBS)	ng/l	375-73-5	NE	2.8		2	1.3	J	2	1.4	J	2	0.68	J	2	0.63	J	2	0.53	J	2	2.3		2	5		2	3.6		2
Perfluorohexanesulfonic acid (PFHxS)	ng/l	355-46-4	NE	3.2		2	65		2	1.8		2	19		2	16		2	21		2	13		2	14		2	26		2
Perfluoro-1-Octanesulfonate (PFOS)	ng/l	1763-23-1	70	1.5	J	2	42		2	4.9		2	14		2	14		2	15		2	100		2	100		2	43		2
N-methyl perfluorooctanesulfonamidoacetic Acid	ng/l	2355-31-9	NE		U	2		U	2		U	2		U	2		U	2		U	2		U	2	0.75	J	2		U	2
N-ethyl perfluorooctanesulfonamidoacetic Acid	ng/l	2991-50-6	NE		U	3		U	3		U	3		U	3		U	3		U	3	0.67	J	3	8.1		3	0.47	J	3
Total PFOA + PFOS	ng/l	NA	70	70.5			212			42.9			114			114			96			290			250			343		



## October-November 2019 Semi-Annual Monitoring Program - Summary of PFAS Delaware Sand & Gravel Superfund Site New Castle County, Delaware

Notes:

Green highlight = Concentration exceeds HA

#### Abbreviations:

HA = the May 19, 2016 USEPA health advisory (HA) of 70 nanograms per liter (ng/l; parts per trillion [ppt]) for perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and/or the combined concentrations of PFOA and PFOS

ng/L = nanograms per liter Qual = interpreted qualifier RL = reporting limit

NE = standard does not exist

PFCs = perfluorinated compounds

Qualifiers:

J: Estimated result

J+: Estimated result, biased high

U: Non-detect result

Prepared by: KS Checked by: BPC Reviewed by: TAM





# Data Quality Assessment October 2019 Semi-Annual Groundwater Monitoring Event Delaware Sand and Gravel Superfund Site New Castle, DE

This report presents the findings of the data quality assessment performed on the analyses of environmental samples collected for the per- and polyfluorinated alkyl substances (PFAS) October 2019 Groundwater Monitoring Event. The groundwater monitoring was conducted at the Delaware Sand and Gravel (DS&G) Superfund Site (Site), located in New Castle, Delaware. Samples for this Monitoring Event were collected between October 7, 2019 and November 7, 2019. The chemical data for samples collected at the Site were evaluated to identify data quality issues which could affect the use of the data for decision making purposes. A total of 47 primary samples and the following Quality Assurance/Quality Control (QA/QC) samples were collected:

- Fifteen (15) trip blanks;
- Two (2) equipment rinsate blanks;
- Three (3) field blanks;
- Three (3) matrix spike / matrix spike duplicate (MS/MSD) pairs; and
- Three (3) field duplicate samples.

All samples were analyzed for a select list of fourteen (14) PFAS compounds¹ by Eurofins Lancaster Laboratories of Lancaster, Pennsylvania utilizing the following methodology:

PFAS by United States Environmental Protection Agency (USEPA) Method 537, Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), Version 1.1, modified (2009).

Information regarding the sample point identifications, analytical methods, Quality Control (QC) samples, sampling dates, an ¹d contract laboratory sample delivery group (SDG) designations are summarized in Table 1.

There is not yet a recognized voluntary standard method for the analysis of PFAS using isotope dilution. The data validator used the acceptance criteria in the project SAP, laboratory SOP, and professional judgement informed by the USEPA Contract Laboratory Program (CLP) National Functional Guidelines (NFG) for Organic Superfund Methods Data Review and USEPA CLP NFG for High Resolution Superfund Methods Data Review validation guidance as the basis for accepting or qualifying the data, as applicable to the above listed analytical method. In general, chemical results for the samples collected at the Site were qualified on the basis of outlying precision or

¹ Reported PFAS compounds include: Perfluorobutane Sulfonate, Perfluorohexanoic acid, Perfluorohexane Sulfonate, Perfluoroheptanoic acid, Perfluoro-n-octanoic acid (PFOA), Perfluoro-1-Octanesulfonate (PFOS), Perfluorononanoic acid, Perfluorodecanoic acid, Perfluorodecanoic acid, Perfluorotetradecanoic acid, N-methyl perfluoroctanesulfonamidoacetic Acid, and N-ethyl perfluorocctanesulfonamidoacetic Acid



٩,

January 2020 013-6052

accuracy parameters, or on the basis of professional judgment. The following definitions provide a brief explanation of the qualifiers which may have been assigned to data during the data evaluation process.

- J The analyte is present; however, the reported value may not be accurate or precise.
- The analyte is present; however, the reported value may not be accurate or precise. The result is biased high.

The data generated during this Monitoring Event met the QC criteria established in the respective analytical methods and CLP guidelines, except as noted below. Qualifications may not have been required for all samples. Table 2 summarizes detailed qualifications applied to the data.

- Certain detected results were qualified as estimated, biased high (J+) when an associated isotope dilution standard recovery was above QC criteria.
- © Certain detected results were qualified as estimated without bias (J) when an associated isotope dilution standard recovery was below QC criteria and the detection was between the MDL and RL.
- Certain detected results were qualified as estimated without bias (J) when an associated isotope dilution standard recovery was above QC criteria and the detection was between the MDL and the RL, and an associated internal standard peak area was below QC criteria.
- Certain detected results were qualified as estimated (J) when an associated MS/MSD recovery and/or RPD were outside of QC criteria and field duplicate precision was outside of QC criteria.
- Certain detected results were qualified as estimated (J) when field duplicate precision was outside of QC criteria.

Based on the data evaluations and data quality assessment, the analytical data for samples collected at the Site were determined to be acceptable (including estimated data) for their intended use. Generally acceptable levels of accuracy and precision, based on LCS, MS/MSD, field duplicate and surrogate recoveries, were achieved for the data. In addition, the data completeness (i.e. the ratio of the amount of valid data obtained to the amount expected, including estimated data, was 100%.



# Sample Point Identifications October 2019 PFAS Groundwater Monitoring Event Deleware Sand Gravel Superfund Site New Castle, Delaware

						Parameters / Methods
SDG	Field Identification	Matrix	Lab Identification	QC Samples	Collection Date	PFAS via E537 Mod
DSG13	UPA-103-US	WG	1170070		10/7/2019	X
DSG13	DGC-10D	WG	1170071	∞ m	10/7/2019	X
DSG13	DGC-10S	WG	1170072		10/7/2019	X
DSG13	TBGW 100719	WQ	1170073	ТВ	10/7/2019	Х
DSG13	MW-26N	WG	1171864		10/9/2019	X
DSG13	GA-101	WG	1171865	<del></del>	10/9/2019	X
DSG13	TBGW 100919	WQ	1171866	TB	10/9/2019	X
DSG13	UPA-108B-US	WG	1173757		10/10/2019	X
DSG13	UPA-108B-LS	WG	1173758		10/10/2019	Х
DSG13	TBGW 101019	WQ	1173759	TB	10/10/2019	X
DSG13	UPA-13D	WG	1174883		10/14/2019	X
DSG13	UPA-02S	WG	1174884		10/14/2019	X
DSG13	UPA-02D	WG	1174885		10/14/2019	X
DSG13	TBGW 101419	WQ	1174886	TB	10/14/2019	X
DSG13	MW-18	WG	1176069		10/15/2019	X
DSG13	MW-34 (80)	WG	1176070		10/15/2019	X
DSG13	MW-34 (110)	WG	1176071		10/15/2019	X
DSG13	TBGW 101519	WQ	1176072	ТВ	10/15/2019	X
DSG14	MW-34 (124)	WG	1177177	. <u>-</u>	10/16/2019	X
DSG14	UPA-108C-US	WG	1177178		10/16/2019	X
DSG14	TBGW 101619	WQ	1177179	ТВ	10/16/2019	X
DSG14	MW-26N 128	WG	1178912		10/17/2019	X
DSG14	MW-26N_128	WG	1178913		10/17/2019	X
DSG14	MW-26N 3X	WG	1178914		10/17/2019	X
DSG14	UPA-105A-LS	WG	1180209		10/18/2019	X
DSG14	UPA-105A-US	WG	1180210	MS/MSD	10/18/2019	X
DSG14	FDGW 101819	WG	1180213	FD (UPA-105A-LS)	10/18/2019	X
DSG14	FBGW 101819	WQ	1180214	FB	10/18/2019	X
DSG14	TBGW 101819	WQ	1180215	TB	10/18/2019	X
DSG14	RT-1-UP	WG	1180248		10/21/2019	X
DSG14	UPA-01	WG	1180249	M M	10/21/2019	X
DSG14	DDA-12-TZ	WG	1180250		10/21/2019	X
DSG14	DDA-12-US	WG	1180251		10/21/2019	$\frac{\hat{x}}{\hat{x}}$
DSG14	DDA-02	WG	1180252		10/21/2019	X
DSG14	TBGW 102119	WQ	1180253	TB	10/21/2019	X
DSG15	DDA-03	WG	1183075		10/22/2019	X
DSG15	DDA-06	WG	1183076	ner ner	10/22/2019	X
DSG15	DDA-11LS	WG	1183077		10/22/2019	X
DSG15	DDA-16TZ	WG	1183078		10/22/2019	X
DSG15	DDA-16US	WG	1183079		10/22/2019	X
DSG15	PW-1 (U)	WG	1183080		10/22/2019	X
DSG15	TBGW_102219	WQ	1183081	TB	10/22/2019	X
DSG15 DSG15	DGC-2S	WG	1184509		10/22/2019	X
DSG15 DSG15	DDA-07-TZ	WG	1184510		10/23/2019	X
DSG15 DSG15	DDA-07-12 DDA-07-US	WG	1184511		10/23/2019	X
DSG15 DSG15	DDA-07-03 DDA-08-TZ	WG	1184512		10/23/2019	X
DSG15 DSG15	TBGW 102319	WQ	1184513	TB	10/23/2019	X
DSG15 DSG15	DGC-5 (40)	WG	1185316		10/23/2019	X
DSG15 DSG15	PZ-11-EXT	WG	1185317		10/24/2019	X
DSG15 DSG15	TBGW 102419	WQ	1185318	TB	10/24/2019	X
DSG15 DSG15	C-18D	WG	1186963	I D	10/24/2019	X
	B-4DR	WG	1186964	Mewed	10/25/2019	X
DSG15	D-4UK	VVG	1100904	MS/MSD	10/23/2019	^



# Sample Point Identifications October 2019 PFAS Groundwater Monitoring Event Deleware Sand Gravel Superfund Site New Castle, Delaware

						Parameters / Methods
SDG	Field Identification	Matrix	Lab Identification	QC Samples	Collection Date	PFAS via E537 Mod
DSG15	RBGW_102519	WQ	1186967	RB	10/25/2019	Х
DSG15	FDGW_102519	WG	1186968	FD (C-18D)	10/25/2019	X
DSG15	FBGW_102519	WQ	1186969	FB	10/25/2019	X
DSG15	TBGW_102519	WQ	1186970	TB	10/25/2019	Х
DSG16	B-3D	WG	1187535		10/28/2019	X
DSG16	MHW-1M	WG	1187536		10/28/2019	X
DSG16	DDA-15-T2	WG	1187537		10/28/2019	Х
DSG16	TBGW_102819	WQ	1187538	TB	10/28/2019	X
DSG16	DDA-10-US	WG	1189209	MS/MSD	10/30/2019	X
DSG16	FDGW_103019	WG	1189212	FD (DDA-10-US)	10/30/2019	Х
DSG16	FBGW_103019	WQ	1189213	FB	10/30/2019	Х
DSG16	RBGW_103019	WQ	1189214	RB	10/30/2019	Х
DSG16	TBGW_103019	WQ	1189215	TB	10/30/2019	Х
DSG16	AWC-E1(132)	WG	1198570		11/7/2019	Х
DSG16	AWC-E1(156)	WG	1198571		11/7/2019	Х
DSG16	AWC-E2(156)	WG	1198572		11/7/2019	Х
DSG16	AWC-E2(165)	WG	1198573		11/7/2019	Х
DSG16	TBGW-110719	WQ	1198574	TB	11/7/2019	X

#### Abbreviations:

FB - Field Blank

FD - Field Duplicate

MS - Matrix Spike

MSD - Matrix Spike Duplicate

PFAS - Per- and Polyfluorinated Alkyl Substances

RB - Rinsate Blank

SDG - Sample Delivery Group

TB - Trip Blank

WG - Groundwater

WQ - Water, Quality Control



# Data Qualifications October 2019 PFAS Groundwater Monitoring Event Delaware Sand and Gravel Superfund Site New Castle, Delaware

SDG	Sample Name	Constituent	New Result	New RL	Qualifier	Reason
DSG13	MW-18	NMeFOSAA			J	Isotope dilution standard recovery below QC criteria; Result detected between MDL and RL
DSG14	UPA-01	Perfluorononanoic acid			J+	Isotope dilution standard recovery above QC criteria
DSG14	DDA-02	Perfluorononanoic acid			J+	Isotope dilution standard recovery above QC criteria
DSG15	C-18D	Perfluorooctanesulfonic acid			J	Field duplicate precision outside of QC criteria
DSG15	FDGW_102519	Perfluorooctanesulfonic acid			J	Field duplicate precision outside of QC criteria
DSG15	PZ-11-EXT	Perfluorononanoic acid			J+	Isotope dilution standard recovery above QC criteria
DSG15	C-18D	Perfluorononanoic acid			J+	Isotope dilution standard recovery above QC criteria
DSG15	FDGW_102519	Perfluorononanoic acid			J+	Isotope dilution standard recovery above QC criteria
DSG16	DDA-10-US	Perfluoroheptanoic acid			J	Field duplicate precision outside of QC criteria
DSG16	DDA-10-US	Perfluorodecanoic acid			J	Field duplicate precision outside of QC criteria
DSG16	FDGW_103019	Perfluoroheptanoic acid			J	Field duplicate precision outside of QC criteria
DSG16	FDGW_103019	Perfluorodecanoic acid			J	Field duplicate precision outside of QC criteria
DSG16	DDA-15-T2	Perfluorononanoic acid			J+	Isotope dilution standard recovery above QC criteria
DSG16	AWC-E2(165)	Perfluorobutanesulfonic acid			J	Isotope dilution standard recovery above QC criteria, result detected below RL; Internal standard peak area below QC criteria.
DSG16	DDA-10-US	Perfluorohexanesulfonic acid			J	MS recovery above QC criteria, RPD outside of QC criteria; Field duplicate precision outside of QC criteria
DSG16	DDA-10-US	Perfluorononanoic acid			J	MS recovery above QC criteria, RPD outside of QC criteria; Field duplicate precision outside of QC criteria
DSG16	DDA-10-US	Perfluorooctanesulfonic acid			J	MS recovery above QC criteria, RPD outside of QC criteria; Field duplicate precision outside of QC criteria
DSG16	FDGW_103019	Perfluorohexanesulfonic acid			J	MS recovery above QC criteria, RPD outside of QC criteria; Field duplicate precision outside of QC criteria
DSG16	FDGW_103019	Perfluorononanoic acid			J	MS recovery above QC criteria, RPD outside of QC criteria; Field duplicate precision outside of QC criteria
DSG16	FDGW_103019	Perfluorooctanesulfonic acid			J	MS recovery above QC criteria, RPD outside of QC criteria; Field duplicate precision outside of QC criteria
DSG16	DDA-10-US	Perfluorooctanoic acid			J	MS/MSD RPD outside of QC criteria; Field duplicate precision outside of QC criteria
DSG16	FDGW_103019	Perfluorooctanoic acid			J	MS/MSD RPD outside of QC criteria; Field duplicate precision outside of QC criteria



#### **Data Qualifications**

### October 2019 PFAS Groundwater Monitoring Event Delaware Sand and Gravel Superfund Site

New Castle, Delaware

SDG	Sample Name	Constituent	New Result	New RL	Qualifier	Reason
All SDGs	All samples	All results	-		-	Laboratory-applied U-qualifiers indicating non-detect results and J-qualifiers indicating results Below the reporting limit are retained unless other qualifications are indicated in this table. All other laboratory qualifiers are removed.

#### Abbreviations:

MDL - Method Detection Limit

MS - Matrix Spike

MSD - Matrix Spike Duplicate

QC - Quality Control

RL - Reporting Limit

RPD - Relative Percent Difference

SDG - Sample Delivery Group

#### **Qualifier Definitions:**

J: Estimated Result

J+: Estimated Result, Biased High



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

**REVISED** 

Sample Description: **UPA-103-US Grab Groundwater** 

DS&G

**DE Sand and Gravel Superfund Site** 

Collection Date/Time: SDG#:

Submittal Date/Time:

**Project Name:** 

DSG13-01

10/07/2019 10:25

10/07/2019 19:43

Golder Associates	Incorporated
ELLE Sample #:	GW 1170070
ELLE Group #:	2068051
Matrix: Groundwa	tor

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	0.44	1
	NEtFOSAA is the acronym for N-ethyl perfl	uorooctanesulfonan	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	0.53	1
	NMeFOSAA is the acronym for N-methyl pe	erfluorooctanesulfor	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	1.4 J	0.44	1
14473	Perfluorodecanoic acid	335-76-2	1.2 J	0.44	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1
14473	Perfluoroheptanoic acid	375-85-9	15	0.44	1
14473	Perfluorohexanesulfonic acid	355-46-4	1.8	0.44	1
14473	Perfluorohexanoic acid	307-24-4	26	0.44	1
14473	Perfluorononanoic acid	375-95-1	5.0	0.44	1
14473	Perfluorooctanesulfonic acid	1763-23-1	4.9	0.44	1
14473	Perfluorooctanoic acid	335-67-1	38	0.44	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1

Laboratory S	Sample	<b>Analysis</b>	Record
--------------	--------	-----------------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19291009	10/21/2019 16:17	Danielle D McCully	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19291009	10/18/2019 07:00	Pamela Rothharpt	1



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

**REVISED** 

Sample Description: **DCG-10D Grab Groundwater** 

DS&G

**Golder Associates Incorporated ELLE Sample #: GW 1170071 ELLE Group #:** 2068051

Matrix: Groundwater

**Project Name: DE Sand and Gravel Superfund Site** 

Submittal Date/Time: 10/07/2019 19:43

SDG#:	DSG13-02
Collection Date/Time:	10/07/2019 14:15
Submittal Date/ Time.	10/01/2019 19.43

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 V Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl pe	2991-50-6	N.D.	0.43	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl	2355-31-9	N.D.	0.52	1
14473	Perfluorobutanesulfonic acid	375-73-5	0.64 J	0.43	1
14473	Perfluorodecanoic acid	335-76-2	2.6	0.43	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.43	1
14473	Perfluoroheptanoic acid	375-85-9	10	0.43	1
14473	Perfluorohexanesulfonic acid	355-46-4	18	0.43	1
14473	Perfluorohexanoic acid	307-24-4	15	0.43	1
14473	Perfluorononanoic acid	375-95-1	3.8	0.43	1
14473	Perfluorooctanesulfonic acid	1763-23-1	16	0.43	1
14473	Perfluorooctanoic acid	335-67-1	74	0.43	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.43	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.43	1
14473	Perfluoroundecanoic acid	2058-94-8	0.94 J	0.43	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19291009	10/21/2019 16:26	Danielle D McCully	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19291009	10/18/2019 07:00	Pamela Rothharpt	1



**Project Name:** 

### Lancaster Laboratories Environmental

### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

**REVISED** 

Sample Description: DCG-10S Grab Groundwater

DS&G

Golder Associates Incorporated ELLE Sample #: GW 1170072 ELLE Group #: 2068051

DE Sand and Gravel Superfund Site

Matrix: Groundwater

Submittal Date/Time: 10/07/2019 19:43 Collection Date/Time: 10/07/2019 15:15

SDG#: DSG13-03

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor			
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l				
14473	NEtFOSAA	2991-50-6	N.D.	0.45	1			
	NEtFOSAA is the acronym for N-ethyl perfl	uorooctanesulfonan	nidoacetic Acid.					
14473	NMeFOSAA	2355-31-9	N.D.	0.54	1			
	NMeFOSAA is the acronym for N-methyl perfluorooctanesulfonamidoacetic Acid.							
14473	Perfluorobutanesulfonic acid	375-73-5	0.53 J	0.45	1			
14473	Perfluorodecanoic acid	335-76-2	3.2	0.45	1			
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1			
14473	Perfluoroheptanoic acid	375-85-9	13	0.45	1			
14473	Perfluorohexanesulfonic acid	355-46-4	25	0.45	1			
14473	Perfluorohexanoic acid	307-24-4	17	0.45	1			
14473	Perfluorononanoic acid	375-95-1	3.5	0.45	1			
14473	Perfluorooctanesulfonic acid	1763-23-1	16	0.45	1			
14473	Perfluorooctanoic acid	335-67-1	83	0.45	1			
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1			
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1			
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1			

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19291009	10/21/2019 16:35	Danielle D McCully	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19291009	10/18/2019 07:00	Pamela Rothharpt	1



**Project Name:** 

### Lancaster Laboratories Environmental

### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

**REVISED** 

Sample Description: TBGW_100719 Water

DS&G

Golder Associates Incorporated ELLE Sample #: GW 1170073

ELLE Group #: 2068051

Matrix: Water

DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/07/2019 19:43
Collection Date/Time: 10/07/2019
SDG#: DSG13-04TB

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	ersion 1.1	ng/l	ng/i	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perf	2991-50-6 luorooctanesulfonar	N.D. midoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 erfluorooctanesulfor	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.45	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.45	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.45	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.45	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19291009	10/21/2019 16:44	Danielle D McCully	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19291009	10/18/2019 07:00	Pamela Rothharpt	1



### Analysis Report

**Golder Associates Incorporated** 

**ELLE Sample #: GW 1171864** 

2068491

ELLE Group #:

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: MW-26N Grab Groundwater

DS & G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/09/2019 17:39 Collection Date/Time: 10/09/2019 11:45

SDG#: DSG13-05

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 V Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl per	2991-50-6 fluorooctanesulfonal	N.D. midoacetic Acid.	0.44	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl	2355-31-9 perfluorooctanesulfo	N.D. namidoacetic Acid.	0.53	1
14473	Perfluorobutanesulfonic acid	375-73-5	1.6 J	0.44	1
14473	Perfluorodecanoic acid	335-76-2	7.1	0.44	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1
14473	Perfluoroheptanoic acid	375-85-9	27	0.44	1
14473	Perfluorohexanesulfonic acid	355-46-4	71	0.44	1
14473	Perfluorohexanoic acid	307-24-4	45	0.44	1
14473	Perfluorononanoic acid	375-95-1	7.9	0.44	1
14473	Perfluorooctanesulfonic acid	1763-23-1	46	0.44	1
14473	Perfluorooctanoic acid	335-67-1	170	0.44	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19294034	10/23/2019 20:46	Christine E Dolman	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19294034	10/21/2019 16:00	Anthony C Polaski	1



### Analysis Report

Golder Associates Incorporated

**ELLE Sample #: GW 1171865** 

2068491

ELLE Group #:

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: GA-101 Grab Groundwater

DS & G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/09/2019 17:39 Collection Date/Time: 10/09/2019 14:00

SDG#: DSG13-06

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perfl	2991-50-6 uorooctanesulfonam	N.D. ildoacetic Acid.	0.46	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 erfluorooctanesulfon	N.D. amidoacetic Acid.	0.55	1
14473	Perfluorobutanesulfonic acid	375-73-5	1.2 J	0.46	1
14473	Perfluorodecanoic acid	335-76-2	1.3 J	0.46	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.46	1
14473	Perfluoroheptanoic acid	375-85-9	26	0.46	1
14473	Perfluorohexanesulfonic acid	355-46-4	1.1 J	0.46	1
14473	Perfluorohexanoic acid	307-24-4	39	0.46	1
14473	Perfluorononanoic acid	375-95-1	13	0.46	1
14473	Perfluorooctanesulfonic acid	1763-23-1	3.0	0.46	1
14473	Perfluorooctanoic acid	335-67-1	72	0.46	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.46	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.46	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.46	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19294034	10/23/2019 20:55	Christine E Dolman	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19294034	10/21/2019 16:00	Anthony C Polaski	1



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW_100919 Water

DS & G

Project Name: DE Sand and Gravel Superfund Site

 Submittal Date/Time:
 10/09/2019 17:39

 Collection Date/Time:
 10/09/2019

 SDG#:
 DSG13-07TB

Golder Associates Incorporated ELLE Sample #: GW 1171866 ELLE Group #: 2068491

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 \ Modified	/ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl po	2991-50-6 erfluorooctanesulfonar	N.D. midoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methy	2355-31-9 I perfluorooctanesulfo	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.45	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.45	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.45	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.45	1
14473	Perfluorooctanoic acid	335-67-1	0.45 J	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19294034	10/23/2019 21:04	Christine E Dolman	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19294034	10/21/2019 16:00	Anthony C Polaski	1



### Analysis Report

**Golder Associates Incorporated** 

GW 1173757

2068937

ELLE Sample #:

Matrix: Groundwater

**ELLE Group #:** 

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: UPA-108B-US Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/10/2019 18:53 Collection Date/Time: 10/10/2019 10:00

SDG#: DSG13-08

are from the initial injection of the sample.

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	ersion 1.1	ng/i	ng/l	
14473	NEtFOSAA	2991-50-6	8.1	0.44	1
	NEtFOSAA is the acronym for N-ethyl perf	luorooctanesulfonar	midoacetic Acid.		
14473	NMeFOSAA	2355-31-9	0.75 J	0.53	1
	NMeFOSAA is the acronym for N-methyl p	erfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	5.0	0.44	1
14473	Perfluorodecanoic acid	335-76-2	3.4	0.44	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1
14473	Perfluoroheptanoic acid	375-85-9	23	0.44	1
14473	Perfluorohexanesulfonic acid	355-46-4	14	0.44	1
14473	Perfluorohexanoic acid	307-24-4	35	0.44	1
14473	Perfluorononanoic acid	375-95-1	10	0.44	1
14473	Perfluorooctanesulfonic acid	1763-23-1	100	0.44	1
14473	Perfluorooctanoic acid	335-67-1	150	0.44	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1
14473	Perfluoroundecanoic acid	2058-94-8	2.2	0.44	1
	sample injection standard 13C3-PFBA peak a for both the initial injection and the re-injection				

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19294034	10/23/2019 21:41	Christine E Dolman	1	
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19294034	10/21/2019 16:00	Anthony C Polaski	1	



### Analysis Report

**Golder Associates Incorporated** 

**ELLE Sample #: GW 1173758** 

2068937

ELLE Group #:

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: **UPA-108B-LS Grab Groundwater** 

DS&G

**Project Name: DE Sand and Gravel Superfund Site** 

Submittal Date/Time: 10/10/2019 18:53 Collection Date/Time: 10/10/2019 10:35

SDG#: DSG13-09

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perfl	2991-50-6 uorooctanesulfonan	0.67 J nidoacetic Acid.	0.46	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 erfluorooctanesulfor	N.D. namidoacetic Acid.	0.55	1
14473	Perfluorobutanesulfonic acid	375-73-5	2.3	0.46	1
14473	Perfluorodecanoic acid	335-76-2	1.2 J	0.46	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.46	1
14473	Perfluoroheptanoic acid	375-85-9	18	0.46	1
14473	Perfluorohexanesulfonic acid	355-46-4	13	0.46	1
14473	Perfluorohexanoic acid	307-24-4	27	0.46	1
14473	Perfluorononanoic acid	375-95-1	4.6	0.46	1
14473	Perfluorooctanesulfonic acid	1763-23-1	100	0.46	1
14473	Perfluorooctanoic acid	335-67-1	190	0.46	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.46	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.46	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.46	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19294034	10/23/2019 21:50	Christine E Dolman	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19294034	10/21/2019 16:00	Anthony C Polaski	1



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW_101019 Water

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/10/2019 18:53
Collection Date/Time: 10/10/2019
SDG#: DSG13-10TB

Golder Associates Incorporated ELLE Sample #: WW 1173759 ELLE Group #: 2068937

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Modified	' Version 1.1 I	ng/i	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl	2991-50-6 perfluorooctanesulfona	N.D. midoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-met	2355-31-9 hyl perfluorooctanesulfo	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.45	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.45	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.45	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.45	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19294034	10/23/2019 22:08	Christine E Dolman	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19294034	10/21/2019 16:00	Anthony C Polaski	1



### Analysis Report

**Golder Associates Incorporated** 

**ELLE Sample #: GW 1174883** 

2069175

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: UPA-03D Grab Groundwater

DS+G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/14/2019 18:27 Collection Date/Time: 10/14/2019 09:55

SDG#: DSG13-11

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perflu	2991-50-6 uorooctanesulfonam	N.D. iidoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl pe	2355-31-9 erfluorooctanesulfon	N.D. amidoacetic Acid.	0.55	1
14473	Perfluorobutanesulfonic acid	375-73-5	1.3 J	0.45	1
14473	Perfluorodecanoic acid	335-76-2	9.4	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	22	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	65	0.45	1
14473	Perfluorohexanoic acid	307-24-4	32	0.45	1
14473	Perfluorononanoic acid	375-95-1	7.6	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	42	0.45	1
14473	Perfluorooctanoic acid	335-67-1	170	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	0.64 J	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19294034	10/23/2019 22:27	Christine E Dolman	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19294034	10/21/2019 16:00	Anthony C Polaski	1



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: UPA-02S Grab Groundwater

DS+G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/14/2019 18:27 Collection Date/Time: 10/14/2019 12:25 SDG#: DSG13-12 Golder Associates Incorporated ELLE Sample #: GW 1174884 ELLE Group #: 2069175

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	0.43	1
	NEtFOSAA is the acronym for N-ethyl perflu	uorooctanesulfonam	idoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	0.52	1
	NMeFOSAA is the acronym for N-methyl pe	erfluorooctanesulfon	amidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	2.8	0.43	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.43	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.43	1
14473	Perfluoroheptanoic acid	375-85-9	22	0.43	1
14473	Perfluorohexanesulfonic acid	355-46-4	3.2	0.43	1
14473	Perfluorohexanoic acid	307-24-4	31	0.43	1
14473	Perfluorononanoic acid	375-95-1	7.3	0.43	1
14473	Perfluorooctanesulfonic acid	1763-23-1	1.5 J	0.43	1
14473	Perfluorooctanoic acid	335-67-1	69	0.43	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.43	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.43	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.43	1

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19294034	10/23/2019 22:36	Christine E Dolman	1				
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19294034	10/21/2019 16:00	Anthony C Polaski	1				



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: UPA-02D Grab Groundwater

DS+G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/14/2019 18:27 Collection Date/Time: 10/14/2019 12:25 SDG#: DSG13-13 Golder Associates Incorporated ELLE Sample #: GW 1174885 ELLE Group #: 2069175

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Modified	Version 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl	2991-50-6 perfluorooctanesulfona	1.0 J midoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-meth	2355-31-9 nyl perfluorooctanesulfo	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	1.1 J	0.45	1
14473	Perfluorodecanoic acid	335-76-2	1.1 J	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	14	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	12	0.45	1
14473	Perfluorohexanoic acid	307-24-4	23	0.45	1
14473	Perfluorononanoic acid	375-95-1	5.3	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	19	0.45	1
14473	Perfluorooctanoic acid	335-67-1	140	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19294034	10/23/2019 22:45	Christine E Dolman	1			
14091	PFAS Water Prep	EPA 537 Version 1.1	1	19294034	10/21/2019 16:00	Anthony C Polaski	1			



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW_101419 Water

DS+G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/14/2019 18:27
Collection Date/Time: 10/14/2019
SDG#: DSG13-14TB

Golder Associates Incorporated ELLE Sample #: GW 1174886 ELLE Group #: 2069175

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Modified	7 Version 1.1 d	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl	2991-50-6 perfluorooctanesulfona	N.D. midoacetic Acid.	0.46	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-met	2355-31-9 hyl perfluorooctanesulfo	N.D. namidoacetic Acid.	0.55	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.46	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.46	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.46	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.46	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.46	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.46	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.46	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.46	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.46	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.46	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.46	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.46	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19294034	10/23/2019 22:54	Christine E Dolman	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19294034	10/21/2019 16:00	Anthony C Polaski	1



### Analysis Report

**Golder Associates Incorporated** 

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: MW-18 Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/15/2019 19:13 Collection Date/Time: 10/15/2019 10:25 SDG#: DSG13-15

ELLE Sample #: GW 1176069
ELLE Group #: 2069407
and Gravel Superfund Site Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perf	2991-50-6 luorooctanesulfonan	1.7 J nidoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 erfluorooctanesulfor	0.70 J amidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	3.2	0.45	1
14473	Perfluorodecanoic acid	335-76-2	2.6	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	23	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	8.7	0.45	1
14473	Perfluorohexanoic acid	307-24-4	30	0.45	1
14473	Perfluorononanoic acid	375-95-1	11	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	87	0.45	1
14473	Perfluorooctanoic acid	335-67-1	170	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	1.2 J	0.45	1

The recovery for extraction standard d3-NMeFOSAA is outside of the QC acceptance limits as noted on the QC Summary. The following action was taken:

The sample was re-extracted outside of the method holding time and the recovery for extraction standards was within the QC acceptance limits. The data is reported from the initial trial and both sets of data are included in the data package.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19294034	10/23/2019 23:49	Christine E Dolman	1				
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19294034	10/21/2019 16:00	Anthony C Polaski	1				



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: MW-34 (80) Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/15/2019 19:13 Collection Date/Time: 10/15/2019 12:05 SDG#: DSG13-16 Golder Associates Incorporated
ELLE Sample #: GW 1176070
ELLE Group #: 2069407
Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA Mod	537 Version 1.1 ified	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-	2991-50-6 ethyl perfluorooctanesulfonan	N.D. nidoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N	2355-31-9 -methyl perfluorooctanesulfor	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	1.9	0.45	1
14473	Perfluorodecanoic acid	335-76-2	0.74 J	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	10	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	8.0	0.45	1
14473	Perfluorohexanoic acid	307-24-4	15	0.45	1
14473	Perfluorononanoic acid	375-95-1	3.6	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	24	0.45	1
14473	Perfluorooctanoic acid	335-67-1	64	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

#### **Laboratory Sample Analysis Record** Method Trial# CAT **Analysis Name** Batch# **Analysis** Analyst Dilution Date and Time Factor No. 14473 PFAS in Water by LC/MS/MS EPA 537 Version 1.1 19294034 10/23/2019 23:58 Christine E Dolman Modified 14091 PFAS Water Prep EPA 537 Version 1.1 19294034 10/21/2019 16:00 Anthony C Polaski 1 Modified



CAT

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

No.

### Lancaster Laboratories Environmental

### Analysis Report

2425 New Holland Pike, Lancaster, PA 17691 • 717-656-2300 • Fax: 717-656-6766 • www.EurotimitiS.com/LanciabsEnv

Sample Description: MW-34 (110) Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

**CAS Number** 

2991-50-6

2355-31-9

375-73-5

335-76-2

307-55-1

375-85-9

355-46-4

307-24-4

375-95-1

335-67-1

376-06-7

72629-94-8

2058-94-8

1763-23-1

EPA 537 Version 1.1

NEtFOSAA is the acronym for N-ethyl perfluorooctanesulfonamidoacetic Acid.

NMeFOSAA is the acronym for N-methyl perfluorooctanesulfonamidoacetic Acid.

Modified

Result

0.52 J

1.6 J

0.93 J

N.D.

11

8.5

15

3.6

27

75

N.D.

N.D.

N.D.

ng/l

N.D.

Submittal Date/Time: 10/15/2019 19:13 Collection Date/Time: 10/15/2019 15:05

SDG#: DSG13-17

Perfluorobutanesulfonic acid

Perfluorohexanesulfonic acid

Perfluorooctanesulfonic acid

Perfluorotetradecanoic acid

Perfluorotridecanoic acid

Perfluoroundecanoic acid

Perfluorodecanoic acid

Perfluorododecanoic acid

Perfluoroheptanoic acid

Perfluorohexanoic acid

Perfluorononanoic acid

Perfluorooctanoic acid

**Analysis Name** 

LC/MS/MS Miscellaneous

**NEtFOSAA** 

**NMeFOSAA** 

Golder Associates	Incorporated
ELLE Sample #:	GW 1176071
ELLE Group #:	2069407
Matrix: Groundwa	ter

Method Detection Limit	Dilution Factor
ng/l	
0.45	1
0.54	1
0.45	1
0.45	1
0.45	1
0.45	1
0.45	1
0.45	1
0.45	1
0.45	1
0.45	1
0.45	1
0.45	1

0.45

#### Laboratory Sample Analysis Record Method CAT **Analysis Name** Trial# Batch# **Analysis** Analyst Dilution Date and Time Factor No. EPA 537 Version 1.1 14473 PFAS in Water by LC/MS/MS 19294034 10/24/2019 00:07 Christine E Dolman Modified 14091 PFAS Water Prep EPA 537 Version 1.1 19294034 10/21/2019 16:00 Anthony C Polaski 1 Modified



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW_101519 Water

DS&G

Project Name: DE Sand and Gravel Superfund Site

 Submittal Date/Time:
 10/15/2019 19:13

 Collection Date/Time:
 10/15/2019

 SDG#:
 DSG13-18TB

Golder Associates Incorporated ELLE Sample #: GW 1176072 ELLE Group #: 2069407

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS/MS Miscellaneous EPA 537 Version 1.1 Modified			ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	0.46	1
	NEtFOSAA is the acronym for N-ethyl per	fluorooctanesulfonar	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	0.55	1
	NMeFOSAA is the acronym for N-methyl p	oerfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.46	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.46	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.46	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.46	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.46	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.46	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.46	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.46	1
14473	Perfluorooctanoic acid	335-67-1	0.47 J	0.46	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.46	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.46	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.46	1
	ecovery for the extraction standard d5-NEtF otance limits as noted on the QC Summary.	OSAA is outside the	QC		

			-	-			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19294034	10/24/2019 00:16	Christine E Dolman	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19294034	10/21/2019 16:00	Anthony C Polaski	1



### Analysis Report

**Golder Associates Incorporated** 

1

GW 1177177

2069680

**ELLE Sample #:** 

Matrix: Groundwater

**ELLE Group #:** 

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: MW-34 (124) Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/16/2019 19:06
Collection Date/Time: 10/16/2019 10:15

SDG#: DSG14-01

Perfluorotetradecanoic acid

Perfluorotridecanoic acid

Perfluoroundecanoic acid

14473

14473

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous	EPA 537 Version 1.1 Modified	ng/l	ng/i	
14473	NEtFOSAA NEtFOSAA is the acronyr	2991-50-6 n for N-ethyl perfluorooctanesulfonan	N.D. nidoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acrony	2355-31-9 m for N-methyl perfluorooctanesulfor	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic a	cid 375-73-5	1.6 J	0.45	1
14473	Perfluorodecanoic acid	335-76-2	0.82 J	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	11	0.45	1
14473	Perfluorohexanesulfonic a	acid 355-46-4	9.0	0.45	1
14473	Perfluorohexanoic acid	307-24-4	16	0.45	1
14473	Perfluorononanoic acid	375-95-1	3.4	0.45	1
14473	Perfluorooctanesulfonic a	cid 1763-23-1	22	0.45	1
14473	Perfluorooctanoic acid	335-67-1	59	0.45	1

#### **Laboratory Sample Analysis Record**

0.45

0.45

0.45

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19296012	10/29/2019 22:43	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19296012	10/23/2019 16:00	Anthony C Polaski	1

N.D.

N.D.

N.D.

376-06-7

72629-94-8

2058-94-8



### Analysis Report

**Golder Associates Incorporated** 

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: UPA-108C-US Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/16/2019 19:06 Collection Date/Time: 10/16/2019 14:30 SDG#: DSG14-02

ELLE Sample #: GW 1177178
ELLE Group #: 2069680
id and Gravel Superfund Site Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 53 Modifie	37 Version 1.1 ed	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	0.47 J	0.44	1
	NEtFOSAA is the acronym for N-eth	yl perfluorooctanesulfonar	midoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	0.53	1
	NMeFOSAA is the acronym for N-me	ethyl perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	3.6	0.44	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.44	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1
14473	Perfluoroheptanoic acid	375-85-9	31	0.44	1
14473	Perfluorohexanesulfonic acid	355-46-4	26	0.44	1
14473	Perfluorohexanoic acid	307-24-4	38	0.44	1
14473	Perfluorononanoic acid	375-95-1	15	0.44	1
14473	Perfluorooctanesulfonic acid	1763-23-1	43	0.44	1
14473	Perfluorooctanoic acid	335-67-1	300	0.44	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

Laboratory Sample	Analysis	Record
-------------------	----------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19296012	10/29/2019 22:52	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19296012	10/23/2019 16:00	Anthony C Polaski	1



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW_101619 Water

DS&G

Project Name: DE Sand and Gravel Superfund Site

 Submittal Date/Time:
 10/16/2019 19:06

 Collection Date/Time:
 10/16/2019

 SDG#:
 DSG14-03TB

Golder Associates Incorporated ELLE Sample #: GW 1177179 ELLE Group #: 2069680

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 \ Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl pe	2991-50-6 rfluorooctanesulfonar	N.D. nidoacetic Acid.	0.46	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl	2355-31-9 perfluorooctanesulfo	N.D. namidoacetic Acid.	0.55	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.46	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.46	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.46	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.46	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.46	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.46	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.46	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.46	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.46	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.46	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.46	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.46	1

Laboratory	/ Sample	Analysis	Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19296012	10/29/2019 23:01	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19296012	10/23/2019 16:00	Anthony C Polaski	1



## Analysis Report

**Golder Associates Incorporated** 

GW 1178912

2070005

ELLE Sample #:

Matrix: Groundwater

ELLE Group #:

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: MW-26N_128 Grab Groundwater

DS&G

**Project Name: DE Sand and Gravel Superfund Site** 

Submittal Date/Time: 10/17/2019 17:58 Collection Date/Time: 10/17/2019 11:00

SDG#: DSG14-04

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS/MS Miscellaneous EPA 537 Version 1.1 Modified			ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	0.45	1
	NEtFOSAA is the acronym for N-ethyl p	erfluorooctanesulfona	midoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	0.54	1
	NMeFOSAA is the acronym for N-methy	/l perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	1.9	0.45	1
14473	Perfluorodecanoic acid	335-76-2	12	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	40	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	120	0.45	1
14473	Perfluorohexanoic acid	307-24-4	65	0.45	1
14473	Perfluorononanoic acid	375-95-1	11	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	72	0.45	1
14473	Perfluorooctanoic acid	335-67-1	250	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1
The s	sample injection internal standard peak are	eas were outside of the	e QC		

limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19296013	10/27/2019 03:28	Brian Kiser	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19296013	10/23/2019 16:00	Anthony C Polaski	1



# Analysis Report

**Golder Associates Incorporated** 

**ELLE Sample #: GW 1178913** 

2070005

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: MW-26N_138 Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/17/2019 17:58
Collection Date/Time: 10/17/2019 12:00

SDG#: DSG14-05

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perfl	2991-50-6 uorooctanesulfonan	N.D. nidoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 erfluorooctanesulfor	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	1.8	0.45	1
14473	Perfluorodecanoic acid	335-76-2	12	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	40	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	120	0.45	1
14473	Perfluorohexanoic acid	307-24-4	61	0.45	1
14473	Perfluorononanoic acid	375-95-1	9.8	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	71	0.45	1
14473	Perfluorooctanoic acid	335-67-1	230	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19296013	10/27/2019 03:46	Devon M Whooley	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19296013	10/23/2019 16:00	Anthony C Polaski	1



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: MW-26N_3X Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/17/2019 17:58 Collection Date/Time: 10/17/2019 14:30

SDG#: DSG14-06

Golder Associates	Incorporated
ELLE Sample #:	GW 1178914
ELLE Group #:	2070005
Matrix: Groundwa	ter

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	:/MS Miscellaneous EPA 537 \ Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	0.43	1
	NEtFOSAA is the acronym for N-ethyl pe	erfluorooctanesulfonar	midoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	0.51	1
	NMeFOSAA is the acronym for N-methy	l perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	1.7	0.43	1
14473	Perfluorodecanoic acid	335-76-2	8.0	0.43	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.43	1
14473	Perfluoroheptanoic acid	375-85-9	29	0.43	1
14473	Perfluorohexanesulfonic acid	355-46-4	72	0.43	1
14473	Perfluorohexanoic acid	307-24-4	45	0.43	1
14473	Perfluorononanoic acid	375-95-1	7.9	0.43	1
14473	Perfluorooctanesulfonic acid	1763-23-1	47	0.43	1
14473	Perfluorooctanoic acid	335-67-1	180	0.43	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.43	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.43	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.43	1
The	sample injection internal standard peak are	as were outside of the	QC		

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

Laboratory	Sample	Analysis	Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19296013	10/27/2019 03:55	Brian Kiser	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19296013	10/23/2019 16:00	Anthony C Polaski	1



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: UPA-105A-LS Grab Groundwater

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180209 ELLE Group #: 2070260

Matrix: Groundwater

Submittal Date/Time: 10/18/2019 19:56 Collection Date/Time: 10/18/2019 10:50

SDG#: DSG14-07

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	0.44	1
14473	NEtFOSAA is the acronym for N-ethyl perfl NMeFOSAA NMeFOSAA is the acronym for N-methyl pe	2355-31-9	N.D.	0.53	1
14473	Perfluorobutanesulfonic acid	375-73-5	0.68 J	0.44	1
14473 14473	Perfluorodecanoic acid Perfluorododecanoic acid	335-76-2 307-55-1	1.7 J N.D.	0.44 0.44	1 1
14473	Perfluoroheptanoic acid	375-85-9	11	0.44	1
14473	Perfluorohexanesulfonic acid	355-46-4	19	0.44	1
14473	Perfluorohexanoic acid	307-24-4	17	0.44	1
14473	Perfluorononanoic acid	375-95-1	3.8	0.44	1
14473	Perfluorooctanesulfonic acid	1763-23-1	14	0.44	1
14473	Perfluorooctanoic acid	335-67-1	100	0.44	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19297015	10/30/2019 18:45	Devon M Whooley	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19297015	10/24/2019 17:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: UPA-105A-US Grab Groundwater

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180210 ELLE Group #: 2070260

Matrix: Groundwater

Submittal Date/Time: 10/18/2019 19:56
Collection Date/Time: 10/18/2019 11:00
SDG#: DSG14-08BKG

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Vo Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	0.45	1
	NEtFOSAA is the acronym for N-ethyl per	fluorooctanesulfonar	midoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	0.54	1
	NMeFOSAA is the acronym for N-methyl p	perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	0.53 J	0.45	1
14473	Perfluorodecanoic acid	335-76-2	2.4	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	10	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	21	0.45	1
14473	Perfluorohexanoic acid	307-24-4	15	0.45	1
14473	Perfluorononanoic acid	375-95-1	2.6	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	15	0.45	1
14473	Perfluorooctanoic acid	335-67-1	81	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19297015	10/30/2019 18:54	Devon M Whooley	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19297015	10/24/2019 17:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: UPA-105A-US_MS Grab Groundwater

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180211 ELLE Group #: 2070260

Matrix: Groundwater

Submittal Date/Time: 10/18/2019 19:56
Collection Date/Time: 10/18/2019 11:00
SDG#: DSG14-08MS

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor				
LC/MS	/MS Miscellaneous EPA 5 Modif	537 Version 1.1 ïed	ng/l	ng/l					
14473	NEtFOSAA	2991-50-6	20	0.46	1				
	NEtFOSAA is the acronym for N-et	thyl perfluorooctanesulfonar	nidoacetic Acid.						
14473	NMeFOSAA	2355-31-9	20	0.55	1				
	NMeFOSAA is the acronym for N-methyl perfluorooctanesulfonamidoacetic Acid.								
14473	Perfluorobutanesulfonic acid	375-73-5	20	0.46	1				
14473	Perfluorodecanoic acid	335-76-2	22	0.46	1				
14473	Perfluorododecanoic acid	307-55-1	25	0.46	1				
14473	Perfluoroheptanoic acid	375-85-9	31	0.46	1				
14473	Perfluorohexanesulfonic acid	355-46-4	40	0.46	1				
14473	Perfluorohexanoic acid	307-24-4	37	0.46	1				
14473	Perfluorononanoic acid	375-95-1	24	0.46	1				
14473	Perfluorooctanesulfonic acid	1763-23-1	33	0.46	1				
14473	Perfluorooctanoic acid	335-67-1	100	0.46	1				
14473	Perfluorotetradecanoic acid	376-06-7	24	0.46	1				
14473	Perfluorotridecanoic acid	72629-94-8	23	0.46	1				
14473	Perfluoroundecanoic acid	2058-94-8	22	0.46	1				

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19297015	10/30/2019 19:03	Devon M Whooley	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19297015	10/24/2019 17:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: UPA-105A-US_MSD Grab Groundwater

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180212 ELLE Group #: 2070260

Matrix: Groundwater

Submittal Date/Time: 10/18/2019 19:56
Collection Date/Time: 10/18/2019 11:00
SDG#: DSG14-08MSD

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 V Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	20	0.45	1
	NEtFOSAA is the acronym for N-ethyl per	rfluorooctanesulfonar	midoacetic Acid.		
14473	NMeFOSAA	2355-31-9	23	0.54	1
	NMeFOSAA is the acronym for N-methyl	perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	20	0.45	1
14473	Perfluorodecanoic acid	335-76-2	25	0.45	1
14473	Perfluorododecanoic acid	307-55-1	23	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	32	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	41	0.45	1
14473	Perfluorohexanoic acid	307-24-4	39	0.45	1
14473	Perfluorononanoic acid	375-95-1	26	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	32	0.45	1
14473	Perfluorooctanoic acid	335-67-1	100	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	23	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	23	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	25	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19297015	10/30/2019 19:12	Devon M Whooley	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19297015	10/24/2019 17:00	Anthony C Polaski	1



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: FDGW_101819 Grab Groundwater

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180213 ELLE Group #: 2070260

Matrix: Groundwater

 Submittal Date/Time:
 10/18/2019 19:56

 Collection Date/Time:
 10/18/2019

 SDG#:
 DSG14-09FD

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS/MS Miscellaneous EPA 537 Version 1.1 Modified			ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	0.46	1
	NEtFOSAA is the acronym for N-ethyl per	fluorooctanesulfonar	midoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	0.55	1
	NMeFOSAA is the acronym for N-methyl p	perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	0.63 J	0.46	1
14473	Perfluorodecanoic acid	335-76-2	1.9	0.46	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.46	1
14473	Perfluoroheptanoic acid	375-85-9	10	0.46	1
14473	Perfluorohexanesulfonic acid	355-46-4	16	0.46	1
14473	Perfluorohexanoic acid	307-24-4	15	0.46	1
14473	Perfluorononanoic acid	375-95-1	3.3	0.46	1
14473	Perfluorooctanesulfonic acid	1763-23-1	14	0.46	1
14473	Perfluorooctanoic acid	335-67-1	100	0.46	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.46	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.46	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.46	1
The r	ecovery for extraction standard(s) is outside	of the QC			

The recovery for extraction standard(s) is outside of the QC acceptance limits in the associated method blank as noted on the QC Summary.

Laborator	y Sample	Analysis	Record
-----------	----------	----------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19305001	11/04/2019 12:08	Danielle D McCully	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	2	19305001	11/01/2019 07:00	Pamela Rothharpt	1



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: FBGW_101819 Grab Water

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180214 ELLE Group #: 2070260

Matrix: Water

Submittal Date/Time: 10/18/2019 19:56
Collection Date/Time: 10/18/2019 15:45
SDG#: DSG14-10FB

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/i	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perfl	2991-50-6 uorooctanesulfonan	N.D. nidoacetic Acid.	0.44	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 erfluorooctanesulfor	N.D. namidoacetic Acid.	0.53	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.44	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.44	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.44	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.44	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.44	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.44	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.44	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.44	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19297015	10/30/2019 19:31	Devon M Whooley	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19297015	10/24/2019 17:00	Anthony C Polaski	1



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW_101819 Water

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180215 ELLE Group #: 2070260

Matrix: Water

Submittal Date/Time: 10/18/2019 19:56
Collection Date/Time: 10/18/2019
SDG#: 10/18/2019
DSG14-11TB

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 \ Modified	/ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	0.45	1
	NEtFOSAA is the acronym for N-ethyl pe	erfluorooctanesulfonar	midoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	0.54	1
	NMeFOSAA is the acronym for N-methy	l perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.45	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.45	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.45	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.45	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1
The r	ecovery for labeled compound used as ext	traction standards			

is outside of QC acceptance limits as noted on the QC Summary.

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19297015	10/30/2019 19:49	Devon M Whooley	1	
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19297015	10/24/2019 17:00	Anthony C Polaski	1	



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: RT-1-UP Grab Groundwater

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180248 ELLE Group #: 2070264

Matrix: Groundwater

Submittal Date/Time: 10/21/2019 18:48 Collection Date/Time: 10/21/2019 10:00

SDG#: DSG14-12

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perfl	2991-50-6 luorooctanesulfonan	N.D. nidoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 erfluorooctanesulfor	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.45	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	0.51 J	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.45	1
14473	Perfluorohexanoic acid	307-24-4	2.1	0.45	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.45	1
14473	Perfluorooctanoic acid	335-67-1	1.0 J	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19303020	11/01/2019 15:30	Danielle D McCully	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19303020	10/30/2019 16:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: UPA-01 Grab Groundwater

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180249 ELLE Group #: 2070264

Matrix: Groundwater

Submittal Date/Time: 10/21/2019 18:48 Collection Date/Time: 10/21/2019 11:35

SDG#: DSG14-13

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 V Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl per	2991-50-6 fluorooctanesulfonar	N.D. nidoacetic Acid.	0.44	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl	2355-31-9 perfluorooctanesulfo	N.D. namidoacetic Acid.	0.53	1
14473	Perfluorobutanesulfonic acid	375-73-5	0.83 J	0.44	1
14473	Perfluorodecanoic acid	335-76-2	4.2	0.44	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1
14473	Perfluoroheptanoic acid	375-85-9	24	0.44	1
14473	Perfluorohexanesulfonic acid	355-46-4	41	0.44	1
14473	Perfluorohexanoic acid	307-24-4	37	0.44	1
14473	Perfluorononanoic acid	375-95-1	6.6 J+	0.44	1
14473	Perfluorooctanesulfonic acid	1763-23-1	24	0.44	1
14473	Perfluorooctanoic acid	335-67-1	160	0.44	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1
14473	Perfluoroundecanoic acid	2058-94-8	0.51 J	0.44	1

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19303020	11/01/2019 15:39	Danielle D McCully	1		
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19303020	10/30/2019 16:00	Anthony C Polaski	1		



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-12-TZ Grab Groundwater

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180250 ELLE Group #: 2070264

Matrix: Groundwater

Submittal Date/Time: 10/21/2019 18:48 Collection Date/Time: 10/21/2019 15:45

SDG#: DSG14-14

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl peri	2991-50-6 fluorooctanesulfonar	N.D. midoacetic Acid.	0.47	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 perfluorooctanesulfor	N.D. namidoacetic Acid.	0.56	1
14473	Perfluorobutanesulfonic acid	375-73-5	0.84 J	0.47	1
14473	Perfluorodecanoic acid	335-76-2	0.61 J	0.47	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.47	1
14473	Perfluoroheptanoic acid	375-85-9	32	0.47	1
14473	Perfluorohexanesulfonic acid	355-46-4	6.9	0.47	1
14473	Perfluorohexanoic acid	307-24-4	53	0.47	1
14473	Perfluorononanoic acid	375-95-1	7.0	0.47	1
14473	Perfluorooctanesulfonic acid	1763-23-1	3.1	0.47	1
14473	Perfluorooctanoic acid	335-67-1	190	0.47	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.47	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.47	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.47	1

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19303020	11/01/2019 15:48	Danielle D McCully	1		
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19303020	10/30/2019 16:00	Anthony C Polaski	1		



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-12-US Grab Groundwater

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180251 ELLE Group #: 2070264

Matrix: Groundwater

Submittal Date/Time: 10/21/2019 18:48 Collection Date/Time: 10/21/2019 11:20

SDG#: DSG14-15

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	MS Miscellaneous EPA 537 Ve Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl peri	2991-50-6 fluorooctanesulfonar	N.D. nidoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 perfluorooctanesulfor	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	1.1 J	0.45	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	31	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	14	0.45	1
14473	Perfluorohexanoic acid	307-24-4	46	0.45	1
14473	Perfluorononanoic acid	375-95-1	8.6	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	4.3	0.45	1
14473	Perfluorooctanoic acid	335-67-1	170	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19303020	11/01/2019 15:57	Danielle D McCully	1		
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19303020	10/30/2019 16:00	Anthony C Polaski	1		



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-02 Grab Groundwater

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180252 ELLE Group #: 2070264

Matrix: Groundwater

Submittal Date/Time: 10/21/2019 18:48 Collection Date/Time: 10/21/2019 13:40

SDG#: DSG14-16

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 V Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl per	2991-50-6 fluorooctanesulfonar	N.D. midoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl	2355-31-9 perfluorooctanesulfo	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	1.3 J	0.45	1
14473	Perfluorodecanoic acid	335-76-2	1.3 J	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	18	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	15	0.45	1
14473	Perfluorohexanoic acid	307-24-4	23	0.45	1
14473	Perfluorononanoic acid	375-95-1	7.8 J+	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	18	0.45	1
14473	Perfluorooctanoic acid	335-67-1	160	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19303020	11/01/2019 16:06	Danielle D McCully	1		
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19303020	10/30/2019 16:00	Anthony C Polaski	1		



## Analysis Report

2425 New Molland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW_102119 Water

Project Name: DE Sand and Gravel Superfund Site

Golder Associates Incorporated ELLE Sample #: GW 1180253 ELLE Group #: 2070264

Matrix: Water

 Submittal Date/Time:
 10/21/2019 18:48

 Collection Date/Time:
 10/21/2019

 SDG#:
 DSG14-17TB

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor			
LC/MS	/MS Miscellaneous EPA 537 Vo Modified	ersion 1.1	ng/l	ng/l				
14473	NEtFOSAA	2991-50-6	N.D.	0.44	1			
	NEtFOSAA is the acronym for N-ethyl perfluorooctanesulfonamidoacetic Acid.							
14473	NMeFOSAA	2355-31-9	N.D.	0.53	1			
	NMeFOSAA is the acronym for N-methyl perfluorooctanesulfonamidoacetic Acid.							
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.44	1			
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.44	1			
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1			
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.44	1			
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.44	1			
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.44	1			
14473	Perfluorononanoic acid	375-95-1	N.D.	0.44	1			
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.44	1			
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.44	1			
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1			
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1			
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1			

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19303020	11/01/2019 16:24	Danielle D McCully	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19303020	10/30/2019 16:00	Anthony C Polaski	1



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-03 Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/22/2019 20:25 Collection Date/Time: 10/22/2019 10:40 SDG#: DSG15-01 Golder Associates Incorporated
ELLE Sample #: GW 1183075
ELLE Group #: 2070811
Matrix: Groundwater

0:25
0:40

CAS Number Result Detection Limit Factor

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	ersion 1.1	ng/i	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perf	2991-50-6 luorooctanesulfonar	N.D. nidoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 erfluorooctanesulfor	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	1.0 J	0.45	1
14473	Perfluorodecanoic acid	335-76-2	2.6	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	22	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	26	0.45	1
14473	Perfluorohexanoic acid	307-24-4	27	0.45	1
14473	Perfluorononanoic acid	375-95-1	6.2	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	31	0.45	1
14473	Perfluorooctanoic acid	335-67-1	270	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19304001	11/08/2019 15:10	Christine E Dolman	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19304001	10/31/2019 07:00	Pamela Rothharpt	1



### Analysis Report

**Golder Associates Incorporated** 

**ELLE Sample #: GW 1183076** 

2070811

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-06 Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/22/2019 20:25
Collection Date/Time: 10/22/2019 12:20

SDG#: DSG15-02

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 V Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	1.2	1
	NEtFOSAA is the acronym for N-ethyl per	fluorooctanesulfonar	midoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	1.5	1
	NMeFOSAA is the acronym for N-methyl	perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	1.5 J	1.2	1
14473	Perfluorodecanoic acid	335-76-2	1.3 J	1.2	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	39	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	36	1.2	1
14473	Perfluorohexanoic acid	307-24-4	55	1.2	1
14473	Perfluorononanoic acid	375-95-1	15	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	14	1.2	1
14473	Perfluorooctanoic acid	335-67-1	290	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.2	1
The r	ecovery for extraction standard d5-NEtFOS	AA is outside of			

the QC acceptance limits as noted on the QC Summary.

Reporting limits were raised due to interference from the sample matrix.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19304001	11/08/2019 15:19	Christine E Dolman	1		
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19304001	10/31/2019 07:00	Pamela Rothharpt	1		



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-11LS Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/22/2019 20:25 Collection Date/Time: 10/22/2019 10:45

SDG#: DSG15-03

<b>Golder Associates</b>	Incorporated
ELLE Sample #:	GW 1183077
ELLE Group #:	2070811
Matrix: Groundwat	tor

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perfli	2991-50-6 uorooctanesulfonam	N.D. iidoacetic Acid.	0.46	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl pe	2355-31-9 erfluorooctanesulfon	N.D. amidoacetic Acid.	0.55	1
14473	Perfluorobutanesulfonic acid	375-73-5	0.67 J	0.46	1
14473	Perfluorodecanoic acid	335-76-2	0.82 J	0.46	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.46	1
14473	Perfluoroheptanoic acid	375-85-9	8.8	0.46	1
14473	Perfluorohexanesulfonic acid	355-46-4	7.9	0.46	1
14473	Perfluorohexanoic acid	307-24-4	13	0.46	1
14473	Perfluorononanoic acid	375-95-1	4.2	0.46	1
14473	Perfluorooctanesulfonic acid	1763-23-1	10	0.46	1
14473	Perfluorooctanoic acid	335-67-1	59	0.46	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.46	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.46	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.46	1

Laboratory S	ample Ana	lysis	Record
--------------	-----------	-------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19304001	11/08/2019 15:28	Christine E Dolman	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19304001	10/31/2019 07:00	Pamela Rothharpt	1



## Analysis Report

Golder Associates Incorporated

**ELLE Sample #: GW 1183078** 

2070811

ELLE Group #:

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-16TZ Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/22/2019 20:25
Collection Date/Time: 10/22/2019 13:05

SDG#: DSG15-04

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	1.2	1
	NEtFOSAA is the acronym for N-ethyl perf	luorooctanesulfonan	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	1.5	1
	NMeFOSAA is the acronym for N-methyl p	erfluorooctanesulfor	amidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	1.2	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	1.2	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	14	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	1.5 J	1.2	1
14473	Perfluorohexanoic acid	307-24-4	24	1.2	1
14473	Perfluorononanoic acid	375-95-1	2.9 J	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	2.2 J	1.2	1
14473	Perfluorooctanoic acid	335-67-1	58	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.2	1
Repo	rting limits were raised due to interference fro	om the sample matri	x.		

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19304001	11/08/2019 15:37	Christine E Dolman	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19304001	10/31/2019 07:00	Pamela Rothharpt	1



### Analysis Report

**Golder Associates Incorporated** 

GW 1183079

2070811

**ELLE Sample #:** 

Matrix: Groundwater

**ELLE Group #:** 

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-16US Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/22/2019 20:25
Collection Date/Time: 10/22/2019 13:35

SDG#: DSG15-05

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	1.2	1
	NEtFOSAA is the acronym for N-ethyl perf	luorooctanesulfonar	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	1.5	1
	NMeFOSAA is the acronym for N-methyl p	erfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	1.4 J	1.2	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	1.2	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	25	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	11	1.2	1
14473	Perfluorohexanoic acid	307-24-4	29	1.2	1
14473	Perfluorononanoic acid	375-95-1	10	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	13	1.2	1
14473	Perfluorooctanoic acid	335-67-1	230	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.2	1
Repo	orting limits were raised due to interference from	om the sample matr	ix.		

The recovery for extraction standards is outside of the QC acceptance limits as noted on the QC Summary.

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19304001	11/08/2019 15:46	Christine E Dolman	1		
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19304001	10/31/2019 07:00	Pamela Rothharpt	1		



### Analysis Report

**Golder Associates Incorporated** 

GW 1183080

2070811

ELLE Sample #:

Matrix: Groundwater

**ELLE Group #:** 

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: PW-1 (U) Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/22/2019 20:25
Collection Date/Time: 10/22/2019 15:15

SDG#: DSG15-06

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Modified	Version 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl p	2991-50-6 erfluorooctanesulfonar	N.D. midoacetic Acid.	1.2	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methy	2355-31-9 I perfluorooctanesulfo	N.D. namidoacetic Acid.	1.5	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	1.2	1
14473	Perfluorodecanoic acid	335-76-2	1.5 J	1.2	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	19	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	14	1.2	1
14473	Perfluorohexanoic acid	307-24-4	28	1.2	1
14473	Perfluorononanoic acid	375-95-1	8.4	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	14	1.2	1
14473	Perfluorooctanoic acid	335-67-1	150	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.2	1
The r	acovery for extraction standards is outside	of the OC accentance	2		

The recovery for extraction standards is outside of the QC acceptance limits as noted on the QC Summary.

Reporting limits were raised due to interference from the sample matrix.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19304001	11/08/2019 15:55	Christine E Dolman	1				
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19304001	10/31/2019 07:00	Pamela Rothharpt	1				



## Analysis Report

2425 New Molland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW_102219 Water

DS&G

Project Name: DE Sand and Gravel Superfund Site

 Submittal Date/Time:
 10/22/2019 20:25

 Collection Date/Time:
 10/22/2019

 SDG#:
 DSG15-07TB

Golder Associates Incorporated ELLE Sample #: GW 1183081 ELLE Group #: 2070811

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perflu	2991-50-6 uorooctanesulfonam	N.D. nidoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl pe	2355-31-9 erfluorooctanesulfon	N.D. amidoacetic Acid.	0.53	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.45	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.45	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.45	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.45	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

Laboratory S	Sample	<b>Analysis</b>	Record
--------------	--------	-----------------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19304001	11/08/2019 16:04	Christine E Dolman	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19304001	10/31/2019 07:00	Pamela Rothharpt	1



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DGC-2S Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/23/2019 19:01 Collection Date/Time: 10/23/2019 10:40

SDG#: DSG15-08

Golder Associates	s Incorporated
ELLE Sample #:	GW 1184509
ELLE Group #:	2071118
Matrix: Groundwa	ater

SDG#:	DSG	15-08				
CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor	
LC/MS		EPA 537 Version 1.1 Modified	ng/l	ng/l		
14473	NEtFOSAA NEtFOSAA is the acronym f	2991-50-6 or N-ethyl perfluorooctanesulfonan	N.D. iidoacetic Acid.	0.46	1	
14473	NMeFOSAA NMeFOSAA is the acronym	2355-31-9 for N-methyl perfluorooctanesulfor	N.D. amidoacetic Acid.	0.55	1	
14473	Perfluorobutanesulfonic acid	375-73-5	1.4 J	0.46	1	
14473	Perfluorodecanoic acid	335-76-2	1.1 J	0.46	1	
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.46	1	
14473	Perfluoroheptanoic acid	375-85-9	29	0.46	1	
14473	Perfluorohexanesulfonic acid	d 355-46-4	3.5	0.46	1	
14473	Perfluorohexanoic acid	307-24-4	36	0.46	1	
14473	Perfluorononanoic acid	375-95-1	18	0.46	1	
14473	Perfluorooctanesulfonic acid	1763-23-1	12	0.46	1	
14473	Perfluorooctanoic acid	335-67-1	210	0.46	1	
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.46	1	
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.46	1	
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.46	1	

Laboratory	/ Sample	Analysis	Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19305015	11/08/2019 19:15	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19305015	11/02/2019 08:00	Isaac Phillips-Cary	1



### Analysis Report

**Golder Associates Incorporated** 

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-07-TZ Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/23/2019 19:01 Collection Date/Time: 10/23/2019 10:05 SDG#: DSG15-09

ELLE Sample #: GW 1184510
ELLE Group #: 2071118
rfund Site Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS		PA 537 Version 1.1 odified	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	1.2	1
	NEtFOSAA is the acronym for	N-ethyl perfluorooctanesulfonar	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	1.5	1
	NMeFOSAA is the acronym fo	or N-methyl perfluorooctanesulfor	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	1.2	1
14473	Perfluorodecanoic acid	335-76-2	1.6 J	1.2	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	13	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	1.2	1
14473	Perfluorohexanoic acid	307-24-4	23	1.2	1
14473	Perfluorononanoic acid	375-95-1	6.2	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	25	1.2	1
14473	Perfluorooctanoic acid	335-67-1	67	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.2	1

The sample injection standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

Reporting limits were raised due to interference from the sample matrix.

The recovery for extraction standard d5-NEtFOSAA is outside of the QC acceptance limits as noted on the QC Summary.

	Laboratory Sample Analysis Record										
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor				
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19305015	11/08/2019 19:24	Jason W Knight	1				
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19305015	11/02/2019 08:00	Isaac Phillips-Cary	1				



### Analysis Report

**Golder Associates Incorporated** 

GW 1184511

**ELLE Sample #:** 

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-07-US Grab Groundwater

DS&G

**Project Name:** 

Submittal Date/Time: 10/23/2019 19:01 Collection Date/Time: 10/23/2019 11:00 SDG#: DSG15-10

**ELLE Group #:** 2071118 Matrix: Groundwater **DE Sand and Gravel Superfund Site** 

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Vo Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	0.45	1
	NEtFOSAA is the acronym for N-ethyl per	fluorooctanesulfonar	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	0.54	1
	NMeFOSAA is the acronym for N-methyl p	perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	1.5 J	0.45	1
14473	Perfluorodecanoic acid	335-76-2	1.1 J	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	21	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	9.1	0.45	1
14473	Perfluorohexanoic acid	307-24-4	27	0.45	1
14473	Perfluorononanoic acid	375-95-1	10	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	15	0.45	1
14473	Perfluorooctanoic acid	335-67-1	200	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1
Tho	ample injection standard peak areas were s	utoido of the OC			

The sample injection standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

Laboratory Sample Analysis Record							
CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
<b>No.</b> 14473	PEAS in Water by LC/MS/MS	EPA 537 Version 1.1	1	19305015	Date and Time	Jason W Knight	Factor

ector Modified EPA 537 Version 1.1 14091 PFAS Water Prep 19305015 11/02/2019 08:00 Isaac Phillips-Cary Modified



## Analysis Report

2425 New Molland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-08-TZ Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/23/2019 19:01 Collection Date/Time: 10/23/2019 12:00

SDG#: DSG15-11

Golder Associates	Incorporated
ELLE Sample #:	GW 1184512
ELLE Group #:	2071118
Matrix: Groundwa	iter

CAT No.	Analysis Name	CAS Number	Result	Method	Dilution Factor
IVO.	<b>,</b>		Result	Detection Limit	ractor
LC/MS/MS Miscellaneous EPA 537 Version 1.1 Modified			ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perflu	2991-50-6 Jorooctanesulfonam	N.D. idoacetic Acid.	1.2	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl pe	2355-31-9 erfluorooctanesulfona	N.D. amidoacetic Acid.	1.5	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	1.2	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	1.2	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	20	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	22	1.2	1
14473	Perfluorohexanoic acid	307-24-4	24	1.2	1
14473	Perfluorononanoic acid	375-95-1	6.0	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	21	1.2	1
14473	Perfluorooctanoic acid	335-67-1	230	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.2	1
Repo	rting limits were raised due to interference fro	m the sample matrix	ζ.		

Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19305015	11/08/2019 19:51	Jason W Knight	1	
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19305015	11/02/2019 08:00	Isaac Phillips-Cary	1	



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW_102319 Water

DS&G

Project Name: DE Sand and Gravel Superfund Site

 Submittal Date/Time:
 10/23/2019 19:01

 Collection Date/Time:
 10/23/2019

 SDG#:
 DSG15-12TB

Golder Associates Incorporated ELLE Sample #: GW 1184513 ELLE Group #: 2071118

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl per	2991-50-6 fluorooctanesulfonar	N.D. nidoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl բ	2355-31-9 perfluorooctanesulfor	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.45	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.45	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.45	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.45	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19305015	11/08/2019 20:00	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19305015	11/02/2019 08:00	Isaac Phillips-Cary	1



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DGC-5 (40) Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/24/2019 18:27 Collection Date/Time: 10/24/2019 10:30

SDG#: DSG15-13

Golder Associates	Incorporated
ELLE Sample #:	GW 1185316
ELLE Group #:	2071302
Matrix: Groundwa	ter

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Vo Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	1.2	1
	NEtFOSAA is the acronym for N-ethyl per	fluorooctanesulfonan	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	1.5	1
	NMeFOSAA is the acronym for N-methyl p	perfluorooctanesulfor	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	2.1 J	1.2	1
14473	Perfluorodecanoic acid	335-76-2	3.4 J	1.2	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	34	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	62	1.2	1
14473	Perfluorohexanoic acid	307-24-4	49	1.2	1
14473	Perfluorononanoic acid	375-95-1	10	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	42	1.2	1
14473	Perfluorooctanoic acid	335-67-1	330	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.2	1

	Laboratory Sample Analysis Record								
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor		
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 15:44	Jason W Knight	1		
14091	PFAS Water Prep	EPA 537 Version 1.1	1	19308022	11/04/2019 16:00	Anthony C Polaski	1		



### Analysis Report

**Golder Associates Incorporated** 

GW 1185317

2071302

**ELLE Sample #:** 

Matrix: Groundwater

**ELLE Group #:** 

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: PZ-11-EXT Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/24/2019 18:27
Collection Date/Time: 10/24/2019 11:00

SDG#: DSG15-14

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Vo Modified	ersion 1.1	ng/i	ng/i	
14473	NEtFOSAA	2991-50-6	N.D.	1.2	1
	NEtFOSAA is the acronym for N-ethyl per	fluorooctanesulfonar	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	1.5	1
	NMeFOSAA is the acronym for N-methyl	perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	1.2	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	1.2	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	23	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	1.4 J	1.2	1
14473	Perfluorohexanoic acid	307-24-4	35	1.2	1
14473	Perfluorononanoic acid	375-95-1	5.5 ↓÷	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	5.5	1.2	1
14473	Perfluorooctanoic acid	335-67-1	89	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.2	1
The r	ecovery for the labeled compound used as a	extraction standards	is		

The recovery for the labeled compound used as extraction standards is outside the QC acceptance limits as noted on the QC Summary. The following action was taken: The sample was reextracted outside holding time. Both sets of data are reported and included in the data package.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 15:53	Jason W Knight	1			
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1			



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW_102419 Water

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/24/2019 18:27 Collection Date/Time: 10/24/2019 SDG#: DSG15-15TB Golder Associates Incorporated ELLE Sample #: GW 1185318 ELLE Group #: 2071302

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 \ Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl pe	2991-50-6 rfluorooctanesulfonar	N.D. midoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl	2355-31-9 perfluorooctanesulfo	N.D. namidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.45	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.45	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.45	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.45	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 16:02	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



### Analysis Report

**Golder Associates Incorporated** 

GW 1186963

**ELLE Sample #:** 

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: C-18D Grab Groundwater

**DE Sand and Gravel Superfund Site** 

**Project Name:** 

Submittal Date/Time: 10/25/2019 19:57 Collection Date/Time: 10/25/2019 10:20 SDG#: DSG15-16

**ELLE Group #:** 2071601 Matrix: Groundwater **DE Sand and Gravel Superfund Site** 

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/M	S/MS Miscellaneous EPA 5 Modifi	37 Version 1.1 ed	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	1.2	1
	NEtFOSAA is the acronym for N-eth	ıyl perfluorooctanesulfonar	midoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	1.5	1
	NMeFOSAA is the acronym for N-m	ethyl perfluorooctanesulfor	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	1.2	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	1.2	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	29	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	3.1 J	1.2	1
14473	Perfluorohexanoic acid	307-24-4	46	1.2	1
14473	Perfluorononanoic acid	375-95-1	8.6 J+	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	10 J	1.2	1
14473	Perfluorooctanoic acid	335-67-1	130	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.2	1

The recovery for the labeled compound used as extraction standards is outside the QC acceptance limits as noted on the QC Summary. The following action was taken: The sample was reextracted outside holding time. Both sets of data are reported and included in the data package.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 16:11	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



CAT

No.

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

14473

#### Lancaster Laboratories Environmental

### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: B-4DR Grab Groundwater

**DE Sand and Gravel Superfund Site** 

EPA 537 Version 1.1

NEtFOSAA is the acronym for N-ethyl perfluorooctanesulfonamidoacetic Acid.

NMeFOSAA is the acronym for N-methyl perfluorooctanesulfonamidoacetic Acid.

Modified

**CAS Number** 

2991-50-6

2355-31-9

375-73-5

335-76-2

307-55-1

375-85-9

355-46-4

307-24-4

375-95-1

1763-23-1

335-67-1

376-06-7

72629-94-8

Result

ng/l

N.D.

N.D.

N.D.

N.D.

39

78

9.9

120

N.D.

N.D.

1.5 J

1.9 J

3.3 J

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/25/2019 19:57
Collection Date/Time: 10/25/2019 10:00
SDG#: DSG15-17BKG

**Analysis Name** 

LC/MS/MS Miscellaneous

**NEtFOSAA** 

**NMeFOSAA** 

Perfluorobutanesulfonic acid

Perfluorohexanesulfonic acid

Perfluorooctanesulfonic acid

Perfluorotetradecanoic acid

Perfluorotridecanoic acid

Perfluorodecanoic acid

Perfluorododecanoic acid

Perfluoroheptanoic acid

Perfluorohexanoic acid

Perfluorononanoic acid

Perfluorooctanoic acid

Golder Associates	Incorporated
ELLE Sample #:	GW 1186964
ELLE Group #:	2071601
Matrix: Groundwa	tor

Method Detection Limit	Dilution Factor
ng/l	
1.2	1
1.5	1
1.2	1
1.2	1
1.2	1
1.2	1
1.2	1
1.2	1
1.2	1
1.2	1
1.2	1
1.2	1
t ( mm	

1.2

1.2

14473 Perfluoroundecanoic acid 2058-94-8 N. The recovery for the sample injection standard and the labeled compound used as extraction standards is outside the QC acceptance limits as noted on the QC Summary. The recovery for the sample injection standard and the labeled compound used as extraction standards is also outside the QC acceptance limits in the associated matrix spike and matrix spike duplicate, indicating a matrix effect.

Labora	tory	Sampl	e Ana	lysis	Record
--------	------	-------	-------	-------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 16:20	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: **B-4DR MS Grab Groundwater** 

**DE Sand and Gravel Superfund Site** 

**Project Name: DE Sand and Gravel Superfund Site** 

10/25/2019 19:57 Submittal Date/Time: Collection Date/Time: 10/25/2019 10:00 SDG#: **DSG15-17MS** 

Golder Associates	Incorporated
ELLE Sample #:	GW 1186965
ELLE Group #:	2071601
Matrixe Craundura	

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 V Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	62	1.2	1
	NEtFOSAA is the acronym for N-ethyl pe	rfluorooctanesulfonar	midoacetic Acid.		
14473	NMeFOSAA	2355-31-9	58	1.5	1
	NMeFOSAA is the acronym for N-methyl	perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	52	1.2	1
14473	Perfluorodecanoic acid	335-76-2	60	1.2	1
14473	Perfluorododecanoic acid	307-55-1	57	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	98	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	54	1.2	1
14473	Perfluorohexanoic acid	307-24-4	140	1.2	1
14473	Perfluorononanoic acid	375-95-1	69	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	47	1.2	1
14473	Perfluorooctanoic acid	335-67-1	170	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	52	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	53	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	57	1.2	1
Thor	anning tar the committee intention atomateral a		maranal and		

The recovery for the sample injection standard and the labeled compound used as extraction standards is outside the QC acceptance limits as noted on the QC Summary. The recovery for the sample injection standard and the labeled compound used as extraction standards is also outside the QC acceptance limits in the associated matrix spike and matrix spike duplicate, indicating a matrix effect.

Labora	tory	Sampl	e Ana	lysis	Record
--------	------	-------	-------	-------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 16:29	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: B-4DR MSD Grab Groundwater

**DE Sand and Gravel Superfund Site** 

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/25/2019 19:57
Collection Date/Time: 10/25/2019 10:00
SDG#: DSG15-17MSD

Golder Associates	incorporated
ELLE Sample #:	GW 1186966
ELLE Group #:	2071601
Matrix: Groundwat	ter

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	62	1.2	1
	NEtFOSAA is the acronym for N-ethyl perf	luorooctanesulfonan	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	63	1.5	1
	NMeFOSAA is the acronym for N-methyl p	erfluorooctanesulfor	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	53	1.2	1
14473	Perfluorodecanoic acid	335-76-2	61	1.2	1
14473	Perfluorododecanoic acid	307-55-1	59	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	99	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	57	1.2	1
14473	Perfluorohexanoic acid	307-24-4	140	1.2	1
14473	Perfluorononanoic acid	375-95-1	70	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	49	1.2	1
14473	Perfluorooctanoic acid	335-67-1	180	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	56	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	53	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	57	1.2	1
The r	acovery for the eamnle injection standard an	d the labeled compo	nund		

The recovery for the sample injection standard and the labeled compound used as extraction standards is outside the QC acceptance limits as noted on the QC Summary. The recovery for the sample injection standard and the labeled compound used as extraction standards is also outside the QC acceptance limits in the associated matrix spike and matrix spike duplicate, indicating a matrix effect.

Laborator	y Sample	Analysis	Record
-----------	----------	----------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 16:38	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



## Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: RBGW_102519 Grab Groundwater

DE Sand and Gravel Superfund Site

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/25/2019 19:57
Collection Date/Time: 10/25/2019 10:25
SDG#: DSG15-18RB

Golder Associates	s Incorporated
ELLE Sample #:	GW 1186967
ELLE Group #:	2071601
Matrix: Groundwa	iter

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 53 Modifie	7 Version 1.1 d	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethy	2991-50-6 I perfluorooctanesulfona	N.D. midoacetic Acid.	0.46	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-me	2355-31-9 thyl perfluorooctanesulfo	N.D. namidoacetic Acid.	0.56	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.46	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.46	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.46	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.46	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.46	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.46	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.46	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.46	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.46	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.46	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.46	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.46	1

Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 16:47	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: FDGW_102519 Grab Groundwater

DE Sand and Gravel Superfund Site

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/25/2019 19:57
Collection Date/Time: 10/25/2019
SDG#: DSG15-19FD

Golde	r Associates	Incorporated
<b>ELLE</b>	Sample #:	GW 1186968
<b>ELLE</b>	Group #:	2071601
		4

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Vo Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	1.2	1
	NEtFOSAA is the acronym for N-ethyl per	fluorooctanesulfonar	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	1.5	1
	NMeFOSAA is the acronym for N-methyl p	perfluorooctanesulfor	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	1.3 J	1.2	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	1.2	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	27	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	2.1 J	1.2	1
14473	Perfluorohexanoic acid	307-24-4	42	1.2	1
14473	Perfluorononanoic acid	375-95-1	8.6 J+	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	5.9 J	1.2	1
14473	Perfluorooctanoic acid	335-67-1	96	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.2	1
The r	acovery for the labeled compound used as	avtraction etandarde	ie		

The recovery for the labeled compound used as extraction standards is outside the QC acceptance limits as noted on the QC Summary. The following action was taken: The sample was reextracted outside holding time. Both sets of data are reported and included in the data package.

Modified

Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 17:05	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: FBGW_102519 Grab Groundwater

DE Sand and Gravel Superfund Site

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/25/2019 19:57
Collection Date/Time: 10/25/2019 15:00
SDG#: DSG15-20FB

Golder Associates	Incorporated
ELLE Sample #:	GW 1186969
ELLE Group #:	2071601
Matrix: Groundwa	iter

000#.						
CAT No.	Analysis Name	CAS Numbe	r Result	Method Detection Limit	Dilution Factor	
LC/MS	/MS Miscellaneous	EPA 537 Version 1.1 Modified	ng/l	ng/l		
14473	NEtFOSAA NEtFOSAA is the acrony	2991-50-6 m for N-ethyl perfluorooctanesulfo	N.D. namidoacetic Acid.	0.43	1	
14473	NMeFOSAA NMeFOSAA is the acron	2355-31-9 ym for N-methyl perfluorooctanesi	N.D. ulfonamidoacetic Acid.	0.52	1	
14473	Perfluorobutanesulfonic a	acid 375-73-5	N.D.	0.43	1	
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.43	1	
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.43	1	
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.43	1	
14473	Perfluorohexanesulfonic	acid 355-46-4	N.D.	0.43	1	
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.43	1	
14473	Perfluorononanoic acid	375-95-1	N.D.	0.43	1	
14473	Perfluorooctanesulfonic a	acid 1763-23-1	N.D.	0.43	1	
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.43	1	
14473	Perfluorotetradecanoic ad	cid 376-06-7	N.D.	0.43	1	
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.43	1	
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.43	1	

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 17:14	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW_102519 Water

**DE Sand and Gravel Superfund Site** 

Project Name: DE Sand and Gravel Superfund Site

 Submittal Date/Time:
 10/25/2019 19:57

 Collection Date/Time:
 10/25/2019

 SDG#:
 DSG15-21TB

Golder Associates Incorporated ELLE Sample #: GW 1186970 ELLE Group #: 2071601

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perfl	2991-50-6 uorooctanesulfonan	N.D. nidoacetic Acid.	0.44	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl po	2355-31-9 erfluorooctanesulfor	N.D. namidoacetic Acid.	0.53	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.44	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.44	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.44	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.44	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.44	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.44	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.44	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.44	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 17:23	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: **B-3D Grab Groundwater** 

DS&G

**Project Name: DE Sand and Gravel Superfund Site** 

Submittal Date/Time: 10/28/2019 18:25 Collection Date/Time: 10/28/2019 09:40

SDG#: DSG16-01

Golder Associates	Incorporated
ELLE Sample #:	GW 1187535
ELLE Group #:	2071717
Marketine One construct	<b>.</b>

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	0.45	1
	NEtFOSAA is the acronym for N-ethyl perf	luorooctanesulfonar	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	0.54	1
	NMeFOSAA is the acronym for N-methyl p	erfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	1.5 J	0.45	1
14473	Perfluorodecanoic acid	335-76-2	2.8	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	36	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	13	0.45	1
14473	Perfluorohexanoic acid	307-24-4	55	0.45	1
14473	Perfluorononanoic acid	375-95-1	14	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	14	0.45	1
14473	Perfluorooctanoic acid	335-67-1	190	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1
The	sample injection internal standard peak areas	were outside of the	QC		

limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 17:32	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



14473

14473

### Lancaster Laboratories Environmental

### Analysis Report

**Golder Associates Incorporated** 

1

GW 1187536

2071717

**ELLE Sample #:** 

Matrix: Groundwater

**ELLE Group #:** 

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: MHW-1M Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/28/2019 18:25 Collection Date/Time: 10/28/2019 10:00

SDG#: DSG16-02

Perfluorotridecanoic acid

Perfluoroundecanoic acid

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous	EPA 537 Vei Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronyi	m for N-ethyl perflu	2991-50-6 uorooctanesulfona	N.D. midoacetic Acid.	0.44	1
14473	NMeFOSAA NMeFOSAA is the acrony	ym for N-methyl pe	2355-31-9 erfluorooctanesulfo	N.D. namidoacetic Acid.	0.53	1
14473	Perfluorobutanesulfonic a	icid	375-73-5	2.7	0.44	1
14473	Perfluorodecanoic acid		335-76-2	4.1	0.44	1
14473	Perfluorododecanoic acid		307-55-1	N.D.	0.44	1
14473	Perfluoroheptanoic acid		375-85-9	23	0.44	1
14473	Perfluorohexanesulfonic	acid	355-46-4	1.7 J	0.44	1
14473	Perfluorohexanoic acid		307-24-4	47	0.44	1
14473	Perfluorononanoic acid		375-95-1	9.6	0.44	1
14473	Perfluorooctanesulfonic a	icid	1763-23-1	6.5	0.44	1
14473	Perfluorooctanoic acid		335-67-1	52	0.44	1
14473	Perfluorotetradecanoic ac	oid	376-06-7	N.D.	0.44	1

N.D.

N.D.

72629-94-8

2058-94-8

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

0.44

0.44

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 17:42	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-15-T2 Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/28/2019 18:25 Collection Date/Time: 10/28/2019 13:40 SDG#: DSG16-03 Golder Associates Incorporated
ELLE Sample #: GW 1187537
ELLE Group #: 2071717
Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous	EPA 537 Version 1.1 Modified	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acrony	2991-50-6 m for N-ethyl perfluorooctanesulfon:	N.D. amidoacetic Acid.	1.2	1
14473	NMeFOSAA NMeFOSAA is the acrony	2355-31-9 ym for N-methyl perfluorooctanesulf	N.D. onamidoacetic Acid.	1.5	1
14473	Perfluorobutanesulfonic a		1.4 J	1.2	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	1.2	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	31	1.2	1
14473	Perfluorohexanesulfonic :	acid 355-46-4	16	1.2	1
14473	Perfluorohexanoic acid	307-24-4	44	1.2	1
14473	Perfluorononanoic acid	375-95-1	12 J∻	1.2	1
14473	Perfluorooctanesulfonic a	acid 1763-23-1	13	1.2	1
14473	Perfluorooctanoic acid	335-67-1	200	1.2	1
14473	Perfluorotetradecanoic ad	cid 376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.2	1

The recovery for the labeled compound used as extraction standards is outside the QC acceptance limits as noted on the QC Summary. The following action was taken: The sample was reextracted outside holding time. Both sets of data are reported and included in the data package.

			_
Laboratory	Sample	Analysis	Record

			_				
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/12/2019 05:02	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW-102819 Water

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/28/2019 18:25 Collection Date/Time: 10/28/2019 SDG#: DSG16-04TB Golder Associates Incorporated ELLE Sample #: GW 1187538 ELLE Group #: 2071717

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS/MS Miscellaneous EPA 537 Version 1.1 Modified		rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perfle	2991-50-6 uorooctanesulfonam	N.D. nidoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl pe	2355-31-9 erfluorooctanesulfon	N.D. amidoacetic Acid.	0.54	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.45	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.45	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.45	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.45	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19308022	11/11/2019 18:00	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19308022	11/04/2019 16:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-10-US Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/30/2019 18:09
Collection Date/Time: 10/30/2019 11:35
SDG#: DSG16-05BKG

Golder Associates Incorporated ELLE Sample #: GW 1189209 ELLE Group #: 2072044

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS/MS Miscellaneous EPA 537 Version 1.1 Modified			ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perf	2991-50-6 luorooctanesulfonan	N.D. nidoacetic Acid.	1.2	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 erfluorooctanesulfor	N.D. namidoacetic Acid.	1.5	1
14473	Perfluorobutanesulfonic acid	375-73-5	2.0 J	1.2	1
14473	Perfluorodecanoic acid	335-76-2	7.0 J	1.2	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	63 J	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	70 J	1.2	1
14473	Perfluorohexanoic acid	307-24-4	81	1.2	1
14473	Perfluorononanoic acid	375-95-1	13 J	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	51 J	1.2	1
14473	Perfluorooctanoic acid	335-67-1	470 J	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	1.2	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19310014	11/13/2019 00:07	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19310014	11/06/2019 16:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: DDA-10-US MS Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/30/2019 18:09
Collection Date/Time: 10/30/2019 11:35
SDG#: DSG16-05MS

Golder Associates Incorporated ELLE Sample #: GW 1189210 ELLE Group #: 2072044

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 V Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	62	1.2	1
	NEtFOSAA is the acronym for N-ethyl pe	rfluorooctanesulfona	midoacetic Acid.		
14473	NMeFOSAA	2355-31-9	59	1.5	1
	NMeFOSAA is the acronym for N-methyl	perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	59	1.2	1
14473	Perfluorodecanoic acid	335-76-2	96	1.2	1
14473	Perfluorododecanoic acid	307-55-1	68	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	150	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	220	1.2	1
14473	Perfluorohexanoic acid	307-24-4	160	1.2	1
14473	Perfluorononanoic acid	375-95-1	110	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	230	1.2	1
14473	Perfluorooctanoic acid	335-67-1	1,200 區	1.2	1
14473	Perfluorotetradecanoic acid	376-06-7	68	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	67	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	66	1.2	1

Laborate	ory Sar	nple A	Inalysis	Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19310014	11/13/2019 00:17	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19310014	11/06/2019 16:00	Anthony C Polaski	1



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17691 • 717-656-2300 • Fax: 717-656-6766 • www.EurotimitiS.com/LanciabsEnv

Sample Description: DDA-10-US MSD Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/30/2019 18:09
Collection Date/Time: 10/30/2019 11:35
SDG#: DSG16-05MSD

Golder Associates Incorporated
ELLE Sample #: GW 1189211
ELLE Group #: 2072044
Matrix: Groundwater

CAT Dilution Method **Analysis Name CAS Number** Result No. Factor **Detection Limit** EPA 537 Version 1.1 ng/l ng/l LC/MS/MS Miscellaneous Modified 14473 **NEtFOSAA** 2991-50-6 60 1.2 1  $NEtFOSAA is the acronym for N-ethyl perfluorooctane sulfonamidoacetic \ Acid. \\$ 14473 2355-31-9 66 1.5 1 NMeFOSAA is the acronym for N-methyl perfluorooctanesulfonamidoacetic Acid. 14473 Perfluorobutanesulfonic acid 375-73-5 60 1.2 14473 Perfluorodecanoic acid 335-76-2 74 1.2 1 14473 Perfluorododecanoic acid 307-55-1 65 1.2 14473 Perfluoroheptanoic acid 375-85-9 120 1.2 14473 Perfluorohexanesulfonic acid 355-46-4 130 1.2 14473 Perfluorohexanoic acid 307-24-4 150 1.2 14473 Perfluorononanoic acid 74 1.2 375-95-1 14473 Perfluorooctanesulfonic acid 1763-23-1 96 1.2 Perfluorooctanoic acid 500 14473 335-67-1 12 14473 Perfluorotetradecanoic acid 376-06-7 65 1.2 72629-94-8 14473 Perfluorotridecanoic acid 58 1.2 14473 Perfluoroundecanoic acid 2058-94-8 1.2

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19310014	11/13/2019 00:26	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19310014	11/06/2019 16:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: FDGW_103019 Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/30/2019 18:09
Collection Date/Time: 10/30/2019
SDG#: DSG16-06FD

Golder Associates Incorporated ELLE Sample #: GW 1189212 ELLE Group #: 2072044

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA	2991-50-6	N.D.	1.2	1
	NEtFOSAA is the acronym for N-ethyl per	fluorooctanesulfonar	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	1.5	1
	NMeFOSAA is the acronym for N-methyl p	perfluorooctanesulfo	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	2.4 J	1.2	1
14473	Perfluorodecanoic acid	335-76-2	46 J	1.2	1
14473	Perfluorododecanoic acid	307-55-1	1.3 J	1.2	1
14473	Perfluoroheptanoic acid	375-85-9	130 J	1.2	1
14473	Perfluorohexanesulfonic acid	355-46-4	270 J	1.2	1
14473	Perfluorohexanoic acid	307-24-4	97	1.2	1
14473	Perfluorononanoic acid	375-95-1	89 J	1.2	1
14473	Perfluorooctanesulfonic acid	1763-23-1	350 J	1.2	1
14473	Perfluorooctanoic acid	335-67-1	2,000 J	12	10
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	1.2	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	1.2	1
14473	Perfluoroundecanoic acid	2058-94-8	3.7 J	1.2	1
	recovery for labeled compound used as extra tside of QC acceptance limits as noted on th				

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19310014	11/13/2019 00:44	Jason W Knight	1	
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19310014	11/14/2019 08:26	Danielle D McCully	10	
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19310014	11/06/2019 16:00	Anthony C Polaski	1	



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: FBGW_103019 Grab Water

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/30/2019 18:09
Collection Date/Time: 10/30/2019 14:35
SDG#: DSG16-07FB

Golder Associates Incorporated ELLE Sample #: GW 1189213 ELLE Group #: 2072044

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 V Modified	ersion 1.1	ng/l	ng/i	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl pe	2991-50-6 rfluorooctanesulfonar	N.D. nidoacetic Acid.	0.45	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl	2355-31-9 perfluorooctanesulfo	N.D. namidoacetic Acid.	0.53	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.45	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.45	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.45	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.45	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.45	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.45	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.45	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.45	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.45	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.45	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.45	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.45	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19310014	11/13/2019 00:53	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19310014	11/06/2019 16:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: RBGW_103019 Grab Water

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/30/2019 18:09
Collection Date/Time: 10/30/2019 14:40
SDG#: DSG16-08RB

Golder Associates Incorporated ELLE Sample #: GW 1189214 ELLE Group #: 2072044

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Modified	' Version 1.1 I	ng/i	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl	2991-50-6 perfluorooctanesulfona	N.D. midoacetic Acid.	0.44	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-met	2355-31-9 hyl perfluorooctanesulfo	N.D. namidoacetic Acid.	0.53	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.44	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.44	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.44	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.44	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.44	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.44	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.44	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.44	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19310014	11/13/2019 01:02	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19310014	11/06/2019 16:00	Anthony C Polaski	1



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW_103019 Water

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 10/30/2019 18:09
Collection Date/Time: 10/30/2019
SDG#: DSG16-09TB

Golder Associates Incorporated ELLE Sample #: GW 1189215 ELLE Group #: 2072044

Matrix: Water

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perf	2991-50-6 Tuorooctanesulfonan	N.D. nidoacetic Acid.	0.44	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 perfluorooctanesulfor	N.D. namidoacetic Acid.	0.53	1
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.44	1
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.44	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.44	1
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.44	1
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.44	1
14473	Perfluorononanoic acid	375-95-1	N.D.	0.44	1
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.44	1
14473	Perfluorooctanoic acid	335-67-1	N.D.	0.44	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19310014	11/13/2019 01:11	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19310014	11/06/2019 16:00	Anthony C Polaski	1



14091 PFAS Water Prep

### Lancaster Laboratories Environmental

### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: AWC-E1(132) Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 11/07/2019 18:02 Collection Date/Time: 11/07/2019 10:20 SDG#: DSG16-10 Golder Associates Incorporated ELLE Sample #: GW 1198570 ELLE Group #: 2073935

Matrix: Groundwater

Anthony C Polaski

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve	rsion 1.1	ng/l	ng/l	
	Modified				
14473	NEtFOSAA	2991-50-6	N.D.	0.44	1
	NEtFOSAA is the acronym for N-ethyl perfl	uorooctanesulfonan	nidoacetic Acid.		
14473	NMeFOSAA	2355-31-9	N.D.	0.53	1
	NMeFOSAA is the acronym for N-methyl p	erfluorooctanesulfor	namidoacetic Acid.		
14473	Perfluorobutanesulfonic acid	375-73-5	2.4	0.44	1
14473	Perfluorodecanoic acid	335-76-2	2.6	0.44	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1
14473	Perfluoroheptanoic acid	375-85-9	26	0.44	1
14473	Perfluorohexanesulfonic acid	355-46-4	7.5	0.44	1
14473	Perfluorohexanoic acid	307-24-4	40	0.44	1
14473	Perfluorononanoic acid	375-95-1	11	0.44	1
14473	Perfluorooctanesulfonic acid	1763-23-1	17	0.44	1
14473	Perfluorooctanoic acid	335-67-1	110	0.44	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1
14473	Perfluoroundecanoic acid	2058-94-8	0.85 J	0.44	1

	Laboratory Sample Analysis Record							
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor	
	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1	1	19316026	11/18/2019 23:13	Jason W Knight	1	

19316026

11/12/2019 16:00

EPA 537 Version 1.1

Modified

DSG16 Page 36 of 4127 Page 3 of 15



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: AWC-E1(156) Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 11/07/2019 18:02 Collection Date/Time: 11/07/2019 11:05

SDG#: DSG16-11

Golder As	sociate	s Incor	porated
<b>ELLE Sam</b>	ple #:	GW	1198571
ELLE Gro	up #:	2073	3935
~ ~			

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perfl	2991-50-6 uorooctanesulfonan	N.D. nidoacetic Acid.	0.43	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl po	2355-31-9 erfluorooctanesulfor	N.D. namidoacetic Acid.	0.52	1
14473	Perfluorobutanesulfonic acid	375-73-5	2.4	0.43	1
14473	Perfluorodecanoic acid	335-76-2	3.0	0.43	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.43	1
14473	Perfluoroheptanoic acid	375-85-9	26	0.43	1
14473	Perfluorohexanesulfonic acid	355-46-4	7.9	0.43	1
14473	Perfluorohexanoic acid	307-24-4	40	0.43	1
14473	Perfluorononanoic acid	375-95-1	12	0.43	1
14473	Perfluorooctanesulfonic acid	1763-23-1	17	0.43	1
14473	Perfluorooctanoic acid	335-67-1	110	0.43	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.43	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.43	1
14473	Perfluoroundecanoic acid	2058-94-8	0.97 J	0.43	1

Laborator	√ Sample	Analysis	Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19316026	11/18/2019 23:22	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19316026	11/12/2019 16:00	Anthony C Polaski	1



# Analysis Report

**Golder Associates Incorporated** 

**ELLE Sample #: GW 1198572** 

2073935

**ELLE Group #:** 

Matrix: Groundwater

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: AWC-E2(140) Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 11/07/2019 18:02 Collection Date/Time: 11/07/2019 12:00

SDG#: DSG16-12

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 Ve Modified	rsion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl perfl	2991-50-6 uorooctanesulfonam	N.D. idoacetic Acid.	0.51	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl p	2355-31-9 erfluorooctanesulfon	N.D. amidoacetic Acid.	0.61	1
14473	Perfluorobutanesulfonic acid	375-73-5	1.6 J	0.51	1
14473	Perfluorodecanoic acid	335-76-2	1.6 J	0.51	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.51	1
14473	Perfluoroheptanoic acid	375-85-9	17	0.51	1
14473	Perfluorohexanesulfonic acid	355-46-4	12	0.51	1
14473	Perfluorohexanoic acid	307-24-4	26	0.51	1
14473	Perfluorononanoic acid	375-95-1	6.5	0.51	1
14473	Perfluorooctanesulfonic acid	1763-23-1	9.5	0.51	1
14473	Perfluorooctanoic acid	335-67-1	120	0.51	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.51	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.51	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.51	1

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19324019	11/22/2019 20:13	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	2	19324019	11/20/2019 16:00	Anthony C Polaski	1



### Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: AWC-E2(165) Grab Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 11/07/2019 18:02 Collection Date/Time: 11/07/2019 13:10 SDG#: DSG16-13 Golder Associates Incorporated ELLE Sample #: GW 1198573 ELLE Group #: 2073935

Matrix: Groundwater

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor
LC/MS	/MS Miscellaneous EPA 537 V Modified	ersion 1.1	ng/l	ng/l	
14473	NEtFOSAA NEtFOSAA is the acronym for N-ethyl pe	2991-50-6 rfluorooctanesulfonar	N.D. nidoacetic Acid.	0.44	1
14473	NMeFOSAA NMeFOSAA is the acronym for N-methyl	2355-31-9	N.D.	0.53	1
14473	Perfluorobutanesulfonic acid	375-73-5	1.5 J	0.44	1
14473	Perfluorodecanoic acid	335-76-2	1.6 J	0.44	1
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.44	1
14473	Perfluoroheptanoic acid	375-85-9	17	0.44	1
14473	Perfluorohexanesulfonic acid	355-46-4	16	0.44	1
14473	Perfluorohexanoic acid	307-24-4	27	0.44	1
14473	Perfluorononanoic acid	375-95-1	6.1	0.44	1
14473	Perfluorooctanesulfonic acid	1763-23-1	14	0.44	1
14473	Perfluorooctanoic acid	335-67-1	140	0.44	1
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.44	1
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.44	1
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.44	1
The s	ample injection internal standard peak are	as were outside of the	QC		

The sample injection internal standard peak areas were outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

The recovery for labeled compound used as extraction standards is outside of QC acceptance limits as noted on the QC Summary due to the matrix of the sample.

	Laboratory Sample Analysis Record									
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor			
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19316026	11/18/2019 23:40	Jason W Knight	1			
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19316026	11/12/20	olaski	1			



# Analysis Report

2425 New Holland Pike, Lancaster, PA 17681 • 717-656-2300 • Fax: 717-656-6766 • www.EurofineitS.com/LanciabsEnv

Sample Description: TBGW-110719 Groundwater

DS&G

Project Name: DE Sand and Gravel Superfund Site

Submittal Date/Time: 11/07/2019 18:02 Collection Date/Time: 11/07/2019 SDG#: DSG16-14TB Golder Associates Incorporated ELLE Sample #: GW 1198574 ELLE Group #: 2073935

CAT No.	Analysis Name	CAS Number	Result	Method Detection Limit	Dilution Factor			
LC/MS/MS Miscellaneous EPA 537 Version 1.1 Modified			ng/l	ng/l				
14473	NEtFOSAA	2991-50-6	N.D.	0.43	1			
NEtFOSAA is the acronym for N-ethyl perfluorooctanesulfonamidoacetic Acid.								
14473	NMeFOSAA	2355-31-9	N.D.	0.51	1			
NMeFOSAA is the acronym for N-methyl perfluorooctanesulfonamidoacetic Acid.								
14473	Perfluorobutanesulfonic acid	375-73-5	N.D.	0.43	1			
14473	Perfluorodecanoic acid	335-76-2	N.D.	0.43	1			
14473	Perfluorododecanoic acid	307-55-1	N.D.	0.43	1			
14473	Perfluoroheptanoic acid	375-85-9	N.D.	0.43	1			
14473	Perfluorohexanesulfonic acid	355-46-4	N.D.	0.43	1			
14473	Perfluorohexanoic acid	307-24-4	N.D.	0.43	1			
14473	Perfluorononanoic acid	375-95-1	N.D.	0.43	1			
14473	Perfluorooctanesulfonic acid	1763-23-1	N.D.	0.43	1			
14473	Perfluorooctanoic acid	335-67-1	1.2 J	0.43	1			
14473	Perfluorotetradecanoic acid	376-06-7	N.D.	0.43	1			
14473	Perfluorotridecanoic acid	72629-94-8	N.D.	0.43	1			
14473	Perfluoroundecanoic acid	2058-94-8	N.D.	0.43	1			

Laboratory S	Sample	<b>Analysis</b>	Record
--------------	--------	-----------------	--------

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
14473	PFAS in Water by LC/MS/MS	EPA 537 Version 1.1 Modified	1	19316026	11/18/2019 23:49	Jason W Knight	1
14091	PFAS Water Prep	EPA 537 Version 1.1 Modified	1	19316026	11/12/2019 16:00	Anthony C Polaski	1



golder.com